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La Nature est un temple où de vivants piliers
Laissent parfois sortir de confuses paroles;
L’homme y passe à travers des forêts de symboles
Qui l’observent avec des regards familiers.

Comme de longs échos qui de loin se confondent
Dans une ténébreuse et profonde unité,
Vaste comme la nuit et comme la clarté,
Les parfums, les couleurs et les sons se répondent.

II est des parfums frais comme des chairs d’enfants,
Doux comme les hautbois, verts comme les prairies,
Et d’autres, corrompus, riches et triomphants,

Ayant l’expansion des choses infinies,
Comme l’ambre, le musc, le benjoin et l’encens,
Qui chantent les transports de l’esprit et des sens.

Charles Baudelaire, Correspondances, in Les Fleurs du mal
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Introduction

In the formalism of non-relativistic Quantum Mechanics, state preparations
are described by density operators on a separable Hilbert space, and state
evolutions of closed systems are described by unitary transformations. How-
ever, local state evolutions of a composite closed system are no more unitary,
this meaning that open quantum systems evolve in a different way. Precisely,
physical transformations of open quantum systems are known to be described
by Quantum Maps, namely linear maps that inject states into states (state-
preserving maps), and such that their local application to a bipartite system
is still state-preserving. In the 70’s, the fundamental work by Jamio lkowski,
Choi, Kraus and many others [1, 2, 3] provided a full mathematical char-
acterization of Quantum Maps. In particular, it turned out that the set of
Quantum Maps inherits its structure from that of quantum states, mainly as
a consequence of the natural request of state preservation.

Later on, in the framework of Quantum Information [4], quantum sys-
tems started to be considered as information carriers, so that two-level sys-
tems (typically, spin-1

2
particles, or orthogonal polarization states of light)

were regarded as the fundamental bits of quantum information. Under this
perspective, then, Quantum Maps represent the logical operations that may
be performed on such qubits, so that it is natural to think of them as of
‘quantum gates’, and to arrange them in ‘quantum circuits’ where quantum
wires represent state evolutions of isolated systems. Furthermore, quantum
circuits may be seen, in turn, as quantum gates.

Of course, the choice of using Quantum Maps as quantum gates is made
with the aim of obtaining the most general and realistic description of trans-
formations that qubits can undergo. This makes theories of quantum in-
formation and quantum computation two very complete and powerful theo-
ries, with an overwhelming production of fundamental results in the last two
decades.

However, the parallelism between the set of Quantum Maps and that of
states, de facto setting a strict analogy between qubits and their processing,
has not received much attention so far. The present work has its roots in
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this analogy: indeed, the underlying physical intuition is that, since states
and their evolutions share most of their mathematical properties, one may
consider evolutions as super-states and then introduce super-maps to describe
their physical transformations.

Clearly, in terms of quantum circuits, supermaps correspond to maps of
gates into gates, so that they are expected to correspond to some quantum
circuit of which the input gate is a component: a trivial example is that of
the identity supermap, consisting of the circuit made up by the input gate
alone, which maps every gate into itself. However, it is not difficult to guess
practical situations where it is necessary to study how the behaviour of some
circuit varies as one of its component gates is allowed to be variable – which
corresponds to the study of the particular supermap mapping the variable
gate into the composite quantum circuit.

Evidently, this would be of great relevance to optimization problems:
indeed, one of the most straightforward applications of such a formalism
is the optimization of the cloning of gates, which will be considered in the
present work. Contrarily to that of states, cloning of maps has received
very little attention in literature. Nevertheless, it is not unlikely that some
particular tasks of Quantum Computation may require such an operation
and, on the other hand, the lack of study on this subject, mainly do to the
hardness of the problem, represents one reason more to investigate it.

Furthermore, supermaps are expected to give a formal generalization of
maps, so that their introduction acquires a theoretical importance as well.

The present work is structured as follows:

In Chapter 1, after reviewing the main axioms of Quantum Mechan-
ics, Quantum Maps are axiomatically introduced as a description of physical
transformations of Quantum-Mechanical states: in Section 1.1, necessary
conditions that must be fulfilled by Quantum Maps are deduced from phys-
ical prescriptions. Then, in Section 1.2 these mathematical conditions are
analyzed in detail in order to obtain a handy characterization of Quantum
Maps. Finally, in Section 1.3 it is proved that, thanks to such a characteriza-
tion, those conditions are also sufficient for a Quantum Map to represent state
evolutions of open systems, and some further physical remarks are made.

In Chapter 2, the notion of Quantum Supermaps is introduced as a
mathematical tool for the study of transformations of Quantum Maps. Notice
that the structure of this Chapter closely recalls that of Chapter 1: indeed,
the axiomatization of Quantum Supermaps being presented in Section 2.1 is
carried on in strict analogy with that of Quantum Maps (see Section 1.1), and
the properties of Quantum Supermaps are investigated in Section 2.2 with
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a constant regard to analogous features of Quantum Maps (see Section 1.2).
Furthermore, Section 2.4 concludes this Chapter with the important study
of the relation between the mathematical formalism of Quantum Supermaps
and their physical implementation (as for the case of Quantum Maps, see
Section 1.3). An exception to the parallel structures of Chapters 1 and
2 is represented by Section 2.3, where covariant supermaps are introduced
mainly as a preparatory study for 1-to-2 Unitary Cloning Supermaps, that
are presented in Chapter 3.

In Chapter 3, the problem of cloning groups of state transformations is
introduced as an application of the formalism that was developed in Chapter
2. In Section 3.1 the general case in which the group of unitaries to be cloned
is any compact group is investigated: since an ideal cloning is proved to be
impossible in the general case, a strategy for the search of an optimal cloner
is outlined. In Section 3.2, the particular case of universal cloning (namely,
the problem of cloning all unitary state transformations) is solved for qudits
using the strategy and the main results that were developed in the preceding
Section.
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Chapter 1

Quantum Maps

In the present Chapter, after reviewing the main axioms of Quantum Me-
chanics, Quantum Maps are axiomatically introduced as a description of
physical transformations of Quantum-Mechanical states: in Section 1.1, nec-
essary conditions that must be fulfilled by Quantum Maps are deduced from
physical prescriptions. Then, in Section 1.2 these mathematical conditions
are analyzed in detail in order to obtain a handy characterization of Quantum
Maps. Finally, in Section 1.3 it is proved that, thanks to such a characteri-
zation, those conditions are also sufficient for a Quantum Map to represent
open systems’ state evolution, and some further physical remarks are made.

1.1 Transformations of Quantum States

In the following, we will use the generic term ‘Quantum Map’ to describe
mathematical superoperators on the set of states describing physical trans-
formations of density operators. The notion of ‘physical transformations’ will
not be uniquely given here: on the contrary, it will be induced by physical
considerations during the course of the present treatment. This particular
choice of exposition is made with the primary aim to make the axiomatization
of supermaps, in Chapter 2, as straightforward as possible.

1.1.1 A brief Review of Quantum Mechanics

In what has come to be known as the standard axiomatization of Quantum
Mechanics axiomatization (see, for example, [4]), to each quantum system
there corresponds a separable Hilbert space H, to every ensemble of iden-
tically prepared systems there corresponds a unit vector |ψ〉 ∈ H (a ‘pure
state’), and composite systems correspond to the tensor product between all
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CHAPTER 1. QUANTUM MAPS

the Hilbert spaces of the component systems1.
In the framework of Quantum Computation, it is a natural choice to

consider physical systems corresponding to finite-dimensional Hilbert spaces
only, so that the quantity of information they carry remains finite: any finite-
dimensional Hilbert space H is isomorphic to Cd, where d is the dimension
of H: in symbols, we will write H ∼= Cd.

State evolutions of closed systems are assumed to be described by unitary
transformations U ∈ B(H), that may be represented diagramatically as

|ψin〉 Hin U
Hout |ψout〉 = U |ψin〉,

where formal labels ‘in’ and ‘out’ where introduced for clarity reasons and,
of course, Hin

∼= Hout
∼= H.

Ensembles of pure states {(|ψi〉, pi) | i ∈ I}, corresponding to a fraction
pi of systems being prepared in the pure state |ψi〉, are represented by the
so-called density operator ρ ∈ T (H) (‘mixed state’), which is explicitly built
as

ρ =
∑
i∈I

pi|ψi〉〈ψi|. (1.1)

It is usual to discard adjectives ‘pure’ and ‘mixed’, since the density operator
formalism does not exclude pure states, but rather generalizes them.

It is straightforward to realize that, for any operator ρ ∈ T (H) to be
interpreted as a density operator, the two following joint conditions are nec-
essary and sufficient: {

ρ ≥ 0,
Tr[ρ] = 1.

(1.2)

Indeed, the first condition is necessary and sufficient for ρ to be in the form
(1.1) with 〈ψi|ψj〉 = δi,j and pi ≥ 0, and the latter is required for {pi | i ∈ I}
to be interpretable as probabilities.

We will use the symbol Ω(H) to denote the convex cone of trace-class,
positive operators on H, and the symbol N1(H) to denote the affine subspace
of T (H) such that its elements are normalized to 1 (read ‘N’ for ‘Normal-
ized’): thus, the full set of quantum states on a Hilbert space H is given by

1The explicit relation between normalized vectors in the Hilbert space H and states
of the quantum-mechanical physical system is governed by the so-called Born rule, which
estabilishes the correspondence between one normalized vector and the probabilities of
the outcomes of measurements of observables. Thus, in order to give this correspondence
explicitly one should get into the details of quantum measurement theory: since we w
need this formalism in the present treatment, unless in a very superficial fashion, we will
not consider it here. However, as a reference for quantum measurement theory see, for
example, [3], or more modern reviews such as [5, 6].
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1.1. TRANSFORMATIONS OF QUANTUM STATES

S(H) = Ω(H) ∩ N1(H) ⊂ T (H). (1.3)

Since the intersection of any two convex sets is a convex set too [7], we see
that S(H) is convex, that is, for any two density operators ρ0, ρ1 in S(H),
the convex combination

ρp
.
= pρ1 + (1− p)ρ0 (1.4)

is a density operator in S(H) as well, for all p ∈ [0, 1].
As a result of the convexity of S(H), every density operator may be

decomposed into a convex combination of extremal elements of S(H): then,
from Eq. (1.1) and its following discussion, we realize that all extremal points
in S(H) correspond to density operators in the form |ψi〉〈ψi|, i.e. to pure
states. Furthermore, besides statistical ensembles {(|ψi〉, pi) | i ∈ I} of pure
states (corresponding to convex combinations ρ =

∑
i∈I pi|ψi〉〈ψi| of extremal

points |ψi〉〈ψi| of S(H)), we are allowed to consider statistical ensembles
{(ρi, pi) | i ∈ I} of mixed states (corresponding to convex combinations
ρ =

∑
i∈I piρi of generic points ρi of S(H)).

Clearly, the physical interpretation of such ensembles remains the same,
namely convex combinations of density operators (each corresponding to
some randomization of pure states) may be regarded as their randomiza-
tion. Furthermore, it is evident that every non-extremal density operator
admits infinite convex decompositions, i.e. there are infinite ways to regard
it as the randomization between density operators.

As stated above, composite systems correspond to the tensor product of
the respective Hilbert spaces: for instance, if one has two component systems
with Hilbert spaces H and K, the state of the composite system will be
represented by a certain density operator ρ ∈ S(H⊗K). If ρ = ρ⊗σ for some
ρ ∈ S(H) and σ ∈ S(K), then we will say that the state is factorized : this
is a very special case which corresponds to the local measurement outcomes
of the two systems being statistically independent from each other. In the
presence of classical correlations, the state is said to be separable, whilst it
is entangled when correlations are intrinsically due to Quantum Mechanics.

If we decompose a quantum system into two (or more) subsystems, then
the local state of one of the two is given by partially tracing the global state
on the other degrees of freedom of the system: for instance, given a system
in the state ρ with Hilbert space H admitting H ∼= H1 ⊗H2, the local state
of the subsystem corresponding to space H1 is given by Tr2[ρ], with

Tr2
.
= TrH2 :


T (H1 ⊗H2) → T (H1),

ρ 7→
d2∑
n=1

(
11H1 ⊗ H2〈n|

)
ρ
(
11H1 ⊗ |n〉H2

)
,

(1.5)

3



CHAPTER 1. QUANTUM MAPS

where d2 is the dimension of H2, and {|n〉 | n = 1, . . . , d2} is any orthonormal
basis for it. As we may expect, partial trace of factorized states is indepen-
dent of the state which is being traced over, i.e.

Tr2[ρ⊗ σ] = Tr[σ] ρ =
= ρ,

(1.6)

but this is no more true when the global state ρ is entangled or separable.

1.1.2 State Evolutions of Open Systems

The simplest example of a Quantum Map is given, in a natural way, by
unitary transformations. In fact, as we have seen, every ρ ∈ S(H) can be
interpreted as a statistical ensemble of pure quantum states: thus, its time
evolution will represent the same ensemble where all component pure states
evolved via the same unitary operator U : clearly, this corresponds to

ρin
Hin U

Hout ρout = UρinU
†.

Despite being, indeed, the broadest class of linear invertible transformations
of B(H) that take the extremal set of pure states Ext(S(H)) into itself, Quan-
tum Maps in the form U • U † (that we can call unitary transformations) are,
by far, a very particular subclass of all the possible Quantum Maps C map-
ping the full set S(H) into itself.

A priori, in fact, we could merely consider all Quantum Maps C defined
on S(H) with range contained in S(H): this is equivalent to state the following

Axiom 1.1 All Quantum Maps must preserve Quantum States.

Such a trivial assumption is widely self-explanatory: nevertheless, even
though we could have omitted it without any loss of clarity, we consider
a good idea to stress all physical requirements we will be making for Quan-
tum Maps, since they will represent some leading steps in the axiomatization
of Quantum Supermaps in Chapter 2.

Actually, we realize that there is one further mathematical property we
must require at once:

Axiom 1.2 All Quantum Maps must be convex-linear on the set of states.

Indeed, let ρ =
∑

i∈I piρi represent the ensemble of mixed states {(ρi, pi) | i ∈
I}, and let us consider the transformation ρ 7→ C (ρ). Then, the hypothesis
of convex-linearity is necessary (and sufficient) to say that C (ρ) corresponds

4



1.1. TRANSFORMATIONS OF QUANTUM STATES

to the ensemble {(C (ρi), pi) | i ∈ I}, namely the initial ensemble where all
component states have evolved according to the same transformation.

Of course, given a convex-linear Quantum Map C : S(H) → C (S(H)) ⊆
S(H), we can extend its action to the whole T (H) by linearity2: thus there is
no loss of generality in considering linear maps of the whole T (H), as long as
C (S(H)) ⊆ S(H). Furthermore, for this condition to be true, the Quantum
Map C needs to to preserve conditions (1.2) jointly, and of course C = U •U †

represents a very particular kind of Quantum Map.
But, then, under which physical conditions is the Quantum Map allowed

to be a S(H)-preserving, linear map different from a unitary transformation?
The answer is: when the quantum-statistical system is open.

Indeed, since it is always possible to consider an open system as part of
an ‘enlarged’ closed system, let us consider an environment E coupled to our
open system H, such that the composite system H ⊗ E may be regarded
as closed. Now, even though the initial state of the composite system is
separable (say, ρ

in
= ρin ⊗ σin), the final state after a time evolution

ρin
Hin

U

Hout

ρ
out

σin
E E

will be entangled in general, for such is the emerging state ρ
out

= U(ρin ⊗
σin)U †. Furthermore, from a local point of view, the open system H has
undergone the transformation

ρin
Hin C Hout ρout,

where the output state is given explicitly by

C (ρin) = TrE [U(ρin ⊗ σin)U †] (1.7)

and, of course, C : T (Hin) → T (Hout) is a S(H)-preserving linear transfor-
mation generally different from a unitary.

Remark 1.1 Notice that, so far, labels ‘in’ and ‘out’ could be discharged
without any loss of generality nor information: in all cases, the isomorphism
Hin

∼= Hout just looked like a plausible, if not obvious hypothesis. However,
this is no more true when we consider open systems. In fact, consider the case
in which the state evolution is due to a cloning device for photons: then, we

2In fact, let us denote with C̃ the map defined by C̃ (
∑

n αnρn) .=
∑

n αnC (ρn) for all
{αn | αn ∈ C}, for all {ρn | ρn ∈ S(H)}. Then, it is straightforward to realize that C̃ is a
linear map defined on the whole T (H), and that it is an extension of C .
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CHAPTER 1. QUANTUM MAPS

expect Hout (several emerging photons) to be larger than Hin (single input
photon). Of course, in order to consider the closure of the system, one
shall consider some closed physical system minus the input photon as the
initial environmental space Ein, and the same closed physical system minus
the output photons as the final environmental space Eout, so that unitary
operators of Hin ⊗ Ein into Hout ⊗ Eout can be considered. N

As a consequence of Remark 1.1, we must replace the notion of S(H)-
preserving maps with that of State-Preserving (SP) maps:

Definition 1.1 (SP Map) Let C be a linear map of T (Hin) into T (Hout):
we will say that it is State-Preserving, or SP, when

C
(
S(Hin)

)
⊆ S(Hout), (1.8)

and we will denote with SP(Hin,Hout) the set of SP maps of T (Hin) into
T (Hout).

For a review on the theory of open quantum systems see, for example,
[8]. In the present treatment we will not need to get into the details of such
a theory, as our approach is highly axiomatical.

1.1.3 On Positive and Trace-Preserving Maps

From the definition (1.3) of S(H), we realize that a sufficient condition for
C to be SP is that it maps Ω(Hin) and N1(Hin) respectively into some subset
of Ω(Hout) and of N1(Hout). This suggests the two following definitions:

Definition 1.2 (Positive Map) We will say that the linear map
C : T (Hin) → T (Hout) is Positive, or P, when it preserves the positivity
of operators, namely when

C
(
Ω(Hin)

)
⊆ Ω(Hout), (1.9)

and we will denote with P(Hin,Hout) the set of P maps of T (Hin) into
T (Hout).

Definition 1.3 (Trace-Preserving Map) We will say that the linear map
C : T (Hin) → T (Hout) is Trace-Preserving, or TP, when it preserves the
normalization of states, namely when

C
(
N1(Hin)

)
⊆ N1(Hout), (1.10)

and we will denote with TP(Hin,Hout) the set of TP maps of T (Hin) into
T (Hout).
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1.1. TRANSFORMATIONS OF QUANTUM STATES

Remark 1.2 Thanks to the linearity of C (and to that of the trace), we
can prove that C is TP in the sense of Definition 1.3 if and only if

Tr[C (A)] = Tr[A] ∀ A ∈ T (Hin). (1.11)

Of course, this is a sufficient condition for C to be TP. To prove that it
is also necessary, let C be TP and let A be any operator with Tr[A] ∈
C r {0}. Then, we have that (Tr[A])−1A is an operator with unit trace, so
that C ((Tr[A])−1A) has unit trace too. But since of course C ((Tr[A])−1A) =
(Tr[A])−1C (A), then we have that C (A) has trace equal to Tr[A]. N

Lemma 1.1 (On P&TP Maps) The set of SP maps coincides with that of
P&TP maps. In symbols,

SP(Hin,Hout) = [P ∩ TP](Hin,Hout). (1.12)

Proof As we have alredy noticed, all P&TP maps are trivially SP as well.
Then, we have to prove that all SP maps are both P and TP: let us start by
showing that all SP maps are P.

Actually, this may be seen as a direct consequence of the trivial fact
that the convex cone of positive operators may be parametrized by the (real,
positive) trace of its elements:

Ω(H) =
⋃
t∈R+

[Ω(H) ∩ Nt(H)] (1.13)

for all Hilbert spaces H, where we have denoted with Nt(H) the set of oper-
ators on H that are normalized to (i.e. with trace equal to) t.

Indeed, if A ∈ Ω(Hin) ∩ N1(Hin), then of course C (A) ∈ Ω(Hout) ∩
N1(Hout), as C is SP by hypothesis. Furthermore, even though A is a
nonnormalized positive operator, i.e. A ∈ Ω(Hin) r N1(Hin), we still have
that A ∈ Ω(Hin) ∩ NTr[A](Hin), with Tr[A] ∈ R+ r {1}: thus, apart from
the trivial case in which A = 0, we have that (Tr[A])−1A ∈ S(Hin) and
C ((Tr[A])−1A) ∈ S(Hout). This shows that C (A) ∈ Ω(Hout) ∩ Nt(Hout) for
all A ∈ Ω(Hin) ∩ Nt(Hin) with t ∈ R+, i.e.

C
(
Ω(Hin) ∩ Nt(Hin)

)
⊆ Ω(Hout) ∩ Nt(Hout) ∀ t ∈ R+. (1.14)

Substituting in Eq. (1.13) yields C (Ω(Hin)) ⊆ Ω(Hout), namely C is P.
Finally, we have to prove that, if C is SP, then it is TP as well. So, let

C be a SP map, and let us prove that C is TP by contradiction: thus, let
us suppose that there exists an operator A ∈ N1(Hin) r Ω(Hin) such that

7
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C (A) /∈ N1(Hout). Furthermore, let us consider the line {Ar | r ∈ R} in the
hyperplane N1(Hin) parametrized by

Ar = rA+ (1− r)ρ, r ∈ R, (1.15)

where ρ is some full-rank non-extremal element of S(Hin). Ar is easily checked
to be in N1(Hin), for all r; furthermore, we have

rTr[C (A)] = Tr[C (Ar)]− (1− r)Tr [C (ρ)] =
= Tr[C (Ar)] + r − 1,

(1.16)

thanks to the hypothesis that C is SP. So, thanks to the linearity of C (and
to that of the trace), the hypothesis that Tr[C (A)] 6= 1 yields

Tr[C (Ar)] 6= 1 ∀ r ∈ R r {0}. (1.17)

Now, since A0 = ρ, and since ρ is full-rank and non-extremal in S(Hin), we
can always find an ε > 0 such that Ar is still an element of S(Hin) for all
r ∈ [−ε,+ε]: this means that

Tr[C (Ar)] = 1 ∀ r ∈ [−ε,+ε], (1.18)

which contradicts Eq. (1.17). �

1.1.4 On Completely Positive Maps

Summirazing the above results, we have shown that (once considered Axioms
1.1 and 1.2) we may suppose all Quantum Maps to be (linear) P&TP maps
of T (Hin) into T (Hout): then, Axioms 1.1 and 1.2 are satisfied by

Proposition 1.3 All Quantum Maps are P&TP (linear) maps.

Nevertheless, since we have not given an explicit definition of Quantum
Maps (in fact, in the two Axioms we have just formulated two necessary
conditions for a map to be a Quantum Map), we cannot say, conversely,
whether all P&TP maps are, indeed, Quantum Maps, i.e. whether all P&TP
maps correspond to some physical transformation of the system.

In fact, as is well known, the whole class of P&TP maps contains several
maps which necessarily do not represent physical transformations. Indeed,
for a Quantum Map to represent some physical state transformation we must
state the following

8
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Axiom 1.4 Let Hin be an open system which is entangled with some isolated
system K. Then, all Quantum Maps C of T (Hin) into some T (Hout) must
be such that the joint evolution C ⊗IT (K) of the composite system Hin ⊗K
corresponds to a Quantum Map as well.

The reasons for this request are, once again, very clear: indeed, if Axiom 1.4
were not satisfied, we could have physical evolutions of local states that are
no more physical when one takes a global viewpoint.

Now, consider the case in which an open system Hin is entangled with
another system K, and suppose that we can induce some state evolution
on the first, by means of a convex-linear P&TP map C , while treating the
second as being isolated:

Hin C Hout

ρ
in

ρ
out
,

K

_ _ _�
�
�
�

�
�
�
�_ _ _

where the output state is given by

ρ
out

= [C ⊗IT (K)](ρin
). (1.19)

Clearly, for the above diagram to be interpreted as a state evolution, the
dashed rectangle must be described by a P&TP map as well. Now, whilst it
is easy to show that C ⊗IT (K) is TP for all TP maps C 3 , it is equally easy
to show that it does not necessarily have to be P, even though C is so4.

In order to get rid of the above physically meaningless P&TP maps, and
to comply with Axiom 1.4, we thus need to restrict the class of P maps to
those that preserve positivity for all possible extensions of the system: such
maps are known in literature as Completely Positive (CP) maps.

3Indeed, let C be TP and let A ∈ T (Hin ⊗ K), with Schmidt decomposition given by
A =

∑
i,j Bi ⊗ Cj . Then,

Tr[[C ⊗I ](A)] =
∑
i,j

Tr[C (Bi)]Tr[Cj ] =
∑
i,j

Tr[Bi]Tr[Cj ] =
∑
i,j

Tr[Bi ⊗ Cj ] = Tr[A],

thanks to the linearity of C and to that of the trace.
4A well-known counter-example is provided by the transposing map T , defined as

T (ρ) = ρ>, where transposition > is performed respect to a fixed orthonormal basis
{|n〉} of H: of course this is a P&TP map, for it preserves positivity and normalization
conditions (1.2). Nevertheless, consider a bipartite system on H⊗K, with H ∼= K, and a
transpostion to be performed on the system H only: then, after defining

|Ψ−
mn〉〉 =

1√
2

[
|m〉 ⊗ |n〉 − |n〉 ⊗ |m〉

]
,

|Φ+
mn〉〉 =

1√
2

[
|m〉 ⊗ |m〉+ |n〉 ⊗ |n〉

]
,

m 6= n,

9
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Definition 1.4 (Completely Positive Map) Any P map C : T (Hin) →
T (Hout) is said to be Completely Positive, or CP, when every trivial exten-
sion of its action on tensor spaces is a P map as well, namely when

C ⊗IT (K) ∈ P(Hin ⊗K,Hout ⊗K) ∀ K. (1.20)

We will denote with CP(Hin,Hout) the set of CP maps of T (Hin) into T (Hout).

We have shown, thus, that Axioms 1.1, 1.2 and 1.4 lead one to consider
Quantum Maps as linear maps of T (Hin) into T (Hout), with the further
conditions of Complete Positivity and Trace Preservation. Nevertheless, at
this point, we still cannot say whether all CP&TP maps may be regarded
as Quantum Maps indeed. Luckily enough, the answer to this question is a
positive one, as shown by Stinespring [9]: we postpone the details of such an
important result to Subsection 1.3.1, and we study the properties of CP and
TP maps in the first place.

1.2 Characterization of Quantum Maps

In order to obtain a mathematical characterization of Quantum Maps, in the
present Section we study the conditions a Quantum Map must necessarily
satisfy.

1.2.1 Positive Maps

Despite being not a sufficient condition for a map to be a Quantum Map,
still it may be instructive to study P condition (1.9) briefly. Clearly, such a
condition has nothing to do with positivity of C as a linear operator acting
on T (Hin) – which we may write as

Tr[A†C (A)] ≥ 0 ∀ A ∈ T (Hin). (1.21)

In fact, when Hin and Hout are not isomorphic, Eq. (1.21) is not even well
defined5.

it is easily seen that, even if the initial state is the pure state |Ψ−
mn〉〉, the final state is no

more physical for it is no more positive, as shown by the simple calculation

〈〈Φ+
mn|ρout

|Φ+
mn〉〉 = 〈〈Φ+

mn|
[
T ⊗IT (K)

](
|Ψ−

mn〉〉〈〈Ψ−
mn|
)
|Φ+

mn〉〉 =

= −1
2
.

5Furthermore, in the caseHin
∼= Hout, given a positive map C in the sense of Eq. (1.21),

it is easily seen that A being positive is not a sufficient condition for C (A) to be too. To
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1.2. CHARACTERIZATION OF QUANTUM MAPS

Nevertheless, whilst positive maps C : T (Hin) → T (Hout) are by no
means related to positive linear operators, it turns out, actually, that they
are in 1 : 1 correspondence with operators on Hin⊗Hout that are positive on
factorized ones. This is the main result of [1], that we report here as

Theorem 1.2 (Jamio lkowski isomorphism) Consider two Hilbert spaces,
Hin and Hout, and let {|i〉 | i = 1, . . . , din} be an orthonormal basis for Hin:
then, the map

T :


L(T (Hin), T (Hout)) → B(Hin ⊗Hout),

C 7→ TC
.
=

din∑
i,j=1

|j〉Hin
〈i| ⊗ C

(
|i〉Hin

〈j|
)
,

(1.22)

estabilishes an isomorphism between linear maps of T (Hin) into T (Hout) and
linear operators on Hin⊗Hout such that P maps correspond to operators that
are positive on factorized states, namely

C ∈ P(Hin,Hout)
m

〈ψ|〈ϕ|TC |ψ〉|ϕ〉 ≥ 0 ∀ |ψ〉 ∈ Hin, ∀ |ϕ〉 ∈ Hout.
(1.23)

Proof Positivity condition for any map C : T (Hin) → T (Hout) may be
written as

〈ϕ|C
(
|ψ〉〈ψ|

)
|ϕ〉 ≥ 0 ∀ |ψ〉 ∈ Hin, ∀ |ϕ〉 ∈ Hout. (1.24)

But since

C
(
|ψ〉〈ψ|

)
=

din∑
i,j=1

〈ψ|j〉〈i|ψ〉C
(
|i〉〈j|

)
, (1.25)

then condition (1.24) reads

din∑
i,j=1

〈ψ|j〉〈i|ψ〉〈ϕ|C
(
|i〉〈j|

)
|ϕ〉 ≥ 0 ∀ |ψ〉 ∈ Hin, ∀ |ϕ〉 ∈ Hout, (1.26)

show this, we build a simple counter-example: let us take H ∼= C2, and consider the map
C defined as C (A) .= 1

2Tr[σzA]σz, which is manifestly positive, in the sense of Eq. (1.21),
and the density operator A = p|0〉〈0| + (1 − p)|1〉〈1|, with p ∈ (1/2, 1]. The output
operator, then, will be C (A) = (p − 1/2)σz, so that 〈0|C (A)|0〉 = p − 1/2 < 0. This
proves that, given a positive map C , in the sense of Eq. (1.21), it is not necessarily a P
map in the sense of Eq. (1.9). Vice versa, given a P map, it does not necesarrily have
to be a positive operator: consider again the P transposing map T . Then of course
Tr[A†T (A)] = Tr[A†A>], which is real but not necessarily positive. For example, if H ∼=
C2, then Tr[A†T (A)] = |〈0|A|0〉|2 + |〈1|A|1〉|2 + 2Re [〈0|A|1〉∗〈1|A|0〉] and it is sufficient
to take A = |0〉〈1| − |1〉〈0| to show that Tr[A†T (A)] ≤ 0, despite the fact that T is P.

11



CHAPTER 1. QUANTUM MAPS

which is equivalent to

〈ψ|⊗〈ϕ|

(
din∑
i,j=1

|j〉〈i| ⊗ C
(
|i〉〈j|

))
|ψ〉⊗|ϕ〉 ≥ 0 ∀ |ψ〉 ∈ Hin, ∀ |ϕ〉 ∈ Hout.

(1.27)
This completes the proof. �

Remark 1.3 Condition of positivity on factorized vectors (1.23) is by far
weaker than positivity condition on all vectors in Hin ⊗ Hout: for instance,
it is easily seen that Jamio lkowski operator corresponding to the identical
map, TI , is positive on factorized vectors, but it is no more necessarily so
on factorizable or entangled ones. N

1.2.2 Completely Positive Maps

The most relevant results concerning CP maps were achieved by Choi [2]:
the first step for reviewing such results is the well known notion of Choi
operators.

Definition 1.5 (Choi operator) Let C be any linear map of T (Hin) into
T (Hout): then, its corresponding Choi operator RC ∈ B(Hout⊗Hin) is given
by

RC
.
= [C ⊗IT (Hin)]

(
|11in〉〉〈〈11in|

)
. (1.28)

Remark 1.4 Eq. (1.28) estabilishes an isomorphism between maps and
operators explicitly given by

R :

{
L(T (Hin), T (Hout)) → B(Hout ⊗Hin),
C 7→ RC .

(1.29)

Indeed, it is easy to check that the inverse isomorphism is given by

R 7→ CR | CR(A) = Trin

[(
11out ⊗ A>)R] ∀ A ∈ T (Hin). (1.30)

A priori, this is not a relevant isomorphism, for it simply states that linear
applications between two spaces with dimensions d2

in and d2
out may be seen as

d2
out×d2

in matrices. Nevertheless, it acquires a very important meaning when
one considers CP maps, as the following Theorem shows. N

12



1.2. CHARACTERIZATION OF QUANTUM MAPS

Theorem 1.3 (Choi isomorphism) Given a linear map C : T (Hin) →
T (Hout), the following propositions are equivalent:

1. C is CP.

2. Its Choi operator RC is positive.

3. There exists a set {Mx | x ∈ X} ⊂ L(Hin,Hout) such that

C (A) =
∑
x∈X

MxAM
†
x ∀ A ∈ T (Hin). (1.31)

Proof First we note that (1) ⇒ (2) thanks to Definitions 1.4 & 1.5 (of CP
maps and Choi operators, respectively), since |11〉〉〈〈11| is a positive operator.

Now, given any linear map C , we let RC be positive as in prop. (2): we
may thus write its diagonalization as

RC =
∑
x∈X

|Mx〉〉〈〈Mx|, (1.32)

for some finite set {|Mx〉〉 | x ∈ X} ⊂ Hout ⊗Hin, from which follows

RC =
∑
x∈X

(Mx ⊗ 11Hin
)|11Hin

〉〉〈〈11Hin
|(M †

x ⊗ 11Hin
) =

=

din∑
i,j=1

(∑
x∈X

Mx|i〉in〈j|M †
x

)
⊗ |i〉in〈j|.

(1.33)

But, since of course Eq. (1.28) may be rephrased as

RC =

din∑
i,j=1

C
(
|i〉in〈j|

)
⊗ |i〉in〈j|, (1.34)

then we have proved that

C
(
|i〉in〈j|

)
≡
∑
x∈X

Mx|i〉in〈j|M †
x, (1.35)

i.e. proposition (3).
Finally, consider any positive operator A ∈ T (Hin⊗K) with diagonaliza-

tion

A =
∑
y∈Y

|Ny〉〉〈〈Ny|, (1.36)

13
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for a proper finite set {|Ny〉〉 | y ∈ Y } ⊂ Hin ⊗ K. Then, for every map
C : T (Hin) → T (Hout) we have

[C ⊗IT (K)](A) = [C ⊗IT (K)]

(∑
y∈Y

|Ny〉〉Hin⊗K〈〈Ny|

)
=

= [C ⊗IT (K)]

(∑
y∈Y

(Ny ⊗ 11K)|11K〉〉〈〈11K|(N †
y ⊗ 11K)

)
=

= [C ⊗IT (K)]

(
dK∑
i,j=1

∑
y∈Y

Ny|i〉K〈j|N †
y ⊗ |i〉K〈j|

)
=

=
∑
y∈Y

dK∑
i,j=1

C
(
Ny|i〉K〈j|N †

y

)
⊗ |i〉K〈j|,

(1.37)

thanks to the linearity of C . Now, if we choose C as in prop. (3), then

[C ⊗IT (K)](A) =
∑
x∈X

∑
y∈Y

dK∑
i,j=1

MxNy|i〉K〈j|N †
yM

†
x ⊗ |i〉K〈j| =

=
∑
x∈X

∑
y∈Y

|MxNy〉〉〈〈MxNy|,
(1.38)

which is manifestly positive: this proves that (3) ⇒ (1). �

Remark 1.5 In literature, Eq. (1.31) is commonly known as Kraus decom-
position (or Operator-Sum Representation) for the CP map C [3]: we will
also call in the same way the particular set of Kraus operators {Mx | x ∈ X}.
Since operators {Mx | x ∈ X} derive from the diagonalization of a positive
operator, it is natural to require them to be orthogonal: in which case, we will
say that the Kraus decomposition is in its canonical form. On the other hand,
it is still possible to have non-canonical Kraus decompositions: if operators
are still linearly independent, though, we will say that the decomposition is
in its minimal form. Of course, then, the canonical form is minimal as well.

The problem of finding a characterization for the class of Kraus decompo-
sitions, given a CP map C , is once again solved by Choi [2], and the Theorem
is reported below, proofless.

Theorem 1.4 (Characterization of Kraus decompositions) Let C be
a CP map, and let {Mx | x ∈ X} be a minimal Kraus decomposition for C .
Then {Ny | y ∈ Y } is another Kraus decomposition for C if and only if there
exists a |Y | × |X| isometric matrix V such that

Ny =
∑
x∈X

VyxMx ∀ y ∈ Y. (1.39)
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Furthermore, if Kraus decomposition {Ny | y ∈ Y } is minimal too, then
|X| = |Y | and V is unitary.

N

Remark 1.6 Theorem 1.3 provides two equivalent methods for character-
izing CP maps: Choi operators and Kraus decompositions. Whilst choosing
between the two might be just a matter of convenience, in most cases the
formalism of Choi operators turns out to be quite more compact and straight-
forward. Nevertheless, Kraus decomposition has the advantage of expliciting
the physical interpretation of CP&TP maps: we shall thus study TP maps
before making this point. N

Remark 1.7 The main result of Theorem 1.3 states that the set of CP
maps from T (Hin) into T (Hout) is isomorphic to the convex cone of positive
operators on Hout ⊗Hin: this may be written in symbols as

CP(Hin,Hout) ∼= Ω(Hout ⊗Hin), (1.40)

and it has the important consequence that CP maps form a convex set. N

1.2.3 Trace-Preserving Maps

Since Choi isomorphism proved to be an excellent tool to deal with the
characterization of CP maps, it is natural to try and characterize TP maps
in the same manner: fortunately, such characterization is possible, as shown
in the following

Lemma 1.5 (Characterization of TP Maps) Let C be any linear map
of T (Hin) into T (Hout). Then, C is TP if and only if its Choi operator
RC ∈ B(Hout ⊗Hin) satisfies

Trout[RC ] = 11in. (1.41)

Proof First, we note that

Trout[RC ] =

din∑
i,j=1

Tr
[
C
(
|i〉in〈j|

)]
|i〉in〈j|, (1.42)
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where {|i〉 | i = 1, . . . din} is an orthonormal basis for Hin, so that condition
(1.41) is equivalent to

Tr
[
C
(
|i〉in〈j|

)]
= δi,j. (1.43)

Then, if the last Equation holds, we have that

Tr[C (A)] =

din∑
i,j=1

〈i|A|j〉Tr
[
C
(
|i〉in〈j|

)]
=

=

din∑
i=1

〈i|A|i〉 =

= Tr[A] ∀ A ∈ T (Hin),

(1.44)

i.e. C is TP. Vice-versa, if C is TP, then of course we have that Eq. (1.43)
is trivially satisfied. �

Remark 1.8 Lemma 1.5 tells us that the set of TP maps of T (Hin) into
T (Hout) is isomorphic to the affine hyperplane (in B(Hout ⊗ Hin)) of Choi
operators that are normalized to 11in: in symbols,

TP(Hin,Hout) ∼= N11in
(Hout ⊗Hin), (1.45)

where we put

N11in
(Hout ⊗Hin)

.
= {R ∈ T (Hout ⊗Hin) | Trout[R] = 11in} . (1.46)

Thus, the set of TP maps is an affine space. N

1.2.4 Completely Positive & Trace-Preserving Maps

Theorem 1.3 and Lemma 1.5, respectively, provide us with full characteri-
zation of CP and TP maps. The following Corollary provides us with an
explicit characterization of maps that are jointly CP&TP.

Corollary 1.6 (to Lemma 1.5) Any linear map C of T (Hin) into T (Hout)
is CP&TP if and only if there exists a set {Mx | x ∈ X} ⊂ L(Hin,Hout) such
that

C (A) =
∑
x∈X

MxAM
†
x ∀ A ∈ T (Hin) (1.47)

and ∑
x∈X

M †
xMx = 11in. (1.48)
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Proof Of course, C is CP if and only if Eq. (1.47) holds. So, let C be
CP: from the proof of Theorem 1.3, we know that Kraus decomposition
{Mx} ⊂ L(Hin,Hout) is given by the diagonalization of the positive Choi
operator, i.e.

RC =
∑
x∈X

|Mx〉〉〈〈Mx|, (1.49)

for some {|Mx〉〉 | x ∈ X} ⊂ Hout ⊗Hin. Then,

Trout[RC ] =
∑
x∈X

Trout[|Mx〉〉out,in〈〈Mx|] =

=
∑
x∈X

Trout1 [(11out1 ⊗M>
x )|11〉〉out1,out2〈〈11|(11out1 ⊗M∗

x)] =

=
∑
x∈X

M>
x Trout1 [|11〉〉out1,out2〈〈11|]M∗

x =

=
∑
x∈X

M>
x M

∗
x .

(1.50)
Now, using Lemma 1.5, we obtain

C ∈ TP(Hin,Hout) ⇔ (1.41) ⇔
∑
x∈X

M>
x M

∗
x = 11in ⇔ (1.48). (1.51)

This completes the proof. �

Remark 1.9 We stress the fact that Eq. (1.41) is a necessary and sufficient
TP condition for all linear maps, whilst Eq. (1.48) is necessary and suffi-
cient only when we consider CP maps along with some Kraus decomposition
{Mx | x ∈ X}. N

1.3 Quantum Channels

Now that we have obtained the desired mathematical characterization of
CP&TP maps, we proceed to study the relation between such maps and
state transformations of quantum systems.

1.3.1 Stinespring Theorem

In the following, we will state a simplified version of Stinespring Theorem
[9]: as we pointed out before, this will let us claim that all state evolutions
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of open systems are represented by CP&TP maps, and also that all CP&TP
maps represent some physical evolution. In order to state the main result,
we will require the notion of Heisenberg picture of a map.

Definition 1.6 (Heisenberg Picture of a Map) Let C be a map of T (H)
into T (K). We will say that, in the Heisenberg picture, the map is repre-
sented by C > : B(K) → B(H) such that

Tr[BC (A)] = Tr[C >(B)A] ∀ (A,B) ∈ T (H)× B(K). (1.52)

Remark 1.10 The above condition may be expanded to

H〈i|C >
(
|k〉K〈l|

)
|j〉H = K〈l|C

(
|j〉H〈i|

)
|k〉K, (1.53)

where {|i〉} and {|k〉} are orthonormal bases forH and K, respectively. Then,
this is equivalent to

dH∑
i,j=1

dK∑
k,l=1

[
H〈i|C >

(
|k〉K〈l|

)
|j〉H

]
|i〉H〈j| ⊗ |k〉K〈l| =

=

dH∑
i,j=1

dK∑
k,l=1

[
K〈k|C

(
|i〉H〈j|

)
|l〉K
]
|l〉K〈k| ⊗ |j〉H〈i|,

(1.54)

which, in turn, may be rewritten as

RC> = R>
C . (1.55)

However, notice that Hilbert spaces are ordered differently on the two sides
of Eq. (1.55). N

Remark 1.11 Thanks to Remark 10, it is easy to show that we have the
two following logical equivalences:

C is CP ⇔ RC> ≥ 0 ⇔ C > is CP,
C is TP ⇔ TrK[RC> ]11H ⇔ C > is unital.

(1.56)

Whilst the former is trivial, to prove the latter it is sufficient to consider the
inverse isomorphism formula (1.30), that we rewrite here for C > as

C >(B) = TrK[(11H ⊗B>)RC> ] ∀ B ∈ T (K). (1.57)

Then TP condition is evidently equivalent to C >(11K) = 11H.
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Furthermore, it is straightforward to check that

RC =
∑
x

|Mx〉〉K⊗H〈〈Mx|

m
RC> =

∑
x

|M †
x〉〉H⊗K〈〈M †

x|,
(1.58)

namely Kraus operators for C > are the Hermitian conjugates of Kraus op-
erators for C . N

We are now ready to state the Theorem.

Theorem 1.7 (Simplified Stinespring Theorem) Let C > be a map of
B(Hout) into B(Hin): then, C > is CP if and only if

C >(B) = V †(B ⊗ 11Eout)V ∀ B ∈ B(Hout), (1.59)

where V is some linear map of Hin into Hout ⊗ Eout for some Hilbert space
Eout.

Proof Let Eq. (1.59) hold, and let us define the set {Mx | x = 1, . . . , dEout}
of linear transformations of Hin into Hout as

Mx
.
=
(

11out ⊗ Eout〈x|
)
V, (1.60)

where {|x〉Eout} is any orthonormal basis for Eout: then, we have

V =

dEout∑
x=1

(
11out ⊗ |x〉Eout

)
Mx, (1.61)

and substituting in (1.59) yields

C >(B) =

dEout∑
x,y=1

M †
y

(
11out ⊗ Eout〈y|

)
(B ⊗ 11Eout)

(
11out ⊗ |x〉Eout

)
Mx =

=

dEout∑
x=1

M †
xBMx ∀ B ∈ B(Hout).

(1.62)
Thus, thanks to the Theorem by Choi 1.3, C > is CP. Of course, the proof
may be reversed, so that the ‘if’ becomes an ‘iff’. �
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Corollary 1.8 (to Theorem 1.7) Let C be a map of T (Hin) into T (Hout).
Then, C is CP&TP if and only if it admits the following representation:

C (A) = TrEout

[
Uψ
(
A⊗ |ψ〉Ein

〈ψ|
)
U †
ψ

]
∀ A ∈ T (Hin), (1.63)

for some Hilbert spaces Ein, Eout, where |ψ〉 is any pure state of Ein and
Uψ : Hin ⊗ Ein → Hout ⊗ Eout is a unitary transformation depending, other
than on C , on the choice of |ψ〉.

Proof C is CP if and only C > is so, i.e. if and only if Eq. (1.59) holds. Now,
as we have seen, C is TP if and only if C > is unital, that is C >(11out) = 11in.
Then, we have proved that C is CP&TP if and only if C > satisfies Eq. (1.59),
V being an isometry. Furthermore, from the Definition 1.6 of Heisenberg
picture it is easy to check that Eq. (1.59) is equivalent to

C (A) = TrEout [V AV
†] ∀ A ∈ T (Hin). (1.64)

In fact, from Eq. (1.52) we have

Tr[BC (A)] = Tr[C >(B)A] =
= Tr[V †(B ⊗ 11Eout)V A] =
= Tr[(B ⊗ 11Eout)V AV

†] =
= Tr[BTrEout [V AV

†]] ∀ B ∈ T (Hout),

(1.65)

for all A ∈ T (Hin).
Now, we realize that we can always enlarge Eout at will: this just sums up

to adding zero columns to the isometry V . Thus, it is not a loss of generality
to suppose that dEout is some multiple of dHin

. Then, we can consider another
Hilbert space Ein, with dimension

dEin

.
=
dHout · dEout

dHin

, (1.66)

and let |ψ〉 be any pure state (〈ψ|ψ〉 = 1) in Ein. Finally, one can always find
a linear operator Uψ of Hin ⊗ Ein into Hout ⊗ Eout such that

Uψ(11Hin
⊗ |ψ〉Ein

) = V. (1.67)

This yields Eq. (1.63), with

11Hin
= V †V =

= (11Hin
⊗ Ein

〈ψ|)U †
ψUψ(11Hin

⊗ |ψ〉Ein
),

(1.68)
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i.e. U †
ψUψ = 11Hin

⊗ 11Ein
: this proves that Uψ is a unitary transformation. �

Remark 1.12 Consider a CP&TP map C of T (Hin) into T (Hout), and
let {Mx | x ∈ X} be a Kraus decomposition for it: in general, a Kraus
decomposition of a CP&TP map may consist of any (finite) number |X| of
linear transformations Mx. However (see Remark 1.5), the choice of treating
with canonical decompositions, i.e. with linearly independent sets {Mx}, is
not a restrictive one. This places an upper bound on the number of Kraus
operators, namely |X| ≤ dHin

· dHout .
Now, from the proof of Theorem 1.7, we know that the minimal dimension

of Eout is |X|: in fact, if dEout < |X|, we would have no natural way to define
the isometry V : Hin → Hout ⊗ Eout satisfying Eq. (1.59). Then we see that,
once fixed Hin and Hout, if we want Eout to fit all possible CP&TP maps C ,
we must suppose |X| = dHin

· dHout (worst case choice), so that the minimal
dimension for Eout is dHin

· dHout .
Furthermore, in order to write Eq. (1.63), we have supposed that dEout

is some multiple of dHin
, so that we may retain our optimal choice dEout =

dHin
· dHout and, from Eq. (1.66), we obtain that the minimal dimension for

Ein is d2
Hout

. N

Now, Quantum Maps were introduced as a mathematical tool to describe
state transformations of quantum systems. By Axioms 1.1, 1.2 and 1.4, de
facto we have required all Quantum Maps to be CP&TP maps; furthermore,
Corollary 1.8 clearly tells us that, conversely, all CP&TP maps may be re-
garded as state evolutions of open quantum system, namely all CP&TP maps
deserve the adjective ‘Quantum Map’. Thus, we have proved that the set of
Quantum Maps (once one assumes Axioms 1.1, 1.2 and 1.4) concides with
that of CP&TP maps, i.e. with the set of state evolutions of open systems.

In literature, CP&TP maps are known as Quantum Channels, so we give
the following definition.

Definition 1.7 (Quantum Channel) A Quantum Channel between Hilbert
spaces Hin and Hout is any CP&TP map C : T (Hin) → T (Hout), so that we
shall write

QC(Hin,Hout)
.
= CP(Hin,Hout) ∩ TP(Hin,Hout) (1.69)

with an obvious meaning of symbols.

Indeed, in the framework of Quantum Information, when some information
is being transmitted its physical storing device (say, a qubit) is assumed to
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be an open system, in order to take into account noise effects coming from
environment or third parties.

Remark 1.13 Notice that Quantum Channels generalize Quantum States.
Indeed, consider a linear map C between C and H. Then, its Choi operator
is given by RC = C (1) ∈ B(H), so that C is a Quantum Channel if and only
if {

C (1) ≥ 0,
Tr[C (1)] = 1,

(1.70)

namely if and only if C (1) ∈ S(H). Thus, we see that the set of states S(H)
may be seen as the set of Quantum Channels taking C in H:

S(H) ∼= QC(C,H). (1.71)

N

1.3.2 On the Convex Set of Quantum Channels

As we have seen above, both sets of CP and of TP maps are convex, so that
their intersection (i.e. the set of Quantum Channels) is convex as well. In
fact, using Choi isomorphism we may write

QC(Hin,Hout) = CP(Hin,Hout) ∩ TP(Hin,Hout) ∼=
∼= Ω(Hout ⊗Hin) ∩ N11in

(Hout ⊗Hin).
(1.72)

As a result, all convex combinations of Quantum Channels are Quantum
Channels as well and, conversely, all Quantum Channels may be decomposed
into some (proper or trivial) convex combination of Quantum Channels.

The physical interpretation of convex combinations of Quantum Chan-
nels is straightforward: indeed, as randomization of input states is obtained
by considering ensembles of input density operators {(ρi, pi) | i ∈ I}, ran-
domization of output states is obtained considering ensembles of Quantum
Channels {(Cj, p

′
j) | j ∈ J}, such that

C (ρ) =
∑
j∈J

p′jCj(ρ). (1.73)

This shows that convex combinations of Quantum Channels may be regarded
as their randomization: extremal elements in the set of Quantum Channels,
thus, admit no description in terms of randomized Quantum Channels. Such
extremal Quantum Channels are characterized by a Theorem once again due
to Choi [2]:
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Theorem 1.9 (Extremal Quantum Channels) Let C be a Quantum
Channel of T (Hin) into T (Hout), and let {Mx | x ∈ X} be one of its Kraus
canonical decompositions. Then, C is extremal in QC(Hin,Hout) if and only
if {M †

xMy | x, y ∈ X} is a linearly independent subset of T (Hin).

Proof Let us work in the Heisenberg picture: then, we have the CP, unital
map C > of B(Hout) into B(Hin), with Kraus decomposition {M †

x | x ∈ X}.
Clearly, C > is extremal in the set of CP, unital maps if and only if C is
extremal in the set of CP, TP maps.

So, let us assume that C > is extremal: then, we want to prove that the
only way to write ∑

x,y∈X

λx,yM
†
xMy = 0 (1.74)

is the trivial one, namely Λ = 0 – where Λ = (λx,y)x,y. Once fixed a matrix
Λ such that Eq. (1.74) holds, we note that taking the Hermitian conjugate
of it yields ∑

x,y∈X

λ∗y,xM
†
xMy = 0, (1.75)

so that, taking the sum and the difference of the two, we have∑
x,y∈X

(λx,y ± λ∗y,x)M
†
xMy = 0. (1.76)

Thus, we must prove that Λ± = 0, with Λ± = Λ ± Λ†: this is equivalent to
prove that Λ = 0 with Λ = Λ†. By a scalar multiplication, we may further
assume −11 ≤ Λ ≤ 11. Now, let us define maps C >

± as

C >
± (B) =

∑
x,y∈X

(11± Λ)x,yM
†
xBMy ∀ B ∈ B(Hout); (1.77)

then,

C >
± (11Hout) =

∑
x,y∈X

M †
xMx ±

∑
x,y∈X

λx,yM
†
xMx =

= 11Hin
,

(1.78)

i.e. C >
± are unital maps. Furthermore, they are CP as well: in fact, let 11± Λ = Γ†

±Γ±,

N±,z
.
=
∑
x∈X

γ±z,xMx, z ∈ Z, (1.79)
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where Γ± = (γ±z,x)z,x is a |Z| × |X| matrix. Then

C >
± (B) =

∑
x,y∈X

(Γ†
±Γ±)x,yM

†
xBMy =

=
∑
z∈Z

∑
x∈X

γ±∗z,xM
†
x B

∑
y∈X

γ±z,yMy =

=
∑
z∈Z

N †
±,zBN±,z ∀ B ∈ B(Hout).

(1.80)

Since C > = 1
2
(C >

+ + C >
− ), with C > extremal, we obtain C > = C >

+ = C >
− :

this means that {Mx | x ∈ X} and {N±,z | z ∈ Z} are Kraus decompositions
of the same map, so that, thanks to Theorem 1.4, matrices Γ± are isometries.
Thus, recalling the first of Eqq. (1.79) yields 11± Λ = 11, i.e. Λ = 0.

Now, let us assume that {M †
xMy | x, y ∈ X} is a linearly independent set:

then, {Mx | x ∈ X} is a linearly independent set too. Furthermore, let C > =
1
2
(C >

1 + C >
2 ) for some extremal maps C >

1 , C >
2 with Kraus decompositions

respectively given by {N (1)
z1 | z1 ∈ Z1} and {N (2)

z2 | z2 ∈ Z2}, and let Γ(1) and
Γ(2) be, respectively, |Z1| × |X| and |Z2| × |X| matrices such that

N (i)
zi

=
∑
x∈X

Γ(i)
zi,x
Mx ∀ zi ∈ Zi, i ∈ {1, 2}. (1.81)

Then, unital conditions of maps C >
i read

11Hin
=
∑
zi∈Zi

N (i)†
zi
N (i)
zi

=

=
∑
zi∈Zi

∑
x∈X

Γ(i)∗
zi,x
M †

x

∑
y∈X

Γ(i)
zi,y
My =

=
∑
x,y∈X

(Γ(i)†Γ(i))x,yM
†
xMy, i ∈ {1, 2},

(1.82)

whilst unital condition of C > reads∑
x∈X

M †
xMx = 11Hin

. (1.83)

Comparing the two last Eqq. yields, thanks to the hypothesis of linearly
independence of {M †

xMy | x, y ∈ X},

(Γ(i)†Γ(i))x,y = δx,y, i ∈ {1, 2}, (1.84)

i.e. Γ(1) and Γ(2) are isometric matrices. Then, by Theorem 1.4, we have that
C > = C >

1 = C >
2 , so that C > is extremal as well. �
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Remark 1.14 Theorem 1.9 lets us place a stricter bound on the number
|X| of Kraus transformations for extremal Quantum Channels: indeed, if
{M †

xMy} is a linearly independent set on T (Hin), then the number of its
element (|X|2) must not exceed the dimension of B(Hin) (d2

in), so that |X| ≤
din is a necessary condition for C to be extremal.

Recalling Remark 1.12, we see that all extremal Quantum Channels may
be seen as unitary transformations ofHin⊗Ein intoHout⊗Eout with Eout

∼= Hin

and Ein
∼= Hout. N

1.3.3 Notes on Trace-Decreasing Maps

As we pointed out before, it is just a matter of convenience whether to use
Choi operators or Kraus decompositions in order to characterize CP maps, so
the same holds for the characterization of Quantum Channels. Nevertheless,
as anticipated in Remark 1.6, Kraus decompositions carry an explicit physical
interpretation of state evolution.

Indeed, let C be a Quantum Channel of T (Hin) into T (Hout) with Kraus
decomposition {Mx | x ∈ X}, and let us rewrite its action (1.31) on a state
ρ ∈ S(Hin) as

C (ρ) =
∑
x∈X

px(ρ)
Ex(ρ)

px(ρ)
, (1.85)

where we have put {
Ex(ρ)

.
= MxρM

†
x,

px(ρ)
.
= Tr[Ex(ρ)].

(1.86)

Then, of course [px(ρ)]−1Ex(ρ) satisfies conditions (1.2) for all x ∈ X and for
all ρ ∈ S(Hin), namely it is a proper density operator in S(Hout); furthermore,
since Ex(ρin) is positive, then px(ρin) ≥ 0, and TP condition (1.48) guarantees
that ∑

x∈X

px(ρ) = Tr

[∑
x∈X

M †
xMxρ

]
= Tr[ρ] =
= 1,

(1.87)

i.e. {px(ρ) | x ∈ X} may be interpreted as probabilities for all ρ ∈ S(Hin).
Thus, Kraus decomposition tells us that output of Quantum Channels may
be seen as the randomization, with certain probabilities {px(ρ) | x ∈ X}
depending on the initial state, of the transformation

ρ 7→ Ex(ρ)

px(ρ)
. (1.88)
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In the framework of quantum measurement theory, each of the above non-
linear transformations is recognized as a state reduction of the quantum
system: in the case of absence of measurement, then, we see that Quantum
Channels may be regarded as randomizations of state reductions.

Remark 1.15 Though decomposition (1.85) may be seen as a convex combi-
nation of elements px(ρ)−1Ex(ρ), such elements are not part of QC(Hin,Hout)
anymore (more on this later). Thus, Eq. (1.85) has nothing to do with
Eq. (1.73), representing the randomization of Quantum Channels. In fact,
whilst extremal Quantum Channels do not admit any proper decomposition
(1.73), they still admit decomposition (1.85), with the only constraint that
{M †

xMy | x, y ∈ X} is a linearly independent set (see Theorem 1.9). N

Now, if we regard the environment as (containing) a measurement ap-
paratus, we are allowed to consider the case in which some information is
gained on the specific transformation the system and the apparatus have
jointly undergone. For instance, by looking at the pointer we might be able
to say that, of all the possible transformations (each corresponding to an
index x ∈ X), the x-th has taken place. In this case, we are allowed to select
the sub-ensemble described by Tr[Ex(ρ)]−1Ex(ρ) as the output state, instead
of the randomization of output state of all possible transformations.

Then, we have heuristically shown that measurements situations – where
one gains some information on the interaction between the system and some
apparatus, and is thus provided a rule to select sub-ensembles of states – may
be described by non-linear transformations (1.88), where the non-linearity is
due to the renormalization which is needed when one selects sub-ensembles.

Maps Ex are evidently CP: on the other hand, it is straightforward to
realize that they are not TP in general (they are TP only in the trivial case
|X| = 1). In literature, they are known as Trace-Decreasing (TD) maps6.
Clearly, CP&TD maps Ex do not comply with Axiom 1.1, as they do not map
Quantum States into Quantum States. Still, insted of maps Ex(ρ), one may
consider normalized maps px(ρ)−1Ex(ρ), which preserve states: unfortunately,
such maps contradict Axiom 1.2, as they are no more convex-linear on the
set of states.

Thus, we stress the fact that formally, according to our previous axiom-
atization, CP&TD maps do not meet our requirements for Quantum Maps.
However, let us stress the fact that CP&TD maps do describe physical trans-
formations of quantum states and, in particular, they describe measurement-
induced evolutions.

6Though it would be more proper to say that they do not increase the trace.
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Chapter 2

Quantum Supermaps

In the present Chapter, the notion of Quantum Supermaps is introduced
as a mathematical tool for the study of Quantum Maps’ transformations.
Notice that the structure of this Chapter closely recalls that of Chapter
1: indeed, the axiomatization of Quantum Supermaps being presented in
Section 2.1 is carried out in strict analogy with that of Quantum Maps (see
Section 1.1), and the properties of Quantum Supermaps are investigated in
Section 2.2 with a constant regard to analogous features of Quantum Maps
(see Section 1.2). Furthermore, Section 2.4 concludes this Chapter with
the important study of the relation between the mathematical formalism of
Quantum Supermaps and their physical implementation (as for the case of
Quantum Maps, see Section 1.3). An exception to the parallel structures of
Chapters 1 and 2 is represented by Section 2.3, where covariant supermaps
are introduced mainly as a preparatory study for 1-to-2 Unitary Cloning
Supermaps, that are presented in Chapter 3.

2.1 Transformations of Quantum Maps

As we have seen in Chapter 1, Quantum Maps are introduced as a mathe-
matical formalism to describe state transformations of quantum-mechanical
systems. However, the striking similarity between the structure of the re-
sulting set of Quantum Maps and that of Quantum States suggests that, re-
garding Quantum Maps as being “states of state transformations” (de facto,
as super-states), we could adapt most of the notions that were introduced in
Chapter 1 to the study of such super-states.

In the following, in perfect analogy with Chapter 1, we will use the generic
term ‘Quantum Supermap’ to describe mathematical super-maps on the set
of Quantum Maps (i.e. of super-states) describing all of their physical trans-
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formations. Of course, the notion of physical transformations of Quantum
Maps may look, at first sight, at least puzzling: in fact, in the case of Quan-
tum Maps we did expect the most general state transformation to be a state
evolution of an open system, whilst here it is more difficult to have a physi-
cal guess a priori on the most general transformation of Quantum Channels.
Nevertheless, the hypothesis that each and every Quantum Map should rep-
resent some state evolution of open systems was never exploited in Chapter
1: similarly, . . . . In the end, we will show . . .

2.1.1 Quantum Channel-Preserving Supermaps

For the sake of clarity, as in Chapter 1 we implicitly distinguished between
operators representing states and maps representing super-operators, here we
will use the term ‘supermap’ to denote super-super-operators, namely maps
S with domain in L(T (Hin), T (Hout)) and range in L(T (Hin′), T (Hout′)), for
some Hilbert spaces Hin, Hout, Hin′ and Hout′ . For brevity, given such a
supermap we will also say that Hin and Hout are its input spaces, whilst
Hin′ and Hout′ are its output ones. Furthermore, for any generic supermap
S, when Hilbert spaces are not explicitly specified, we will denote its input
(output) spaces with Hin, Hout (Hin′ , Hout′).

Since Quantum Supermaps must represent physical transformations of
Quantum Maps, the least we may ask is

Axiom 2.1 All Quantum Supermaps must preserve Quantum Maps.

Of course, Axiom 2.1 is perfectly analogous to Axiom 1.1 on page 4: then,
we may wonder whether it is meaningfull to rephrase also Axiom 1.2 for the
case of supermaps. Of course, the answer is a positive one: indeed, if the
input Quantum Channel C describes a statistical ensemble (i.e. a random-
ization) {(Ci, pi) | i ∈ I} of Quantum Channels, then the output Quantum
Channel S(C ) must describe the ensemble {(S(Ci), pi) | i ∈ I}. So, we state
the following

Axiom 2.2 All Quantum Supermaps must be convex-linear on the set of
Quantum Maps.

Thus, all Quantum Supermaps must be convex-linear supermaps of
QC(Hin,Hout) into some subset of QC(Hin′ ,Hout′): moreover, since all of such
convex-linear supermaps admit a linear extension to the whole
L(T (Hin), T (Hout))

1, then it is not a loss of generality to consider only linear

1As in the case of Quantum Maps: see Footnote 2 on page 5.
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supermaps of L(T (Hin), T (Hout)) into L(T (Hin′), T (Hout′)), as long as they
are Quantum-Channel Preserving:

Definition 2.1 (QCP Supermap) Let S be a linear supermap. We will
say that it is Quantum Channel-Preserving, or QCP, when

S
(
QC(Hin,Hout)

)
⊆ QC(Hin′ ,Hout′), (2.1)

and we will denote with QCP(Hin,Hout;Hin′ ,Hout′) the set of QCP supermaps
taking L(Hin,Hout) into L(Hin′ ,Hout′).

In the following, when a QCP supermap S is fed with a Quantum Channel
C , the output Quantum Channel S(C ) will be diagramatically represented
by

Hin′ S(C )
Hout′ .

=
Hin′

S
Hout′

Hin• C •Hout

. (2.2)

Remark 2.1 Note that the right-hand side of Eq. (2.2) must be intended
as an abstract diagram: in fact, we cannot say a priori whether all out-
put Quantum Channels S(C ) of all QCP supermaps S can be equivalently
obtained using a quantum circuit of which C is a composing gate, as the dia-
gram suggests. However, in Section 2.4 we will prove that the answer to such
a question is a positive one, so that this particular choice of diagramatical
representation will be justified. N

2.1.2 On CP- and TP-Preserving Supermaps

Recall Subsection 1.1.3: there, P and TP maps were introduced for the simple
reason that requiring a map to be P&TP was a sufficient condition for it to
be State-Preserving. Later, it was proved that the condition was necessary
as well (see Lemma 1.1), so that the set of SP maps coincided with that of
P&TP ones.

Here we do something similar: indeed, since the set of Quantum Channels
is obtained as the intersection between the two sets of CP and TP maps,
then a sufficient condition for a supermap S to preserve Quantum Channels
is given by the two independent preservations of CP and TP maps: this leads
to the two following definitions.
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Definition 2.2 (CP2 Supermap) Let S be a supermap: we will say that S
is Complete-Positivity Preserving, or CP2, when it preserves the Complete
Positivity of maps, namely when

S
(
CP(Hin,Hout)

)
⊆ CP(Hin′ ,Hout′). (2.3)

We will denote the set of CP2 supermaps with CP2(Hin,Hout;Hin′ ,Hout′).

Definition 2.3 (TP2 Supermap) Let S be a supermap: we will say that
S is Trace-Preservation Preserving, or TP2, when it preserves TP maps,
namely when

S
(
TP(Hin,Hout)

)
⊆ TP(Hin′ ,Hout′). (2.4)

We will denote the set of TP2 supermaps with TP2(Hin,Hout;Hin′ ,Hout′).

However, our parallelism between Quantum Maps and Quantum Su-
permaps reaches a stop here, due to the fact that, whilst in Lemma 1.1
on page 7 it was rather easy to show that the P&TP conditions were also
necessary for a map to be SP, apparently now we have no way to prove
the analogous result for supermaps, namely we cannot prove that CP2&TP2

conditions are also necessary for a supermap to be QCP. In fact, though
we shall show that all QCP supermaps are TP2 as well (see Lemma 2.9 on
page 40), in the present treating we shall not give a proof of the fact that all
QCP supermaps are CP2.

On the other hand, recalling Subsection 1.3.3, the fact that all Quantum
Supermaps must preserve the CP character of Trace-Decreasing maps is a
reasonable requirement: indeed, if this were not true, every single state reduc-
tion in the form (1.88) would be mapped into an unphysical transformation.
Thus, we state the following

Axiom 2.3 All Quantum Supermaps must inject CP&TD maps into CP&TD
maps.

Then, since TD maps have no normalization condition (modulo a scaling
factor) we state the following

Proposition 2.4 All Quantum Supermaps are CP2&TP2.

which supersedes Axioms 2.1 and 2.2.
Clearly, Proposition 2.4 is analogous to Proposition 1.3, so that our par-

allelism between Quantum Maps and Quantum Supermaps is fully restored.
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2.1.3 On Completely CP-Preserving Supermaps

Now, let us consider a Quantum Supermap S acting on maps of T (Hin) into
T (Hout), and returning maps of T (Hin′) into T (Hout′). Then, if C is some
Quantum Channel of T (Hin⊗Kin) into T (Hout⊗Kout), we may consider its
transformation under the action of the supermap S⊗I, where I is the identity
operator on the space of maps of T (Kin) into T (Kout). The resulting map is
depicted in the following diagramatic equation:

Hin′

[S⊗ I](C )

Hout′

Kin Kout

=

Hin′

S
Hout′

Hin•
C

•Hout

Kin Kout

. (2.5)

Of course, then, it is natural to require [S⊗ I](C ) to be a Quantum Channel
for all Quantum Supermaps S and for all Quantum Channels C : thus we
state the following

Axiom 2.5 All Quantum Supermaps S must be such that all their trivial
extensions S⊗ I are Quantum Supermaps as well.

Evidently, Axiom 2.5 is perfectly analogous to Axiom 1.4.

Here we find another striking similarity between Quantum Maps and
Quantum Supermaps: indeed, just as the trivial extension C ⊗I of P&TP
maps C would still be TP, but would not be necessarily P anymore, the
extension S⊗I of a CP2&TP2 supermap S is still TP2 (the proof will be given
in Lemma 2.10 on page 41), but is not necessarily CP2 anymore. Clearly,
then, if we want a CP2&TP2 supermap S to comply with Axiom 2.5, we must
require it to be Completely CP2, as specified by

Definition 2.4 (C2P2 Supermap) Let S be a CP2 supermap: we will say
that it is Completely CP2, or C2P2, when all its trivial extensions are CP2

as well, namely when

S⊗ I ∈ CP2(Hin ⊗Kin,Hout ⊗Kout;Hin′ ⊗Kin,Hout′ ⊗Kout) (2.6)

for all Kin, Kout, where I is the identical supermap on L(T (Kin), T (Kout)).
Furthermore, we will denote the set of C2P2 supermaps with
C2P2(Hin,Hout;Hin′ ,Hout′).
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2.2 Characterization of Quantum Supermaps

The main purpose of the present Section is to obtain a handy mathematical
characterization of C2P2 and TP2 supermaps, just as was done in Section 1.2
for CP and TP maps. Besides, a few results that were previously anticipated
are here thoroughly proved.

2.2.1 Choi Isomorphism for Supermaps

In the same way as Choi isomorphism allowed us us treat super-operators
(maps) as operators, it turns out that it allows us to treat supermaps as
maps:

Definition 2.5 (Representing Map) Let S be a linear supermap: we will
say that its representing map in the space of Choi operators (or just repre-
senting map) is the map SS that takes Choi operators corresponding to the
input maps into those corresponding to the output ones:

SS :

{
B(Hout ⊗Hin) → B(Hout′ ⊗Hin′),
RC 7→ RS(C ) ∀ C ∈ L(Hin,Hout).

(2.7)

Furthermore, representing maps let us introduce Choi operators of su-
permaps in a natural way:

Definition 2.6 (Choi Operator of a Supermap) Let S be a linear su-
permap, and let {Ei,j;k,l | i, j = 1, . . . , dout, k, l = 1, . . . , din} denote the basis
for the space of linear maps of T (Hin) into T (Hout) defined by

Ei,j;k,l(A)
.
= 〈k|A|l〉|i〉〈j| ∀ A ∈ T (Hin). (2.8)

Then, Choi Operator of the supermap S is given by

RS
.
=

dout∑
i,j=1

din∑
k,l=1

RS(Ei,j;k,l) ⊗REi,j;k,l
, (2.9)

where RC , in the right-hand side, denotes the usual Choi operator correspond-
ing to the map C .

Remark 2.2 Definition 2.6 is such that Choi operators of supermaps co-
incide with those of their representative maps. In fact, Eq. (2.9) may be
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expanded as follows:

RS =
dout∑
i,j=1

din∑
k,l=1

RS(Ei,j;k,l) ⊗REi,j;k,l

=
dout∑
i,j=1

din∑
k,l=1

SS(REi,j;k,l
)⊗REi,j;k,l

=

=
dout∑
i,j=1

din∑
k,l=1

SS

(
|i〉out〈j| ⊗ |k〉in〈l|

)
⊗ |i〉out〈j| ⊗ |k〉in〈l| =

= [SS ⊗I ] (|11out,in〉〉〈〈11out,in|) ,

(2.10)

which is just the definition of Choi operator corresponding to the represen-
tative map SS. N

The inverse isomorphism between Choi operators and supermaps is given
by the following

Lemma 2.1 (Choi Isomorphism for Supermaps) Supermaps S are in
1 : 1 correspondence with operators RS ∈ B(Hout′ ⊗Hin′ ⊗Hout ⊗Hin) such
that, for all input maps C ∈ L(T (Hin), T (Hout)), the output map acts like

[S(C )](A′) = Trin′,out,in

[(
11out′ ⊗ A′> ⊗R>

C

)
RS
]

(2.11)

on operators A′ ∈ T (Hin′).

Proof The action of the output map S(C ), in terms of its Choi operator
RS(C ), is given by the inverse isomorphism formula (1.30),

[S(C )](A′) = Trin′
[(

11out′ ⊗ A′>)RS(C )

]
∀ A′ ∈ T (Hin′). (2.12)

Similarly, the action of the representing map SS, in terms of its Choi operator
RSS , is given by

SS(R) = Trout,in

[(
11out′ ⊗ 11in′ ⊗R>)RSS

]
∀ R ∈ B(Hout ⊗Hin), (2.13)

or, equivalently, thanks to Choi isomorphism, by

SS(RC ) = Trout,in

[(
11out′ ⊗ 11in′ ⊗R>

C

)
RSS

]
∀ C ∈ L(Hin,Hout), (2.14)

Since, by Definition 2.5 of representing maps, SS(RC ) = RS(C ), the combi-
nation of the above Eqq. yields

[S(C )](A) = Trin′,out,in

[(
11out′ ⊗ A> ⊗R>

C

)
RSS

]
∀ C ∈ L(Hin,Hout),
∀ A ∈ T (Hin′),

(2.15)
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so that, identifying RS with the Choi operator of the representing map, RSS ,
we obtain the desired result. �

Representing maps are generally easier to deal with than supermaps, just
as Choi operators are easier to treat with than super-operators (maps): in-
deed, thanks to Theorem 1.3 and Lemma 1.5, QCP condition (2.1) may now
be rewritten in the more convenient form

SS
(
[Ω ∩ N11in

](Hout ⊗Hin)
)
⊆ [Ω ∩ N11in′

](Hout′ ⊗Hin′). (2.16)

Somehow, this recalls the definition of SP maps C , that we rewrite here as

C
(
[Ω ∩ N1](Hin)

)
⊆ [Ω ∩ N1](Hout), (2.17)

the main difference, of course, consisting of the different normalization for
states and for Choi operators.

We now state a result that we will later need in order to characterize
Quantum Supermaps.

Lemma 2.2 (Factorizable Supermaps) Representing Maps of factorized
Supermaps are factorized. In symbols,

SS⊗T = SS ⊗ST. (2.18)

Proof This is straightforward since Choi isomorphism preserves factorizabil-
ity. In fact, consider the factorized map C ⊗ E , where C maps T (Hin) into
T (Hout), and E maps T (Kin) into T (Kout). Then, from the very definition
of Choi operators it is easy to check that

RC⊗E = RC ⊗RE . (2.19)

Note that RC acts on Hout ⊗Hin, RE on Kout ⊗Kin, whilst RC⊗E on Hout ⊗
Kout ⊗Hin ⊗ Kin, so that formally Hilbert spaces are ordered differently on
the two sides of Eq. (2.19). Nevertheless, if S and T are allowed to act on C
and E , respectively, then we have

SS⊗T
(
RC⊗E

)
= RS(C )⊗T(E ) =
= RS(C ) ⊗RT(E ) =
= SS

(
RC

)
⊗ST

(
RE

)
=

= [SS ⊗ST]
(
RC ⊗RE ) =

= [SS ⊗ST]
(
RC⊗E

)
.

(2.20)

Since non-factorized maps C taking T (Hin⊗Kin) into T (Hout⊗Kout) may be
written as linear combinations of factorized maps Ci⊗Ei, then last Eq. proves
our Lemma thanks to the linearity of representing maps S . �
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Remark 2.3 Lemma 2.2 may be represented diagramatically as follows:

Hin′

S⊗ T

Hout′

Kin′ Kout′

•Hin

C
Hout•

•Kin Kout•

=

Hin′

S
Hout′

Hin•
C

•Hout

Kin• •Kout

TKin′ Kout′

. (2.21)

This makes the ordering of Hilbert spaces in Eq. (2.18) more evident and
easier to remember: indeed, whilst SS⊗T clearly maps B((Hout ⊗ Kout) ⊗
(Hin⊗Kin)) into its primed counterpart, SS acts only on the H part (taking
B(Hout ⊗ Hin) into its primed counterpart), and ST on the K one (taking
B(Kout ⊗Kin) into its primed counterpart). N

2.2.2 Completely CP-Preserving Supermaps

In the present Subsection, we aim at obtaining a mathematical characteriza-
tion of C2P2 supermaps, just as we did for CP maps in Subsection 1.2.2.

Though not all CP2 supermaps are C2P2 as well, we need to characterize
the former in order to study the latter. Furthermore, the study of CP2

maps gives a beautiful example of the simplifications provided by representing
supermaps: indeed, it is straightforward to realize that CP2 condition (2.3)
may be rephrased as

SS
(
Ω(Hout ⊗Hin)

)
⊆ Ω(Hout′ ⊗Hin′) (2.22)

for any linear supermaps S. Then, direct comparison of the last Eq. with
Definition 1.2 of P maps yields

Lemma 2.3 (Characterization of CP2 Supermaps) Any supermap S is
CP2 if and only if its representing map SS is Positive: in symbols,

S ∈ CP2(Hin,Hout;Hin′ ,Hout′) ⇔ SS ∈ P(Hout ⊗Hin,Hout′ ⊗Hin′), (2.23)

for all linear supermaps S.

Now, even though the proof is no more so obvious, it turns out that also
C2P2 supermaps admit a simple mathematical characterization in terms of
their representing:
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Theorem 2.4 (Characterization of C2P2 Supermaps) Any supermap S
is C2P2 if and only if its representing map SS is Completely Positive: in
symbols,

S ∈ C2P2(Hin,Hout;Hin′ ,Hout′) ⇔ SS ∈ CP(Hout⊗Hin,Hout′⊗Hin′), (2.24)

for all linear supermaps S.

Proof Let us use Lemma 2.3 to rephrase C2P2 condition (2.6) for S in terms
of its representing map SS: we obtain that S is C2P2 if and only if

SS⊗I ∈ P
(
(Hout ⊗Kout)⊗ (Hin ⊗Kin), (Hout′ ⊗Kout)⊗ (Hin′ ⊗Kin)

)
(2.25)

for all Kin, Kout, where I is the identity on the space of maps T (Kin) →
T (Kout). Now, using Lemma 2.2, and the fact that

SI = IB(Kout⊗Kin), (2.26)

we obtain that C2P2 condition (2.6) is equivalent to

SS⊗I ∈ P
(
(Hout⊗Kout)⊗(Hin⊗Kin), (Kout⊗Hout′)⊗(Kin⊗Hin′)

)
(2.27)

for all Kin, Kout, where I is the identity map on B(Kin ⊗Kout): it is straight-
forward to check that this is exactly the Definition 1.4 of CP maps SS. �

Remark 2.4 In the following, we will call Kraus decomposition of the C2P2

supermap S the usual Kraus decomposition {Kz | z ∈ Z} ⊂ L(B(Hout ⊗
Hin),B(Hout′ ⊗Hin′)) of their representing CP map SS. N

The following Corollary is trivial to derive, but it is also important:

Corollary 2.5 (to Theorem 2.4) Any supermap S is C2P2 if and only if
its Choi operator RS is positive.

So, Theorem 2.4 has the important consequence that

C2P2(Hin,Hout;Hin′ ,Hout′) ∼= CP(Hout ⊗Hin,Hout′ ⊗Hin′) ∼=
∼= Ω(Hout′ ⊗Hin′ ⊗Hout ⊗Hin),

(2.28)

i.e. C2P2 supermaps form a convex set.
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2.2.3 TP-Preserving Supermaps

Exploiting the Choi isomorphism, and using Lemma 1.5, we may rewrite TP2

condition (2.4) for S in terms of its representing map as

SS
(
N11in

(Hout ⊗Hin)
)
⊆ N11in′

(Hout′ ⊗Hin′). (2.29)

Unfortunately, though one may have expected TP2 condition for su-
permaps S to be equivalent to TP condition for their representing maps
SS, this is not the case: indeed, it is clear that a (strictly) necessary TP2

condition is given by

SS
(
N11in/din′

(Hout ⊗Hin)
)
⊆ N1(Hout′ ⊗Hin′), (2.30)

and a (strictly) sufficient one is given by

SS
(
N1(Hout ⊗Hin)

)
⊆ N11in′/din

(Hout′ ⊗Hin′). (2.31)

This proves that TP2 condition has nothing to do with TP condition, which
me may write as

SS
(
N1(Hout ⊗Hin)

)
⊆ N1(Hout′ ⊗Hin′). (2.32)

In fact, the normalization condition in Eq. (2.29) involves the partial trace,
instead of symply the trace, as in Eq. (2.32).

The following Theorem succeeds in providing a useful characterization of
TP2 supermaps.

Theorem 2.6 (Characterization of TP2 Supermaps) Let S be a super-
map. Then, S is TP2 if and only if there exists a unital linear map ES :
B(Hin) → B(Hin′) such that

Trout′ [SS(R)] = ES(Trout[R]) (2.33)

for all R ∈ B(Hout ⊗Hin).

Proof In the present proof, for all sets A and B that allow us to do so, we
will denote by A±B the set defined by

A±B = {a± b | (a, b) ∈ A×B}. (2.34)

Using this notation, we have

N11in
(Hout ⊗Hin) = {R | Trout[R] = 11in} =

= {P}+ {Q | Trout[Q] = 11in − Trout[P ]} =
= {P}+ N11in−Trout[P ](Hout ⊗Hin)

(2.35)
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for all P ∈ B(Hout ⊗Hin). Then, thanks to the linearity of the partial trace,
we conclude that

N11in
(Hout ⊗Hin) = {P}+ N11in

(Hout ⊗Hin)− NTrout[P ](Hout ⊗Hin) (2.36)

and that a similar result holds in Hout′ ⊗Hin′ , namely

N11in′
(Hout′⊗Hin′) = {SS(P )}+N11in′

(Hout′⊗Hin′)−NTrout′ [SS(P )](Hout′⊗Hin′)
(2.37)

for all P ∈ B(Hout⊗Hin). Thus, substituting in Eq. (2.29), we have obtained
that S is TP2 if and only if

SS

(
{P}+ N11in

(Hout ⊗Hin)− NTrout[P ](Hout ⊗Hin)
)
⊆

⊆ {SS(P )}+ N11in′
(Hout′ ⊗Hin′)− NTrout′ [SS(P )](Hout′ ⊗Hin′),

(2.38)

which, by the linearity of SS, is equivalent to

SS

(
N11in

(Hout ⊗Hin)
)
−SS

(
NTrout[P ](Hout ⊗Hin)

)
⊆

⊆ N11in′
(Hout′ ⊗Hin′)− NTrout′ [SS(P )](Hout′ ⊗Hin′)

(2.39)

for all P ∈ B(Hout ⊗Hin). Then, by direct comparison with Eq. (2.29), we
see that S is TP2 if and only if SS

(
N11in

(Hout ⊗Hin)
)
⊆ N11in′

(Hout′ ⊗Hin′),

SS

(
NTrout[P ](Hout ⊗Hin)

)
⊆ NTrout′ [SS(P )](Hout′ ⊗Hin′) ∀ P ,

(2.40)

which may be expanded as follows:{
Trout′ [SS(R)] = 11in′ ∀ R | Trout[R] = 11in,
Trout′ [SS(P )] = Trout′ [SS(P )] ∀ (P, P ) | Trout[P ] = Trout[P ].

(2.41)

The latter condition shows that the composite map Trout′ ◦ SS : B(Hout ⊗
Hin) → B(Hin′) must depend on Trout[R] only, rather than on R, i.e. there
must exist a linear map ES : B(Hin) → B(Hin′) such that

Trout′ [SS(P )] = ES(Trout[P ]) ∀ P ∈ B(Hout ⊗Hin). (2.42)

Furthermore, the former condition may be evidently rewritten in terms of
the latter as

ES(11in) = 11in′ , (2.43)

which proves the Lemma. �
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Remark 2.5 Let us consider the map ES as in Theorem 2.6: as we have
already seen in Remark 1.11, any map is TP iff, in the Heisenberg picture,
it is unital. Then we realize that the Heisenberg-conjugate map E >

S is TP
if and only if ES is unital. So, Theorem 2.6 may be restated as follows:
Any supermap S is TP2 if and only if there exists a TP map E >

S : T (Hin′) →
T (Hin) such that its Heisenberg-conjugate map, ES, satisfies Eq. (2.33). This
latter condition may be rewritten in terms of E >

S as well: in fact, from Remark
1.10 we know that the definition of Heisenberg-conjugate maps is equivalent
to condition (1.52). Then, if we fix A = Trout[R] for some R ∈ B(Hout⊗Hin),
we obtain the following scheme of equivalences for all A′ ∈ T (Hin′):

Tr[A′ES(Trout [R])]
(1.52)

= Tr
[(

11out ⊗ E >
S (A′)

)
R
]

(2.33) q

Tr
[(

11out′ ⊗ A′)SS(R)
] (1.52)

= Tr
[
S >

S (11out′ ⊗ A′)R
] (2.44)

Then, requiring Eq. (2.33) to hold for all R is equivalent to requiring

S >
S (11out′ ⊗ A′) = 11out ⊗ E >

S (A′). (2.45)

Summarizing the above results, we may state the following

Corollary 2.7 (to Theorem 2.6) Let S be a supermap. Then, S is TP2

if and only if there exists a TP map E >
S : T (Hin′) → T (Hin) such that

Eq. (2.45) holds for all A′ ∈ T (Hin′) — where S >
S is the Heisenberg-conjugate

of the representative map SS.

This result does not provide more insight into the problem of normaliza-
tion than Theorem 2.6. Nevertheless, it will be of great help when we study
the physical realization of supermaps in Section 2.4. N

Remark 2.6 For every TP2 supermap S, the map ES satisfying Eq. (2.33)
has a corresponding Choi operator given by

RES =

din∑
i,j=1

ES(|i〉in〈j|)⊗ |i〉in〈j| =

=

din∑
i,j=1

Trout′

[
SS

(
11out

dout

⊗ |i〉in〈j|
)]

⊗ |i〉in〈j| =

=

din∑
i,j=1

Trout′,out,in

[(
11out′ ⊗ 11in′ ⊗

11out

dout

⊗ |j〉in〈i|
)
RS

]
⊗ |i〉in〈j| =

=
1

dout

Trout′,out[RS].

(2.46)
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This shows that, if S is C2P2 as well, then ES is CP, whilst the opposite is
no more true in general. N

Remark 2.7 Since we have a C2P2 condition which is expressed in terms
of the Choi operator RS, we may wonder whether there is a way to restate
Theorem 2.6 in terms of RS. It is easy to check that RS is normalized (namely,
S is TP2) if and only if there exists a R̃ ∈ B(Hin′ ⊗Hin) such that{

Trin[R̃] = 11in′ ,

Trout,in

[
(11in′ ⊗R>)Trout′ [RS]

]
= Trout,in

[
(11in′ ⊗R>)(R̃⊗ 11out)

] (2.47)

for all R ∈ B(Hout ⊗Hin). This leads us to state the following

Corollary 2.8 (to Theorem 2.6) Let S be a supermap. Then, S is TP2 if
and only if its Choi operator satisfies

Trout′ [RS] = R̃⊗ 11out (2.48)

for some R ∈ B(Hin′ ⊗Hin) such that Trin[R̃] = 11in′.

In the following, we will denote with Θ(Hout′ ⊗Hin′ ⊗Hout⊗Hin) the set
of normalized Choi operators, namely

Θ(Hout′ ⊗Hin′ ⊗Hout ⊗Hin)
.
=
{
R ∈ B(Hout′ ⊗Hin′ ⊗Hout ⊗Hin)

∣∣∣∣ ∃ R ∈ B(Hin′ ⊗Hin) s.t. conditions (2.47) hold
}
,

(2.49)
and of course we have the Choi isomorphism

TP2(Hin,Hout;Hin′ ,Hout′) ∼= Θ(Hout′ ⊗Hin′ ⊗Hout ⊗Hin). (2.50)

N

2.2.4 More Results on TP-Preserving Supermaps

In the present Subsection, we prove two results regarding TP2 supermaps
that were previously anticipated.

Lemma 2.9 (QCP and TP2 Supermaps) All Quantum Channel-Preser-
ving supermaps also preserve the Trace-Preserving property of maps.
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Proof As in Lemma 1.1, we will give the proof by contradiction. So, let S
be QCP, and let us suppose that there exists a TP map C which is not a
Quantum Channel (i.e. it is not CP) such that the output map S(C ) is no
more TP. Exploiting Choi isomorphism, this is equivalent to the existence
of an operator O ∈ N11in

(Hout ⊗ Hin) r Ω(Hout ⊗ Hin) such that SS(O) /∈
N11in′

(Hout′ ⊗Hin′). Furthermore, let us consider the line {Or | r ∈ R} in the
hyperplane N11in

(Hout ⊗Hin) parametrized by

Or = rO + (1− r)R, r ∈ R, (2.51)

where R is some Choi operator corresponding to a full-rank, non-extremal
Quantum Channel. Or is easily checked to be in N11in

(Hout ⊗Hin), for all r;
furthermore, we have

rTrout′ [SS(O)] = Trout′ [SS(Or)]− (1− r)Trout′ [SS(R)] =
= Trout′ [SS(Or)] + (r − 1)11in′ ,

(2.52)

thanks to the hypothesis that S is QCP. So, thanks to the linearity of SS
(and to that of the trace), the hypothesis that Trout′ [SS(O)] 6= 11in′ yields

Trout′ [SS(Or)] 6= 11in′ ∀ r ∈ R r {0}. (2.53)

Now, since O0 = R, and since R is non-extremal in [N11in
∩Ω](Hout⊗Hin), we

can always find an ε > 0 such that Or is still an element of [N11in
∩Ω](Hout⊗

Hin) for all r ∈ [−ε,+ε]: this means that

Trout′ [SS(Or)] = 11in′ ∀ r ∈ [−ε,+ε], (2.54)

which contradicts Eq. (2.53). �

Lemma 2.10 (Extensions of TP2 Supermaps) All TP-Preserving
supermaps are Completely-TP Preserving as well, namely

S⊗ I ∈ TP2(Hin ⊗Kin,Hout ⊗Kout;Hin′ ⊗Kin,Hout′ ⊗Kout) (2.55)

for all S ∈ TP2(Hin,Hout;Hin′ ,Hout′).

Proof Let us use Theorem 2.6: then we see that S ⊗ I is TP2 if and only
if there exists a unital linear map E S⊗I : B(Hin ⊗Kin) → B(Hin′ ⊗Kin) such
that

TrHout′ ,Kout [SS⊗I(R)] = E S⊗I (TrHout,Kout [R]) (2.56)

for all R ∈ B(Hout ⊗Kout ⊗Hin ⊗Kin).
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Of course, since S is TP2, we can find a unital linear map ES : B(Hin) →
B(Hin′) such that

TrHout′
[SS(R)] = ES (TrHout [R]) (2.57)

for all R ∈ B(Hout ⊗Hin). Now, using Lemma 2.2, we may write

TrHout′ ,Kout [SS⊗I(R)] =

rR∑
i=1

TrHout′
[SS(Hi)]⊗ TrKout [Ki] (2.58)

where R =
∑

iHi ⊗ Ki is the Schmidt decomposition for R, with Hi ∈
B(Hout ⊗Hin) and Ki ∈ B(Kout ⊗Kin). So we have

TrHout′ ,Kout [SS⊗I(R)] =

rR∑
i=1

ES (TrHout [Hi])⊗ TrKout [Ki] (2.59)

and it is sufficient to define

E S⊗I (TrHout,Kout [R])
.
= ES ⊗IKin

(2.60)

to obtain Eq. (2.57). Furthermore, it should be clear that E S⊗I is unital if
and only if ES is so. This concludes the proof. �

2.3 Covariant Supermaps

In the present Section we are particularly interested in those supermaps such
that the unitary action of some group compact or finite G on the the input
space Hin of the input map (and/or on its output space Hout) is equivalent to
the action of G on the input spaceHin′ of its output map (and/or on its output
space Hout′). The reason for our interest is that there are some relevant cases
in which it is physically meaningfull to deal only with supermaps exhibiting
such symmetries.

Note that a few basic notions of groups and representation theory are
presented in Appendix A.

2.3.1 Preliminary Definitions

In order to define covariant supermaps in an abstract way, let us introduce
a compact group G, and four unitary representations (U,Hin), (V,Hout),
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(U ′,Hin′) and (V ′,Hout′). Furthermore, let us define representations U and
V on the Hilbert spaces of input maps via{

Ug(C )
.
= C ◦ [Ug • U †

g ]
Vg(C )

.
= [Vg • V †

g ] ◦ C
∀ g ∈ G, (2.61)

and representations U′, V′ on the spaces of output maps via{
U′
g(C

′)
.
= C ′ ◦ [U ′

g • U ′
g
†]

V′
g(C

′)
.
= [V ′

g • V ′
g
†] ◦ C ′ ∀ g ∈ G. (2.62)

Now, we are ready to state

Definition 2.7 (Covariant Supermap) Let S be a supermap. We will say
that S is G-covariant on its input spaces when

SUg = U′
gS ∀ g ∈ G, (2.63)

and that it is G-covariant on its output spaces when

SVg = V′
gS ∀ g ∈ G. (2.64)

Finally, we will say that S is two-fold G-covariant when it is covariant respect
to G on both the input and the output spaces.

Remark 2.8 It is straightforward to realize that, diagramatically, the G-
covariance condition on input spaces (2.63) reads

in′

S
out′

in• Ug C •out

= in′ U ′
g

S
out′

in• C •out

∀ g ∈ G, (2.65)

whilst the one on output spaces (2.64) reads

in′

S
out′

in• C Vg •out

= in′

S
V ′
g

out′

in• C •out

∀ g ∈ G. (2.66)

Of course, then, two-fold G-covariance is equivalent to

in′

S
out′

in• Ug C Vh •out

= in′ U ′
g

S
V ′
h

out′

in• C •out

(2.67)
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for all (g, h) in G×G. N

Remark 2.9 Notice that, since covariance conditions are linear, then the
three sets of input-covariant, output-covariant and two-fold-covariant su-
permaps are affine spaces. N

2.3.2 Characterization of Covariant Supermaps

In order to be able to implement covariant supermaps, we need to restate
Definition 2.7 in terms of the Choi operators of supermaps. This is the goal
of the following Lemma2.

Lemma 2.11 (Characterization of Covariant Supermaps) Let S be a
linear supermap; then, S is G-covariant on its input spaces iff its Choi op-
erator satisfies

[
R∗

S, 11out′ ⊗ U ′
g ⊗ 11out ⊗ U∗

g

]
= 0 ∀ g ∈ G, (2.68)

and it is G-covariant on its output spaces iff

[
RS, V

′
g ⊗ 11in′ ⊗ V ∗

g ⊗ 11in

]
= 0 ∀ g ∈ G. (2.69)

Proof As a first step, we shall prove that the Choi operator corresponding
to the composition of supermaps V′

h′U′
g′SVhUg is explicitly given by

R[V′
h′U

′
g′SVhUg ] =

[
V ′
h′ ⊗ U ′

g′
> ⊗ V >

h ⊗ Ug

]
RS

[
V ′
h′ ⊗ U ′

g′
> ⊗ V >

h ⊗ Ug

]†
. (2.70)

2We remind that Choi operators are linear operators on Hout ⊗Hin′ ⊗Hout ⊗Hin.
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Indeed, the proof is a consequence of the inverse isomorphism formula for
sumermaps, Eq. (2.11): for all A′ ∈ T (Hin′) we have[

[V′
h′U′

g′SVhUg](C )
]
(A′) =

= V ′
h′

{[
S
(
(Vh • V †

h )C (Ug • U †
g )
)]

(U ′
g′A

′U ′
g′
†)

}
V ′
h′
† =

= V ′
h′ Trin′,out,in

[(
11out′ ⊗ (U ′

g′A
′U ′
g′
†)> ⊗R>

[(Vh•V †h )C (Ug•U†g )]

)
RS

]
V ′
h′
† =

= V ′
h′ Trin′,out,in

[(
11out′ ⊗ U ′

g′
∗A′>U ′

g′
>⊗

⊗
[
Vh ⊗ U>

g

]∗
R>

C

[
Vh ⊗ U>

g

]>)
RS

]
V ′
h′
† =

= Trin′,out,in

[(
11out′ ⊗ A′> ⊗R>

C

)[
V ′
h′ ⊗ U ′

g′
> ⊗ V >

h ⊗ Ug

]
RS

[
. . .
]†]

,

(2.71)
where we have used the additional formula

R(Vh•V †h )◦C ◦(Ug•U†g ) =
[
Vh ⊗ U>

g

]
RC

[
Vh ⊗ U>

g

]†
, (2.72)

that can be proved by

[(Vh • V †
h ) ◦ C ◦ (Ug • U †

g )](A) =

= VhC (UgAU
†
g )V †

h =

= VhTrin

[
(11out ⊗ U∗

gA
>U>

g )RC

]
V †
h =

= VhTrin

[
(11out ⊗ U∗

g )(11out ⊗ A>)(11out ⊗ U>
g )RC

]
V †
h =

= Trin

[
(11out ⊗ A>)

[
Vh ⊗ U>

g

]
RC

[
Vh ⊗ U>

g

]†] (2.73)

for all A ∈ T (Hin).
Now, of course S is G-covariant on its input spaces iff

RS = RU′
g−1SUg ∀ g ∈ G, (2.74)

and using Eq. (2.70) yields Eq. (2.68). Similarly, S is G-covariant on its
output spaces iff

RS = RV′gSVg−1 ∀ g ∈ G, (2.75)

and using Eq. (2.70) yields Eq. (2.69). �

Remark 2.10 Lemma 2.11 trivially implies that S is two-fold G-covariant
if and only if its Choi operator satisfies[

RS, V
′
h ⊗ U ′

g
∗ ⊗ V ∗

h ⊗ Ug

]
= 0 ∀ (g, h) ∈ G×G. (2.76)
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Furthermore, it is easy to show that Eqs. (2.68, 2.69) are respectively equiv-
alent to∫

G

dg
[
11out′ ⊗ U ′

g ⊗ 11out ⊗ U∗
g

]
R∗

S

[
11out′ ⊗ U ′

g ⊗ 11out ⊗ U∗
g

]†
= R∗

S, (2.77)

and to∫
G

dg
[
V ′
g ⊗ 11in′ ⊗ V ∗

g ⊗ 11in

]
RS

[
V ′
g ⊗ 11in′ ⊗ V ∗

g ⊗ 11in

]†
= RS. (2.78)

Indeed, the fact that they are necessary conditions for the previous ones to be
true is trivial: to see that they are also sufficient, let us consider, for example,
Eq. (2.77). Then, applying [11out′⊗U ′

g′
∗⊗11out⊗Ug′ ]•[11out′⊗U ′

g′
∗⊗11out⊗Ug′ ]†

on both of its sides simply sums up to performing a change of variables in
the left-hand side (g 7→ g′g), so that Eq. (2.68) is obtained.

This also implies that S is two-fold G-covariant if and only if∫
G

dg

∫
G

dh
[
V ′
h ⊗ U ′

g
∗ ⊗ V ∗

h ⊗ Ug

]
RS

[
V ′
h ⊗ U ′

g
∗ ⊗ V ∗

h ⊗ Ug

]†
= RS. (2.79)

N

2.3.3 Isotypic Decomposition of Covariant Supermaps

Lemma 2.11 shows that the G-covariance of supermaps is equivalent to the
G-commutation of its Choi operators. Clearly, then, Theorem A.2 provides
a convenient characterization of covariant supermaps, that we state in the
following

Theorem 2.12 (Characterization of Covariant Supermaps) Let the two
unitary representations (V ′ ⊗ V ∗,Hout′ ⊗Hout) and (U ′ ⊗ U∗,Hin′ ⊗Hin) of
G admit the following isotypic decompositions:

Hout′ ⊗Hout
∼=

|Irrep(V ′⊗V ∗)|⊕
µ=1

mµ⊕
i=1

H(µ)
i , (2.80)

Hin′ ⊗Hin
∼=

|Irrep(U ′⊗U∗)|⊕
ν=1

m′
ν⊕

k=1

H(ν)
k

′. (2.81)
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Then, S is covariant on its input spaces, on its output ones, on both, respec-
tively if and only if its Choi operator admits the following decomposition:

RS =

|Irrep(U ′⊗U∗)|∑
ν=1

m′
ν∑

k,l=1

R
(ν)
S;k,l ⊗ T

(ν)
l,k

′∗, (2.82)

RS =

|Irrep(V ′⊗V ∗)|∑
µ=1

mµ∑
i,j=1

T
(µ)
j,i ⊗R

(µ)
S;i,j

′, (2.83)

RS =

|Irrep(U ′⊗U∗)|∑
ν=1

|Irrep(V ′⊗V ∗)|∑
µ=1

mµ∑
i,j=1

m′
ν∑

k,l=1

r
(µ,ν)
S;i,j,k,lT

(µ)
j,i ⊗ T

(ν)
l,k

′∗, (2.84)

where T
(µ)
j,i : H(µ)

i → H(µ)
j (respectively, T

(ν)
l,k

′ : H(ν)
k

′ → H(ν)
l

′) are isometries
between equivalent irreducible subspaces of Hout′⊗Hout (respectively, of Hin′⊗
Hin).

Proof Let {|m〉〉out′,out} and {|n〉〉in′,in} be orthonormal bases forHout′⊗Hout

and, respectively, Hin′ ⊗Hin, and let us rewrite the G-covariance condition
on, say, output spaces (Eq. (2.69)), in such bases:

0 =
[
RS, V

′
g ⊗ 11in′ ⊗ V ∗

g ⊗ 11in

]
=

=

dout′ ·dout∑
m,m′=1

din′ ·din∑
n,n′=1

〈〈m|〈〈n|RS|m′〉〉|n′〉〉·

·
[
|m〉〉〈〈m|′ ⊗ |n〉〉〈〈n′|, V ′

g ⊗ 11in′ ⊗ V ∗
g ⊗ 11in

]
=

=

din′ ·din∑
n,n′=1

[(
11out′,out ⊗ 〈〈n|

)
RS
(
11out′,out ⊗ |n′〉〉

)
, V ′

g ⊗ V ∗
g

]
⊗ |n〉〉〈〈n′|,

(2.85)
which is equivalent to[(

11out′,out ⊗ 〈〈n|
)
RS
(
11out′,out ⊗ |n′〉〉

)
, V ′

g ⊗ V ∗
g

]
= 0 (2.86)

for all n, n′ = 1, . . . , din′ · din. Thus, Eq. (A.13) yields(
11out′,out ⊗ 〈〈n|

)
RS
(
11out′,out ⊗ |n′〉〉

)
=

=

|Irrep(V ′⊗V ∗)|∑
µ=1

mµ∑
i,j=1

Tr[T
(µ)
i,j (11⊗ 〈〈n|)RS(11⊗ |n′〉〉)]

dµ
T

(µ)
j,i .

(2.87)

Finally, since of course we have

RS =

dout′ ·dout∑
n,n′=1

(
11out′,out ⊗ 〈〈n|

)
RS
(
11out′,out ⊗ |n′〉〉

)
⊗ |n〉〉〈〈n′|, (2.88)
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we have obtained

RS =

|Irrep(V ′⊗V ∗)|∑
µ=1

mµ∑
i,j=1

T
(µ)
j,i ⊗

⊗
dout′ ·dout∑
n,n′=1

Tr[T
(µ)
i,j (11⊗ 〈〈n|)RS(11⊗ |n′〉〉)]

dµ
|n〉〉〈〈n′| =

=

|Irrep(V ′⊗V ∗)|∑
µ=1

mµ∑
i,j=1

T
(µ)
j,i ⊗

Trout′,out[(T
(µ)
i,j ⊗ 11in′,in)RS]

dµ
,

(2.89)

i.e. we have proved decomposition (2.83) with R
(µ)
S;i,j

′ being defined by

R
(µ)
S;i,j

′ .=
Trout′,out[(T

(µ)
i,j ⊗ 11in′,in)RS]

dµ
. (2.90)

Similarly, one obtains

R
(ν)
S;k,l =

Trin′,in[(11out′,out ⊗ T
(ν)
k,l

′∗)RS]

d′ν
(2.91)

for Eq. (2.82), and

r
(µ,ν)
S;i,j,k,l =

Tr[(T
(µ)
i,j ⊗ T

(ν)
k,l

′∗)RS]

dµ · d′ν
(2.92)

for Eq. (2.84). �

2.3.4 Normalization of Covariant Supermaps

In the present Subsection, we retain the notation that was previously used:
in particular, we will use symbols whose meaning was introduced in Theorem
2.12.

Theorem 2.13 (Normalization of Covariant Supermaps) Let S be a
G-covariant supermap on its output spaces in the form (2.83), and let (V,Hout)
be irreducible. Then, S is TP2 if and only if

|Irrep(V ′⊗V ∗)|∑
µ=1

dµ

mµ∑
i=1

Trin[R
(µ)
S;i,i

′] = dout11in′ , (2.93)
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where dµ is the dimension of the µ-th invariant subspace H(µ) as defined in
isotypic decomposition (2.80). Furthermore, if S is G-covariant on its input
spaces as well (i.e. it is a two-fold G-covariant supermap in the form (2.84)),
then it is TP2 if and only if

|Irrep(U ′⊗U∗)|∑
ν=1

|Irrep(V ′⊗V ∗)|∑
µ=1

dµ

mµ∑
i=1

m′
ν∑

k,l=1

r
(µ,ν)
S;i,i,k,lTrin[T

(ν)
l,k

′∗] = dout11in′ , (2.94)

and if (U ′,Hin′) is irreducible too, then S is TP2 if and only if

|Irrep(U ′⊗U∗)|∑
ν=1

d′ν

|Irrep(V ′⊗V ∗)|∑
µ=1

dµ

mµ∑
i=1

m′
ν∑

k=1

r
(µ,ν)
S;i,i,k,k = dout · din′ , (2.95)

where d′ν is the dimension of the ν-th invariant subspace H(ν)′ as defined in
isotypic decomposition (2.81).

Proof Let S be a G-covariant supermap on its output spaces in the form
(2.83). Now, let us recall the TP2 condition (2.29), which we may explicitly
rewrite here as

Trout′ [SS(R)] = 11in′ ∀ R ∈ B(Hout ⊗Hin) | Trout[R] = 11in. (2.96)

Then, we must consider

Trout′ [SS(R)] =

|Irrep(V ′⊗V ∗)|∑
µ=1

mµ∑
i,j=1

Trout′,out,in[(11out′,in′ ⊗R>)(T
(µ)
j,i ⊗R

(µ)
S;i,j

′)] =

=

|Irrep(V ′⊗V ∗)|∑
µ=1

mµ∑
i,j=1

Trout,in[(11in′ ⊗R>)(Trout′ [T
(µ)
j,i ]⊗R

(µ)
S;i,j

′)].

(2.97)

Since T
(µ)
j,i is an isometry mapping the irreducible module H(µ)

i into the equiv-

alent module H(µ)
j , then of course we have

T
(µ)
j,i = [V ′

g ⊗ V ∗
g ]|H(µ)

j
T

(µ)
j,i [V ′

g ⊗ V ∗
g ]|†

H(µ)
i

=

= [V ′
g ⊗ V ∗

g ]T
(µ)
j,j T

(µ)
j,i T

(µ)
i,i

†[V ′
g ⊗ V ∗

g ] =

= [V ′
g ⊗ V ∗

g ]T
(µ)
j,i [V ′

g ⊗ V ∗
g ]† ∀ g ∈ G,

(2.98)

from which follows

Trout′ [T
(µ)
j,i ] = V ∗

g Trout′ [T
(µ)
j,i ]V >

g ∀ g ∈ G, (2.99)
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namely Trout′ [T
(µ)
j,i ] is an operator on Hout which commutes with the action

of G. Then, thanks to the fact that (V,Hout) is irreducible by hypothesis,
we are allowed to apply the Schur Lemma A.1, which yields

Trout′ [T
(µ)
j,i ] = λ

(µ)
j,i 11out, (2.100)

with λ
(µ)
j,i determined by

Tr[T
(µ)
j,i ] = λ

(µ)
j,i · Tr[11out] = λ

(µ)
j,i · dout,

q
δji dµ

(2.101)

i.e.

λ
(µ)
j,i = δj,i

dµ
dout

. (2.102)

Then, substituting back in Eq. (2.97), we obtain

Trout′ [SS(R)] =

|Irrep(V ′⊗V ∗)|∑
µ=1

mµ∑
i=1

dµ
dout

Trout,in[(11in′ ⊗R>)(11out ⊗R
(µ)
S;i,i

′)] =

=

|Irrep(V ′⊗V ∗)|∑
µ=1

mµ∑
i=1

dµ
dout

Trin[(11in′ ⊗ Trout[R
>])R

(µ)
S;i,i

′] =

=

|Irrep(V ′⊗V ∗)|∑
µ=1

mµ∑
i=1

dµ
dout

Trin[R
(µ)
S;i,i

′] ∀ R ∈ B(Hout ⊗Hin) | Trout[R] = 11in.

(2.103)
Thus, we have proved condition (2.93).

To obtain condition (2.94), it is sufficient to make the substitution

R
(µ)
S;i,i

′ 7→
|Irrep(U ′⊗U∗)|∑

ν=1

m′
ν∑

k,l=1

r
(µ,ν)
S;i,i,k,lT

(ν)
l,k

′∗. (2.104)

in Eq. (2.93): notice that the above substitution is the one which allows one
to switch from Eq. (2.83) to Eq. (2.84).

Finally, just as we found that Trout′ [T
(µ)
j,i ] commuted with the action of G,

it is easy to realize that Trin[T
(ν)
l,k

′∗] is an operator on Hin′ which commutes
with the action U ′ of G. Then, thanks to the fact that (U ′,Hin′) is irreducible
by hypothesis, once again we are allowed to apply the Schur Lemma A.1,
which yields

Trin[T
(ν)
l,k

′∗] = δlk
d′ν
din′

11in′ . (2.105)
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Substituting in condition (2.94) yields condition (2.95). �

Remark 2.11 In the previous proof, the key hypothesis which is needed in
order to implement the normalization of the input channel is the irreducibility
of (V,Hout), namely it was this hypothesis that let us take the partial trace
of R> on Hout separately in Eq. (2.97). On the contrary, irreducibility of
(U ′,Hin′) is only required if one wants to further refine condition (2.93). N

2.4 Quantum Superchannels

So far, we have obtained full characterizations of C2P2 and TP2 supermaps in
terms of their representing maps: this allows us to study the relation between
C2P2&TP2 supermaps and physical transformations of Quantum Maps.

2.4.1 A Stinespring Theorem for Supermaps

Up to this point our treatment has been highly speculative, as our axiomatic
approach could not guarantee all Quantum Supermaps to be physically real-
izable by means of some quantum circuit.

Notice that we find ourselves in the very same situation of the beginning
of Section 1.3: there, we were eventually able to prove that all Quantum
Maps were physical (thanks to Stinespring Theorem 1.7). Here, we need an
an analogous result to the one of Stinespring for the case of supermaps.

More precisely, in Section 1.3 we proved that all Quantum Maps (sat-
isfying Axioms 1.1, 1.2 and 1.4) could be regarded as state evolutions of
open systems and, conversely, that all of such evoltions could be described
in terms of Quantum Maps. Analogously, in the present Subsection we will
prove that all Quantum Supermaps (satisfying Proposition 2.4 and Axiom
2.5) can be regarded as some quantum circuital scheme of which the input
map is a composing gate and, conversely, that all of such schemes can be
described in terms of Quantum Supermaps.

This remarkable result is provided by the following Theorem.

Theorem 2.14 (A Stinespring Theorem for Supermaps) Let S be a su-
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permap. Then, S is C2P2&TP2 if and only if

Hin′

S
Hout′

Hin• C •Hout

≡ Hin′

VS

Hin C Hout

WS

Hout′

A1

A2⋃
,

(2.106)
where VS and WS are proper isometric operators, and ancillary Hilbert spaces
A1, A2 were introduced.

Proof First, let us prove the ‘only if’ part, namely the fact that all C2P2&TP2

supermaps may be physically implemented using the above scheme.

So, let S be a C2P2&TP2 supermap: then, thanks to Corollary 2.7 we
can find a Quantum Channel3 E >

S : B(Hin′) → B(Hin) satisfying Eq. (2.45)
for all A′ ∈ T (Hin′). If we denote with {Kz | z ∈ Z} and {Ea | a ∈ A} two
canonical Kraus decompositions for SS and ES, respectively, condition (2.45)
may be rewritten as∑

z∈Z

K†
z(11out′ ⊗ A′)Kz = 11out ⊗

∑
a∈A

E†
aA

′Ea

q q∑
z∈Z

dout′∑
n=1

K†
z

[
|n〉 ⊗ 11

]
A′[〈n| ⊗ 11

]
Kz

∑
a∈A

dout∑
m=1

[
|m〉 ⊗ E†

a

]
A′[〈m| ⊗ Ea

]
(2.107)

for all A′ ∈ T (Hin′). This shows that {K̃(z)†
n | z ∈ Z, n = 1, . . . , dout′} and

{Ẽ(a)†
m | a ∈ A,m = 1, . . . , dout} are two Kraus decompositions for the same

map A′ 7→ 11out ⊗ E >
S (A′), provided that we have put

K̃(z)
n

.
=
[

out′〈n| ⊗ 11in′
]
Kz,

Ẽ(a)
m

.
= out〈m| ⊗ Ea,

(2.108)

which may be reversed as

Kz =

dout′∑
n=1

[
|n〉out′ ⊗ 11in′

]
K̃(z)
n ,

Ea =
1

dout

Trout

[
dout∑
m=1

|m〉out ⊗ Ẽ(a)
m

]
.

(2.109)

3See Remarks 2.5 and 2.6.
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Furthermore, since operators {Ea} are orthogonal, then we see that operators

{Ẽ(a)
m } are orthogonal as well, so that they form a canonical Kraus decompo-

sition. Then, thanks to Theorem 1.4, there must exist a ([Z]·dout′)×([A]·dout)
isometric matrix U such that

K̃(z)
n =

∑
(a,m)∈A×{1,...,dout}

U(z,n),(a,m)Ẽ
(a)
m (2.110)

for all (z, n) ∈ Z × {1, . . . , dout′}. So we obtain

Kz =

dout′∑
n=1

[
|n〉out′ ⊗ 11in′

]
K̃(z)
n =

=
∑
a∈A

dout∑
m=1

dout′∑
n=1

U(z,n),(a,m)

[
|n〉out′ ⊗ 11in′

]
Ẽ(a)
m =

=
∑
a∈A

[ dout∑
m=1

dout′∑
n=1

U(z,n),(a,m)|n〉out′ out〈m|
]
⊗ Ea =

=
∑
a∈A

F (z)
a ⊗ Ea

(2.111)

where we have put

F (z)
a

.
=

dout∑
m=1

dout′∑
n=1

U(z,n),(a,m)|n〉out′ out〈m|. (2.112)

Eq. (2.111) has the important consequence that, if we feed the supermap
S with a Quantum Channel C , then Choi operator of the output Quantum
Channel may be written as

RS(C ) = SS(RC ) =

=
∑
z∈Z

∑
x∈X

Kz|Mx〉〉out,in〈〈Mx|K†
z =

=
∑
z∈Z

∑
x∈X

|
∑

a∈A F
(z)
a MxE

>
a 〉〉out′,in′〈〈

∑
a′∈A F

(z)
a′ MxE

>
a′ |,

(2.113)

having introduced the canonical Kraus decomposition {Mx | x ∈ X} for the
input Quantum Channel C . This shows that the output Quantum Channel
S(C ) admits a Kraus decomposition {M ′

(x,z) | (x, z) ∈ X×Z} explicitly given
by

M ′
(x,z) =

∑
a∈A

F (z)
a MxE

>
a , (2.114)
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so that

[S(C )](A′) =
∑
x∈X

∑
z∈Z

∑
a,a′∈A

F (z)
a MxE

>
a A

′E∗
a′M

†
xF

(z)†
a′ ∀ A′ ∈ T (Hin′).

(2.115)

Now, let us introduce two ancillary Hilbert spaces, A1
∼= C|A| and A2

∼=
C|Z|, and two linear operators V , W respectively defined by

V
.
=

∑
a∈A

E>
a ⊗ |a〉A1 : Hin′ → Hin ⊗A1, (2.116)

W
.
=

∑
z∈Z

∑
a∈A

F (z)
a ⊗ |z〉A2 A1〈a| : Hout ⊗A1 → Hout′ ⊗A2. (2.117)

Then we have

V †V =
∑
a,a′∈A

[
E∗
a′ ⊗ 〈a′|

][
E>
a ⊗ |a〉

]
=

=
∑
a∈A

E∗
aE

>
a =

= 11in′ ,

(2.118)

namely V is an isometry thanks to the fact that E >
S is TP (i.e. that S is

T2P2). Furthermore,

W †W =
∑
z,z′∈Z

∑
a,a′∈A

[
F

(z′)†
a′ ⊗ |a′〉〈z′|

][
F (z)
a ⊗ |z〉〈a|

]
=

=
∑
z∈Z

∑
a,a′∈A

F
(z)†
a′ F (z)

a ⊗ |a′〉〈a| =

=
∑
z∈Z

∑
a,a′∈A

dout∑
m,m′=1

dout′∑
n,n′=1

U∗
(z,n′),(a′,m′)|m′〉〈n′|U(z,n),(a,m)|n〉〈m| ⊗ |a′〉〈a| =

=
∑
a,a′∈A

dout∑
m,m′=1

(U †U)(a′,m′),(a,m)|m′〉〈m| ⊗ |a′〉〈a| =

= 11out ⊗ 11A1 ,
(2.119)

thanks to the fact that U is an isometric matrix: this proves that W is an
isometry as well.
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This part of the proof is concluded by considering

TrA2

[
W
(
[C ⊗ 11T (A1)](V A

′V †)
)
W †] =

=
∑
a,a′∈A

TrA2

[
W

(
[C ⊗ 11T (A1)]

(
E>
a A

′E∗
a′ ⊗ |a〉〈a′|

))
W †
]

=

=
∑
x∈X

∑
a,a′∈A

TrA2

[
W

(
MxE

>
a A

′E∗
a′M

†
x ⊗ |a〉〈a′|

)
W †
]

=

=
∑
z,z′∈Z

∑
ã,ã′∈A

∑
x∈X

∑
a,a′∈A

TrA2

[
(F

(z)
ã ⊗ |z〉〈ã|)(

MxE
>
a A

′E∗
a′M

†
x ⊗ |a〉〈a′|

)
(F

(z′)†
ã′ ⊗ |ã′〉〈z′|)

]
=

=
∑
z,z′∈Z

∑
x∈X

∑
a,a′∈A

TrA2

[(
F (z)
a MxE

>
a A

′E∗
a′M

†
xF

(z′)†
a′ ⊗ |z〉〈z′|

)]
=

=
∑
z∈Z

∑
x∈X

∑
a,a′∈A

F (z)
a MxE

>
a A

′E∗
a′M

†
xF

(z)†
a′ ,

(2.120)
which evidently coincides with [S(C )](A′), thanks to Eq. (2.115)

Finally we have to prove that, for all isometric operators V : Hin′ →
Hin ⊗A1 and W : Hout ⊗A1 → Hout′ ⊗A2, the supermap S̃ such that

S̃(C ) = TrA2

[
W
(

[C ⊗ 11T (A1)]
(
V • V †))W †

]
(2.121)

is C2P2&TP2. Clearly, S̃ is QCP: indeed, scheme (2.106) is a Quantum
Channel if and only if the input map C is a Quantum Channel. Then,
thanks to Lemma 2.9, S̃ is TP2 as well. Finally, to check that it is C2P2,
consider Eq. (2.120), where now {Mx} is a canonical Kraus decomposition
of a CP map C – which is not necessarily TP. Then, recalling Definition 2.6
of Choi operators for supermaps, and Remark 2.2, the last line tells us that

RS̃ =
∑
z∈Z

∣∣∑
a∈A F

(z)
a ⊗ Ea

〉〉〈〈∑
a′∈A F

(z)
a′ ⊗ Ea′

∣∣, (2.122)

which proves that S̃ is C2P2 thanks to Corollary 2.5. �

Remark 2.12 The proof of Theorem 2.14 evidently suggests an explicit
way for implementing any C2P2&TP2 supermap S. It should also be evident
that there exist infinite physical implementation of the same supermap: in
fact, the purpose of the above Theorem was not that of finding the optimal
implementation (whatever criterion of optimality one chooses), but just to
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show that a physical implementation of all C2P2&TP2 supermaps is possible.

N

Remark 2.13 Consider the proof of Theorem 2.14: notice that the sec-
ond isometry, WS, might be as well replaced by a Quantum Channel F̃S

.
=

TrA2 [WS •W †
S ] : T (Hout ⊗A1) → T (Hout′). Furthermore any isometry VS is,

trivially, a Quantum Channel, so that we may conclude that all C2P2&TP2

supermaps are implemented by

Hin′

S
Hout′

Hin• C •Hout

≡ Hin′

ẼS

Hin C Hout

F̃S

Hout′

A1

,

(2.123)
where ẼS and FS are Quantum Channels depending on S — the ˜ was nec-
essary in order to distinguish the first Quantum Channel from the map ES
introduced in Theorem 2.6. Conversely, it is easy to prove that all supermaps
satisfying Eq. (2.123) are C2P2&TP2 as well: so, we conclude this Remark
with the following

Corollary 2.15 (to Theorem 2.14) Let S be a linear map. Then, it is
C2P2&TP2 if and only if it may be physically implemented as in Eq. (2.123).

N

The quantum circuit on the right-hand side of Eq. (2.123) evidently repre-
sents the most general quantum circuit which implements C as a composing
gate. Since we have shown that each and every so-conceived quantum circuit
is represented by a C2P2&TP2 supermap, it is natural to state the following

Definition 2.8 (Quantum Superchannel) Let S be a linear supermap:
we will say that it is a Quantum Superchannel when it is C2P2&TP2. Fur-
thermore, we will denote with QSC(Hin,Hout;Hin′ ,Hout′) the set of Quantum
Superchannels of L(T (Hin), T (Hout)) into L(T (Hin′), T (Hout′)).

Notice that Definition 2.8 of Quantum Superchannels is strictly analogous
to Definition 1.7 of Quantum Channels.

Furthermore, it is evident that the set QSC(Hin,Hout;Hin′ ,Hout′) of Quan-
tum Superchannels is a convex set: indeed, thanks to Corollary 2.5 and Re-
mark 2.7 we have

QSC(Hin,Hout;Hin′ ,Hout′) = [C2P2 ∩ TP2](Hin,Hout;Hin′ ,Hout′) ∼=
∼= [Ω ∩Θ](Hout′ ⊗Hin′ ⊗Hout ⊗Hin)

(2.124)
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where Ω is the convex cone of positive Choi operators and Θ is the affine
space of normalized Choi operators.

Remark 2.14 Notice that Quantum Superchannels generalize Quantum
Channels. Indeed, consider a linear supermap S between C and
L(T (Hin), T (Hout)). Then, S it is TP2 if and only if there exists a unital
map ES : C → T (Hin) such that Trout[SS(r)] = ES(r) for all r ∈ C, namely
iff

Trout[SS(1)] = 11in. (2.125)

However, its Choi operator is easily checked to be RS = SS(1) ∈ B(Hout ⊗
Hin), so that S is a Quantum Superchannel if and only if the map of Hin into
Hout corresponding to the Choi operator RS is a Quantum Channel:

QC(Hin,Hout) ∼= QSC(C,C;Hin,Hout). (2.126)

N
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Chapter 3

Cloning of Unitaries

In the present Chapter, the problem of cloning groups of state transforma-
tions is introduced as an application of the formalism that was developed in
Chapter 2. In Section 3.1 the general case in which the group of unitaries
to be cloned is any compact group is investigated: since an ideal cloning is
proved to be impossible in the general case, a strategy for the search of an
optimal cloner is outlined. In Section 3.2, the particular case of universal
cloning (namely, the problem of cloning all unitary state transformations) is
solved for qudits using the strategy and the main results that were developed
in the preceding Section.

3.1 Introduction to the general case

In Chapter 2, the mathematical formalism of Quantum Supermaps was intro-
duced in order to study the most general physical transformations of Quan-
tum Maps: in Section 2.4 it was further proved that, under the axiomatiza-
tion provided in Section 2.1, all Quantum Superchannels may be physically
implemented using quantum circuits consisting of certain Quantum Chan-
nels. Then, a natural question is whether there exist significative physical
situations where the implementation of some specific Quantum Supermap
has some practical application.

3.1.1 On the Impossibility of Ideal Cloning

In particular, consider the case in which one quantum system undergoes
some state transformation which is due to an unknown (or a partially known)
interaction with some physical device: then we may wonder whether there
exists a quantum circuit, of which such a physical device is part, that is
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equivalent to performing the same state transformation on two quantum
systems separately. Of course, we may refer to this situation as a ‘cloning of
Quantum Maps’. Indeed, in the supermap formalism, the problem may be
restated as follows: For any unknown (or partially known) input map C :
T (Hin) → T (Hout), find a Quantum Supermap S : L(T (Hin), T (Hout)) →
L(T (Hin1 ⊗Hin2), T (Hout1 ⊗Hout2)) which maps C into S(C ) = C ⊗2.

Whilst the cloning of Quantum Maps has received very little attention in
literature so far, interest in the problem of cloning Quantum States arised
quite early in the historical development of Quantum Information and Quan-
tum Computation, due to the importance of the process of copying informa-
tion. Indeed, in 1982, Wootters and Zurek proved the well-known no-cloning
theorem [10], in which it is shown that there cannot exist quantum devices
cloning perfectly all pure states in a finite Hilbert space. The original proof
may be given by contradiction: indeed, let Cid be an ideal cloning linear map,
namely let

Cid(ρ) = ρ⊗2 ∀ ρ ∈ S(H). (3.1)

Then, using the convexity of S(H) and the linearity of Cid, for any ρ0, ρ1

with orthogonal support we obtain the contradiction

Cid(ρp) = pρ⊗2
1 + (1− p)ρ⊗2

0

q /
ρ⊗2
p = p2ρ⊗2

1 + (1− p)2ρ⊗2
0 + p(1− p)[ρ0 ⊗ ρ1 + ρ1 ⊗ ρ0],

(3.2)

where we have defined ρp
.
= pρ1 + (1− p)ρ0, p ∈ (0, 1).

So, we expect a similar result for the cloning of Quantum Maps: indeed,
this result is almost identical.

Theorem 3.1 (No-go Theorem for the Cloning of Quantum Maps)
The ideal cloning of Quantum Channels is not achievable by means of any
linear supermap.

Proof Let us give the proof by contradiction: so, suppose that Sid is a
linear supermap such that Sid(C ) = C ⊗2 for all Quantum Channels C ; or,
equivalently, let its representing map SSid

be such that

SSid
(R) = R⊗2 ∀ R ∈ [Ω ∩ N11in

](Hout ⊗Hin). (3.3)

Now, since [Ω∩N11in
](Hout⊗Hin) is convex, then for every two operators R0

and R1 in this space with orthogonal supports we have

Rp
.
= pR1 + (1− p)R0 ∈ [Ω ∩ N11in

](Hout ⊗Hin) ∀ p ∈ [0, 1]. (3.4)
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Thus, just as in the case of Quantum States, we obtain the contradiction

SSid
(Rp) = pR⊗2

1 + (1− p)R⊗2
0

q /
R⊗2
p = p2R⊗2

1 + (1− p)2R⊗2
0 + p(1− p)[R0 ⊗R1 +R1 ⊗R0],

(3.5)
for all p ∈ (0, 1), that proves the Theorem. �

In the case of quantum states, actually, the perfect cloning of orthogonal
sets of states is achievable [11], thus expliciting the fact that classical infor-
mation can by perfectly copied, at least in principle. For instance, if one
defines the linear map C by

C (|i〉〈j|) .
= δi,j|i〉〈i| ⊗ |i〉〈i|, (3.6)

then C is a Quantum Channel which is able to perfectly clone all (and only)
pure states in the orthonormal basis {|i〉 | i = 1, . . . , dH} of H. Similar
examples may be found for the cloning of Quantum Maps: for instance, one
may define the linear supermap S by

SS(R)
.
=

1

din

din∑
i=1

〈i|Trin[R]|i〉 |i〉out1〈i| ⊗ |i〉out2〈i| ⊗ 11in1 ⊗ 11in2 , (3.7)

so that S is easily checked to be a Quantum Superchannel which is able to
perfectly clone all Quantum Channels {C (k) | k = 1, . . . , dout} with C (k)(A) =
Tr[A]|k〉〈k|.

Another interesting possibilit in the case of quantum states is given by
producing approximate copies of the input state to be cloned [12]: in the
following, we will adopt such a strategy for the cloning of maps.

3.1.2 Cloning of Unitary Transformations

In Section 1.1 it was shown that all unitary transformations, when seen from a
local point of view, may be represented by Quantum Channels, and in Section
1.3 it was proved that, conversely, all Quantum Channels may be regarded
as some local part of a larger unitary transformation: then we realize that
the problem of cloning Quantum Channels is perfectly equivalent to that of
cloning unitary transformations.

Clearly, then, Theorem 3.1 implies that there must exist no linear su-
permap which is able to clone perfectly all unitary transformations on a given
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Hilbert space1. On the other hand, it might still be possible to clone a certain
subset of unitaries perfectly, or else to clone all unitaries approximately.

However, we shall consider a set of input maps to be cloned as the set
UG = {Ug | g ∈ G} of unitaries which forms (the unitary representation of)
a compact group G; this particular choice is due to the fact that physical
transformations often correspond to elements in a fixed group: for instance,
the phase shift of a laser beam may be parametrized by elements in the phase
group U(1).

So, let (U,H) be a unitary representation of a group G on the Hilbert
spaceH ∼= Cd. Then, an ideal 1-to-2 Unitary Cloning Quantum Superchannel
Sid must take unitary transformations Ug • U †

g as input and return the two
unitaries U⊗2

g • U †⊗2
g as output, for every g in G. This might be sketched as

follows:
in1

Sid

out1

in2 out2

in• Ug •out

= in1 Ug
out1

in2 Ug
out2

∀ g ∈ G, (3.8)

where all involved Hilbert spaces are isomorphic to the same d-dimensional
Hilbert space H. We remark the fact that in Theorem 3.1 it was proved the
impossibility of cloning the whole set of unitary transformations on H via a
linear supermap so that, depending on the choice of G, such a Sid may or
may not exist, actually. On the other hand, we expect Sid to exist only in
trivial cases, so that in the following we will suppose that it does not.

Then, we will seek the optimal fixed Quantum Superchannel S performing
such a cloning of unitaries in an approximate way. Of course, we must define
explicitly the notion of ‘optimality’: in the following we will be using the
following

Definition 3.1 (Optimal Cloner) Let S be a Quantum Superchannel, and
let µ(•, •) be a distance measure on the set of its output maps. Then, we
will say that S is an optimal 1-to-2 unitary cloner when the distance of its
output map from that of the ideal cloner Sid, averaged on the whole set UG

of unitaries to be cloned, is minimal.

Thanks to Choi isomorphism (1.28), it is a natural choice to take2

µ(C ′,E ′)
.
= (RC ′ , RE ′), (3.9)

1Indeed, if one were able to clone all unitaries, then it would be possible to deny
Theorem 3.1 just by considering the unitary transformations locally.

2 Note that if C ′ and E ′ are Quantum Channels, then µ(C ′,E ′) ∈ R+, thanks to
Theorem 1.3.
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where (•, •) is the usual Hilbert-Schmidt scalar product in B(Hout′ ⊗ Hin′).
Then, for every Quantum Superchannel S we have

µ
(
S(Ug • U †

g ),Sid(Ug • U †
g )
)

= µ
(
S(Ug • U †

g ), U⊗2
g • U †⊗2

g

)
=

=
(
RS(Ug•U†g ), RU⊗2

g •U†⊗2
g

)
.

(3.10)

Using Eq. (1.28) we obtain

RUg•U†g = (Ug ⊗ 11)|11〉〉〈〈11|(U †
g ⊗ 11) =

= |Ug〉〉〈〈Ug|
(3.11)

so that we have trivially RU⊗2
g •U†⊗2

g
= |Ug〉〉〈〈Ug|⊗2 and, by the inverse iso-

morphism formula (1.30),

RS(Ug•U†g ) = SS(RUg•U†g ) =

= Trout,in

[(
11out1 ⊗ 11out2 ⊗R>

Ug•U†g

)
RS

]
=

=
[
11out1 ⊗ 11out2 ⊗ out,in〈〈U∗

g |
]
RS

[
11out1 ⊗ 11out2 ⊗ |U∗

g 〉〉out,in

]
,

(3.12)
thanks to the fact that |Ug〉〉〈〈Ug|> = |U∗

g 〉〉〈〈U∗
g |. Finally, substituting in

Eq. (3.10), we obtain

µ
(
S(Ug • U †

g ),Sid(Ug • U †
g )
)

=
[
〈〈Ug|⊗2 ⊗ 〈〈U∗

g |
]
RS

[
|Ug〉〉⊗2 ⊗ |U∗

g 〉〉
]

(3.13)

for every Quantum Superchannel (actually, for every linear supermap) S,
where the two bipartite vectors |Ug〉〉 are in Hout1 ⊗Hin1 and in Hout2 ⊗Hin2 ,
respectively, and |U∗

g 〉〉 ∈ Hout ⊗Hin.
Now, by Eq. (3.10) notice that

µ
(
Sid(Ug • U †

g ),Sid(Ug • U †
g )
)

=
(
RU⊗2

g •U†⊗2
g
, RU⊗2

g •U†⊗2
g

)
=

=
(
|Ug〉〉〈〈Ug|⊗2, |Ug〉〉〈〈Ug|⊗2

)
=

=
[
〈〈Ug|Ug〉〉

]4
=

= d4.

(3.14)

Then, of course we have

sup
S
µ(S,Sid) ≤ d4, (3.15)

which suggests to normalize µ introducing

FS(Ug)
.
=

1

d4
µ
(
S(Ug • U †

g ),Sid(Ug • U †
g )
)
. (3.16)
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Notice that FS(Ug) is the well known Raginsky fidelity [13, 14] between the
two output maps S(Ug •U †

g ) and Sid(Ug •U †
g ). Evidently3, FS(Ug) ∈ [0, 1] and

it may be regarded as the fidelity of the supermap S in the task of cloning
the particular unitary transformation Ug: the closer it is to 1, the more the
output map S(Ug • U †

g ) will approximate the desired output U⊗2
g • U †⊗2

g .

Then, of course a Quantum Superchannel S is optimal in the sense of
Definition 3.1 if and only if

〈FS〉G = sup
S∈QSC

〈FS〉G, (3.17)

where we have introduced the mean fidelity of S on the group G as

〈FS〉G
.
=

∫
G

dg FS(Ug). (3.18)

3.1.3 Reduction to two-fold Covariant Supermaps

In the present Subsection, we will prove that restricting the search for optimal
1-to-2 unitary cloners to the domain of two-fold Covariant Supermaps does
not represent a loss of optimality. So, let us recall the notation introduced
in Subsection 2.3.1: we realize that, since all involved Hilbert spaces are
isomorphic, we can discard any distinction between unitary representations
U , U ′ (respectively acting on Hin and Hin′) and V , V ′ (respectively acting on
Hout and Hout′); furthermore, it is a natural choice to take U ′ = U⊗2. With
these choices, then, the two equivalent two-fold Covariance conditions (2.76)
and (2.79) may be rephrased here respectively as[

RS, (Uh ⊗ U∗
g )⊗2 ⊗ U∗

h ⊗ Ug

]
= 0 ∀ (g, h) ∈ G×G (3.19)

and∫
G

dg

∫
G

dh
[
(Uh⊗U∗

g )⊗2⊗U∗
h⊗Ug

]
RS

[
(Uh⊗U∗

g )⊗2⊗U∗
h⊗Ug

]†
= RS. (3.20)

The first clue leading us to consider two-fold Covariant cloners is the fact
that any ideal cloner Sid is two-fold Covariant, as shown in Figure 3.1 on the
facing page.

Furthermore, we have the following

Lemma 3.2 (Invariance of the Mean Fidelity) The mean cloning fidelity
〈FS〉G is invariant under the two-fold covariance transformation

S 7→ V′
hU′

gSVh−1Ug−1 ∀ (g, h) ∈ G×G. (3.21)

3See Footnote 2 on page 62.
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CHAPTER 3. CLONING OF UNITARIES

Proof First, we note that

FS(Ug) = F[V′kU′hSVk−1Uh−1 ](UkUgUh) ∀ g, h, k ∈ G. (3.22)

This comes from from straight calculation, reminding from Eq. (2.70) that

R[V′kU′hSVk−1Uh−1 ] =
[
(Uk ⊗ U>

h )⊗2 ⊗ U∗
k ⊗ U †

h

]
RS

[
(Uk ⊗ U>

h )⊗2 ⊗ U∗
k ⊗ U †

h

]†
.

(3.23)
Then, the mean fidelity satisfies

〈FS〉G =

∫
G

dg FS(Ug) =

=

∫
G

dg F[V′hU′gSVk−1Uh−1 ](UkUgUh) =

=

∫
G

dg′ F[V′kU′hSVk−1Uh−1 ](Ug′) = 〈F[V′kU′hSVk−1Uh−1 ]〉G,

(3.24)

for all h, k ∈ G – where we have implicitly put g′ = kgh. �

Lemma 3.2 has a very important consequence: let S be any optimal
cloning Quantum Superchannel. Then, thanks to the Lemma we have that

〈FS〉G = 〈FS′(g,h)〉G ∀ (g, h) ∈ G×G, (3.25)

for all supermaps S′(g, h)
.
= V′

hU′
gSVh−1Ug−1 . Of course, if S is a Quantum

Channel, then S′(g, h) is too: furthermore, it is evident that S′(g, h) is a
two-fold Covariant supermap. Then we have proved that, for every opti-
mal cloning Quantum Channel, there exist more two-fold Covariant optimal
cloning Quantum Superchannels: this shows that, in the task of optimiz-
ing the 1-to-2 unitary cloning, restricting the optimization to the subclass
of two-fold Covariant Quantum Superchannels does not represent a loss of
optimality.

3.1.4 Explicit Form for the Normalization Condition

In this Subsection we will specialize the general results obtained in Subsec-
tions 2.3.3 and 2.3.4, respectively on the isotypic decomposition of covariant
supermaps, and on their normalization.

First, consider Eqq. (2.80, 2.81): since in our case we have U ′ ⊗ U∗ =
V ′ ⊗ V ∗ = U⊗2 ⊗ U∗, then the isotypic decompositions of the input and
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3.1. INTRODUCTION TO THE GENERAL CASE

output spaces are exactly the same, and we rewrite them in a unique form
as

H⊗3 =

|Irrep(U⊗2⊗U∗)|⊕
µ=1

mµ⊕
i=1

H(µ)
i . (3.26)

Furthermore, we may rewrite any two-fold Covariant supermap S as

RS =

|Irrep(U⊗2⊗U∗)|∑
µ,ν=1

mµ∑
i,j=1

mν∑
k,l=1

r
(µ,ν)
S;S;i,j,k,lT

(µ)
j,i ⊗ T

(ν)
l,k

∗, (3.27)

which is a specialization of Eq. (2.84).

We now consider the TP2 condition. The following result, strongly de-
pending on Theorem 2.13, allows one to express TP2 condition as a set of
linear conditions on coefficients r

(µ,ν)
S;S;i,j,k,l.

Lemma 3.3 (Normalization for Unitary Cloners) Let S be a two-fold
covariant supermap in the form (3.27), let its input and its output spaces de-
compose as in Eq. (3.26), and let the input space of its output map decompose
as

Hin1 ⊗Hin2 =

|Irrep(U⊗2)|⊕
η=1

m̃η⊕
t=1

H̃(η)
t . (3.28)

Furthermore, let (U,H) be irreducible: then, S is TP2 if and only if coeffi-

cients {r(µ,ν)
S;S;i,j,k,l} satisfy the following

∑
η m̃

2
η linear conditions:

|Irrep(U⊗2⊗U∗)|∑
µ,ν=1

dµ
d

mµ∑
i=1

mν∑
k,l=1

c
(η,ν)
t,u,l,kr

(µ,ν)
S;S;i,i,k,l = δutd̃η

∀ η = 1, . . . , |Irrep(U⊗2)|,
∀ u, t = 1, . . . , m̃η,

(3.29)
where, for brevity, we have put dµ

.
= dim(H(µ)), d̃η

.
= dim(H̃(η)) and

c
(η,ν)
t,u,l,k

.
= Tr

[
T̃

(η)
t,u Trin[T

(ν)
l,k ]
]∗
. (3.30)

Proof Consider Theorem 2.13: since (U,H) is irreducible by hypothesis, we
may use TP2 condition (2.94), that we rewrite here for convenience,

|Irrep(U⊗2⊗U∗)|∑
µ,ν=1

dµ
d

mµ∑
i=1

mν∑
k,l=1

r
(µ,ν)
S;S;i,i,k,lTrin[T

(ν)
l,k

∗] = 11in1 ⊗ 11in2 . (3.31)
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Now, since T
(ν)
l,k is an isometry mapping the irreducible module H(ν)

k into the

equivalent module H(ν)
l , then we have the following commutation relation:

T
(ν)
l,k = [Ug ⊗ Ug ⊗ U∗

g ]|H(ν)
l
T

(ν)
l,k [Ug ⊗ Ug ⊗ U∗

g ]|†
H(ν)

k

= [Ug ⊗ Ug ⊗ U∗
g ]T

(ν)
l,k [Ug ⊗ Ug ⊗ U∗

g ]† ∀ g ∈ G,
(3.32)

from which follows

Trin[T
(ν)
k,l ] = [Ug ⊗ Ug]Trin[T

(ν)
l,k ][Ug ⊗ Ug]

† ∀ g ∈ G, (3.33)

namely Trin[T
(ν)
l,k ] is an operator on Hin1 ⊗ Hin2 which commutes with the

action (U⊗2) of G. Then, Theorem A.2 yields

Trin[T
(ν)
l,k ] =

|Irrep(U⊗2)|∑
η=1

m̃η∑
t,u=1

Tr[T̃
(η)
t,u Trin[T

(ν)
l,k ]]

d̃η
T̃

(η)
u,t . (3.34)

Substituting in the above Eqq. yields the following TP2 necessary and suffi-
cient condition:

11in1 ⊗ 11in2

.
=

|Irrep(U⊗2)|∑
η=1

m̃η∑
t,u=1

|Irrep(U⊗2⊗U∗)|∑
µ,ν=1

dµ
d

mµ∑
i=1

mν∑
k,l=1

r
(µ,ν)
S;S;i,i,k,l·

·
Tr[(T̃

(η)
t,u

∗ ⊗ 11in)T
(ν)
l,k

∗]

d̃η
T̃

(η)
u,t

∗

(3.35)

Now, since T̃
(η)
t,t are orthogonal projectors on subspaces H̃(η)

t of Hin1 ⊗Hin2 ,
then we have

|Irrep(U⊗2)|∑
η=1

m̃η∑
t=1

T̃
(η)
t,t

∗ = 11in1 ⊗ 11in2 . (3.36)

Furthermore, we realize that an equivalent condition for Eq. (3.35) is obtained

by requiring each coefficient of T̃
(η)
u,t

∗ to be equal to δu,t: this proves the
Theorem. �

So far we have been working in the trivial representation where Choi
operators of supermaps act on

H⊗6 ∼= Hout1 ⊗Hout2︸ ︷︷ ︸
Hout′

⊗Hin1 ⊗Hin2︸ ︷︷ ︸
Hin′

⊗Hout ⊗Hin. (3.37)
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Now, let us consider the isotypic decomposition of H⊗6 under the action of
G×G:

H⊗6 =

|Irrep(U⊗2⊗U∗)|⊕
µ,ν=1

mµ⊕
i=1

mν⊕
k=1

H(µ)
i ⊗H(ν)

k
∼=

∼=
|Irrep(U⊗2⊗U∗)|⊕

µ,ν=1

H(µ) ⊗ Cmµ ⊗H(ν) ⊗ Cmν ∼=

∼=
|Irrep(U⊗2⊗U∗)|⊕

µ,ν=1

H(µ) ⊗H(ν) ⊗ (Cmµ ⊗ Cmν ),

(3.38)

and let us work in the block-diagonal representation pertaining to the last
line. Then, the necessary and sufficient two-fold Covariance condition (3.27)
may be rewritten here as

RS =

|Irrep(U⊗2⊗U∗)|⊕
µ,ν=1

11H(µ) ⊗ 11H(ν) ⊗R
(µ,ν)
S , (3.39)

where each R
(µ,ν)
S is a square complex matrix of order mµ ·mν defined in a

natural way by[
Cmµ〈i| ⊗ Cmν〈k|

]
R

(µ,ν)
S

[
|j〉Cmµ ⊗ |l〉Cmν

]
= r

(µ,ν)
S;i,j,k,l. (3.40)

In a similar way, let us define the square matrix C(η,ν) of order m̃η ·mµ by[
Cm̃η〈t| ⊗ Cmν〈l|

]
C(η,ν)

[
|u〉Cm̃η ⊗ |k〉Cmν

]
.
= c

(η,ν)
t,u,l,k, (3.41)

where c
(η,ν)
t,u,l,k, in turn, are defined in Eq. (3.30). Then we have the following

Corollary 3.4 (to Lemma 3.3) Under the conditions of Lemma 3.3, S is
TP2 if and only if

Tr[C⊕
η,t,uR

⊕
S ] = δutd̃η

∀ η = 1, . . . , |Irrep(U⊗2)|,
∀ u, t = 1, . . . , m̃η,

(3.42)

where C⊕
η,t,u and R⊕

S are block-diagonal matrices respectively defined by

C⊕
η,t,u

.
=

|Irrep(U⊗2⊗U∗)|⊕
µ,ν=1

dµ
d

11mµ ⊗
(
〈t| ⊗ 11mν

)
C(η,ν)

(
|u〉 ⊗ 11mν

)
, (3.43)

R⊕
S

.
=

|Irrep(U⊗2⊗U∗)|⊕
µ,ν=1

R
(µ,ν)
S . (3.44)
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Proof This comes from straight computation. Indeed, in the block repre-
sentation, TP2 condition (3.29) may be rephrased as

δutd̃η
.
=

|Irrep(U⊗2⊗U∗)|∑
µ,ν=1

dµ
d

mµ∑
i=1

mν∑
k,l=1

〈t|〈l|C(η,ν)|u〉|k〉 · 〈i|〈k|R(µ,ν)
S |i〉|l〉 =

=

|Irrep(U⊗2⊗U∗)|∑
µ,ν=1

dµ
d

mν∑
k,l=1

〈l|
(
〈t| ⊗ 11mν

)
C(η,ν)

(
|u〉 ⊗ 11mν

)
|k〉·

· 〈k|TrCmµ [R
(µ,ν)
S ]|l〉 =

=

|Irrep(U⊗2⊗U∗)|∑
µ,ν=1

dµ
d

Tr
[(
〈t| ⊗ 11mν

)
C(η,ν)

(
|u〉 ⊗ 11mν

)
TrCmµ [R

(µ,ν)
S ]

]
=

=

|Irrep(U⊗2⊗U∗)|∑
µ,ν=1

dµ
d

Tr
[[

11mµ ⊗
(
〈t| ⊗ 11mν

)
C(η,ν)

(
|u〉 ⊗ 11mν

)]
R

(µ,ν)
S

]
,

(3.45)
for all η, t, u. A further refinement of the last Equation yields the desired
result. �

In the following, we will refer to the block-diagonal complex matrix R⊕
S

as the reduced Choi operator of the two-fold Covariant supermap S.

Remark 3.1 Consider Eq. (3.39): then, thanks to Corollary 2.5, it is evident
that the corresponding TP2 supermap S is C2P2 if and only if R(µ,ν) are
positive matrices. Equivalently, S is C2P2 if and only if its reduced Choi
operator R⊕

S , defined in Eq. (3.44), is positive. N

3.1.5 Reduction to Extremal Supermaps

As we pointed out in Chapter 1, the set4 QSC of Quantum Superchannels
is a convex set: furthermore, in Remark 2.9 we noticed that the set of two-
fold Covariant supermaps is an affine space. As a result, the set of two-
fold Covariant Quantum Superchannels (which we will be denoting with the
symbol QSC(2f)) is, with a very little surprise, a convex set too. This implies
that every S ∈ QSC(2f) must admit the convex decomposition

S =
∑
i∈I

piS(ext)
i , (3.46)

4In the following, for brevity, we will discard the explicit specifications of Hilbert spaces,
e.g. we will write QSC in place of QSC(Hin,Hout;Hin′ ,Hout′).
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in terms of certain extremal two-fold covariant Quantum Superchannels {S(ext)
i | i ∈

I}. Furthermore, since the mean fidelity 〈F•〉G is linear, then we trivially
have

〈FS〉G =
∑
i∈I

pi〈FS(ext)
i

〉G. (3.47)

Now, let us fix an optimal cloning S ∈ QSC(2f), i.e. such that5

〈FS〉G ≤ 〈FS〉G ∀ S ∈ QSC(2f). (3.48)

Then, decomposing S into extremal points {S(ext)

i | i ∈ I} of QSC(2f), we
obtain

〈FS〉G =
∑
i∈I

pi〈FS(ext)
i

〉G, (3.49)

so that we must also have∑
i∈I

pi〈FS(ext)
i

〉G ≤
∑
i∈I

pi〈FS〉G = 〈FS〉G, (3.50)

thanks to the optimality of S, i.e. 〈FS(ext)
i

〉G ≤ 〈FS〉G for all i: finally, this

evidently requires 〈FS(ext)
i

〉G = 〈FS〉G for all i.

Thus, if S is an optimal cloning two-fold Covariant Quantum Supermap,

we have proved that all the extremal elements {S(ext)

i | i ∈ I} yielding its
convex decomposition are optimal as well: this shows that there is no loss of
optimality in restricting the search for optimal two-fold Covariant Quantum
Superchannel to the set Ext(QSC(2f)) of extremal elements in QSC(2f).

Now, collecting the main results that have been proved in the last Sub-
sections, we realize that there is a natural isomorphism between two-fold
covariant Quantum Superchannels and their reduced Choi operators: this is
explicitly given by

QSC(2f) ∼=
{
R⊕

S ∈ Ω
(⊕

µ,ν

[
Cmµ ⊗ Cmν

]) ∣∣∣ Tr[C⊕
η,t,uR

⊕] = δu,td̃η ∀ η, t, u
}
,

(3.51)
where we remind that Ω(H) denotes the convex cone of positive operators on
H, and block-diagonal complex matrices {C⊕

η,t,u} were defined in Eq. (3.43).
Then, in order to study the characterization of extremal two-fold Covariant
Quantum Superchannels, one can equivalently study extremal points in the
above set of reduced Choi operators — that, for brevity, will be denoted by
the symbol Ω⊕. To this end, let us use the formalism of perturbations.

5As in Subsection 3.1.3 we have proved that there is no loss of optimality in restricting
the optimization task to two-fold Covariant Quantum Superchannels, we may replace
Eq. (3.48) with 〈FS〉G ≤ 〈FS〉G ∀ S ∈ QSC as well.
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Definition 3.2 (Perturbation) Let R⊕ ∈ Ω⊕: we will say that the Hermi-
tian operator Z⊕ ∈

⊕
µ,ν

[
Cmµ ⊗ Cmν

]
is a perturbation of R⊕ when there

exists an ε > 0 such that R⊕ + tZ⊕ ∈ Ω⊕ for all t ∈ [−ε, ε].

It should be clear from the above definition that any element R⊕ ∈ Ω⊕ is
extremal if and only if it only admits the trivial perturbation Z⊕ = 0.

Now we need to rephrase Definition 3.2 in a more convenient form: to
this end we give the following Lemma, which is just a restatement of Lemma
11 in [6].

Lemma 3.5 (Support Condition for Perturbations) Let R⊕ ∈ Ω⊕, and
let Z⊕ ∈

⊕
µ,ν

[
Cmµ ⊗ Cmν

]
be Hermitian. Then, Z⊕ is a perturbation for

R⊕ if and only if {
Supp(Z⊕) ⊆ Supp(R⊕

S ),
Tr[C⊕

η,t,uZ
⊕] = 0 ∀ η, t, u. (3.52)

From this follows another important result (corresponding to Theorem 16
in [6]) that provides a full characterization of extremal two-fold covariant
cloners:

Theorem 3.6 (Minimal Support Condition) Let R⊕ ∈ Ω⊕: then R⊕ is
extremal if and only if it has the minimal support, namely iff

Supp(Q⊕) ⊆ Supp(R⊕) ⇒ Q⊕ = R⊕ ∀ Q⊕ ∈ Ω⊕. (3.53)

This, in turn, allows one to state the following result (see Theorem 17 in [6]):

Theorem 3.7 (Characterization of Extremal Cloners) Let S be a two-
fold Covariant Quantum Superchannel. Then S is extremal in the set QSC(2f)

if and only if

|Irrep(U⊗2⊗U∗)|⊕
µ,ν=1

B
(
Supp(R

(µ,ν)
S )

)
⊆ Span {Cη,t,u}η,t,u , (3.54)

where matrices {R(µ,ν)
S } and {Cη,t,u} were respectively defined in Eqq. (3.40,

3.41).

The last Theorem allows us to place a bound on the ranks of matrices
R(µ,ν): in fact, taking the dimensions on both sides of Eq. (3.54) yields the
following result:
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Corollary 3.8 (to Theorem 3.7) Let S be a two-fold Covariant Quantum
Superchannel. Then, if S is extremal in QSC(2f), it satisfies

|Irrep(U⊗2⊗U∗)|∑
µ,ν=1

rank2
(
R

(µ,ν)
S

)
≤

|Irrep(U⊗2)|∑
η=1

m̃2
η. (3.55)

In the following, we will use Corollary 3.8 as a necessary condition for a
two-fold covariant cloner to be extremal.

3.1.6 Explicit Form of the Mean Fidelity

In the present Subsection, we provide a convenient formula for the mean
cloning fidelity of any two-fold Covariant supermap.

Lemma 3.9 (Mean Fidelity Formula) Let S be a two-fold Covariant su-
permap with isotypic decomposition (3.27). Then its mean cloning fidelity
may be written as

〈FS〉G =
1

d4

|Irrep(U⊗2⊗U∗)|∑
µ=1

dµ

mµ∑
i,j=1

r
(µ,µ)
S;i,j,i,j, (3.56)

where we remind that dµ is the dimension of the µ-th invariant subspace H(µ)

of H⊗3.

Proof Let us rewrite the mean fidelity under the hypotesis that S is two-
fold Covariant: putting the two-fold covariance condition (3.20) into the
expression for the mean fidelity we obtain

〈FS〉G =

∫
G

dk FS(Uk) =

=
1

d4

∫
G

dkTr

[[
|Uk〉〉〈〈Uk|⊗2 ⊗ |U∗

k 〉〉〈〈U∗
k |
]
RS

]
=

=
1

d4

∫
G

dk

∫
G

dg

∫
G

dhTr

[[
|Uk〉〉〈〈Uk|⊗2 ⊗ |U∗

k 〉〉〈〈U∗
k |
]

[
(Uh ⊗ U∗

g )⊗2 ⊗ U∗
h ⊗ Ug

]
RS

[
(Uh ⊗ U∗

g )⊗2 ⊗ U∗
h ⊗ Ug

]†]
=

=
1

d4

∫
G

dk

∫
G

dg

∫
G

dhTr

[[
|U †

hUkUg〉〉〈〈U
†
hUkUg|

⊗2⊗

⊗ |U>
h U

∗
kU

∗
g 〉〉〈〈U>

h U
∗
kU

∗
g |
]
RS

]
.

(3.57)
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Now, performing the change of variables k−1h 7→ h′, we obtain

〈FS〉G =
1

d4

∫
G

dh′
∫

G

dgTr

[[
|U †

h′Ug〉〉〈〈U
†
h′Ug|

⊗2 ⊗ |U>
h′U

∗
g 〉〉〈〈U>

h′U
∗
g |
]
RS

]
=

=
1

d4

∫
G

dh′
∫

G

dgTr

[
|11〉〉〈〈11|⊗3[

(Uh′ ⊗ U∗
g )⊗2 ⊗ U∗

h′ ⊗ Ug

]
RS

[
(Uh′ ⊗ U∗

g )⊗2 ⊗ U∗
h′ ⊗ Ug

]†
=

=
1

d4
Tr
[
|11〉〉〈〈11|⊗3RS

]
,

(3.58)
where we have used, once again, the two-fold Covariance condition (3.20).
Thus we have proved that the mean fidelity for two-fold covariant supermaps
is given by

〈FS〉G =
1

d4
〈〈11|⊗3RS|11〉〉⊗3, (3.59)

where the three copies of the maximally entangled vector |11〉〉 lie in Hout1 ⊗
Hin1 , in Hout2 ⊗Hin2 , and in Hout ⊗Hin.

Now, let us rewrite Eq. (3.59) using isotypic decomposition (3.27):

〈FS〉G =
1

d4

|Irrep(U⊗2⊗U∗)|∑
µ,ν=1

mµ∑
i,j=1

mν∑
k,l=1

r
(µ,ν)
S;S;i,j,k,l〈〈11|

⊗3T
(µ)
j,i ⊗ T

(ν)
l,k

∗|11〉〉⊗3 (3.60)

where T
(µ)
j,i is an isometry between subspaces of Hout1 ⊗ Hout2 ⊗ Hout, and

T
(ν)
l,k is an isometry between subspaces of Hin1 ⊗ Hin2 ⊗ Hin. Now we note

that

〈〈11|⊗3T
(µ)
j,i ⊗ T

(ν)
l,k

∗|11〉〉⊗3 =
d∑

i,j,k,l,m,n=1

〈i|〈j|〈k|T (µ)
j,i |l〉|m〉|n〉·

· 〈i|〈j|〈k|T (ν)
l,k

∗|l〉|m〉|n〉 =

= Tr
[
T

(µ)
j,i T

(ν)
l,k

†
]

=

= δµ,ν · δi,k · δj,l · dµ,

(3.61)

where we have used the fact that T
(ν)
l,k

† = T
(ν)
k,l . Finally, substituting in the

above result yields Eq. (3.56). �

3.1.7 Summary of the Section

In the following we collect the main results that have been proved in Sec-
tion 3.1, with the primary aim of providing a brief and self-consistent walk-
through for any specific unitary cloning optimization task:
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1. For every optimal Quantum Superchannel there exist several two-fold
Covariant Quantum Superchannels achieving the same mean fidelity, so
that there is no loss of optimality in restricting the domain of optimiza-
tion to the set of two-fold Covariant Quantum Supermaps (Subsection
3.1.3).

2. Writing Choi operators in the block-diagonal representation, S is a
two-fold covariant supermap if and only if RS is in the form (3.39).

3. If S is in such a form, then it is C2P2 if and only if all matrices R
(µ,ν)
S are

positive or, equivalently, if and only if so is the reduced Choi operator
R⊕

S defined in Eq. (3.44).

4. S is TP2 if and only if its reduced Choi operator R⊕
S satisfies Eq. (3.42).

5. For every optimal two-fold Covariant Quantum Superchannel in QSC(2f)

there exists at least one extremal point in Ext(QSC(2f)) achieving the
same mean fidelity, so that there is no loss of optimality in restricting
the domain of optimization to extremal two-fold Covariant Quantum
Superchannels (Subsection 3.1.5).

6. A necessary condition for S ∈ QSC(2f) to be extremal is given in
Eq. (3.55).

7. The mean fidelity of any two-fold covariant supermap S is given by
Eq. (3.56).

With the above results, we are now ready to consider some specific cases
of unitary cloning.

3.2 Universal two-fold Covariant Cloning

One of the most natural choices for the set UG
.
= {Ug | g ∈ G} of input

unitary transformations to be cloned is made by requiring (U,H) to be the
defining representation of SU(d). In this way, we will be seeking one Quan-
tum Superchannel that is optimal in the task of cloning all unitary transfor-
mations6 on H: as we pointed out before, we expect an ideal cloner (i.e. a
Quantum Superchannel – or just a linear supermap – that is able to clone
perfectly all unitaries in UG) not to exist, as this would be in contradiction
with Theorem 3.1. Then, we will need to apply all the main results that were

6Apart from a phase. However, since quantum states are defined modulo a phase too,
then it is not a restriction to ask all unitary transformations to have det = 1.
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proved in Section 3.1 in order to find one extremal two-fold SU(d)-Covariant
Quantum Superchannel that is optimal in the sense of Definition 3.1.

3.2.1 Explicit Isotypic Decompositions

All important results in Section 3.1 depend more or less explicitly on isotypic
decomposition (3.26) of H⊗3 under the action of U⊗2 ⊗ U∗, and on isotypic
decomposition (3.28) under the action of H⊗2 of U⊗2: then, the first step
which is required in order to apply such results is finding explicit forms for
these decompositions.

The latter is the very well known Clebsch-Gordan decomposition

H⊗2 = Hsym ⊕Hant, (3.62)

with symmetric and anti-symmetric subspaces

Hsym = Span

{
|i〉 ⊗ |j〉+ |j〉 ⊗ |i〉√

2

∣∣∣∣
j<i

, |i〉 ⊗ |i〉

}
i

, (3.63)

Hant = Span

{
|i〉 ⊗ |j〉 − |j〉 ⊗ |i〉√

2

∣∣∣∣
j<i

}
i

, (3.64)

and the obvious projection operators Psym, Pant.

In order to find the explicit form for isotypic decomposition (3.26), we
will use the Young diagrams formalism [15]:

d

� ⊗
d

� ⊗
d

�
�
�
...
�

=

( d(d+1)
2

�� ⊕
d(d−1)

2

�
�

)
⊗

d

�
�
�
...
�

=

=

d(d+1)
2

�� ⊗
d

�
�
�
...
�

⊕
d(d−1)

2

�
�

⊗
d

�
�
�
...
�

,

(3.65)
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with
d(d+1)

2

�� ⊗
d

�
�
�
...
�

=

(d+2)d(d−1)
2

���
�
�
...
�

⊕
d

��
�
�
...
�
�

=

=

(d+2)d(d−1)
2

���
�
�
...
�

⊕
d

�1 ,

(3.66)

and
d(d−1)

2

�
�

⊗
d

�
�
�
...
�

=

(d+1)d(d−2)
2

��
��
�
...
�

⊕
d

��
�
�
...
�
�

=

=

(d+1)d(d−2)
2

��
��
�
...
�

⊕
d

�2 .

(3.67)

Summarizing the results of the above diagramatic equations, we have that
the isotypic decomposition of H⊗3 may be rewritten as

H⊗H⊗H = H(1) ⊕H(2) ⊕
(
H(3)

1 ⊕H(3)
2

) ∼=
∼= H(1) ⊕H(2) ⊕ (H⊗ C2)

(3.68)

where we have estabilished the following correspondences7:

H(1) ↔ ���
�
�

,

H(2) ↔ ��
��
�
,

H(3)
1 ↔ �1 ,

H(3)
2 ↔ �2 .

(3.69)

Then, evidently we also have |Irrep(U⊗2⊗U∗)| = 3, with multiplicites m1 =
m2 = 1 and m3 = 2.

Now, in order to explicitly write down projection operators onto the above
spaces, let us rephrase Eq. (3.66) as

Hsym ⊗H ∼= H(1) ⊕H(3)
1 . (3.70)

7Notice that H(3)
1
∼= H(3)

2
∼= H.
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Since it is straightforward to write

H(3)
1 = Span

{∑d
j=1

[
|i〉 ⊗ |j〉+ |j〉 ⊗ |i〉

]
⊗ |j〉√

2(d+ 1)

}
i

, (3.71)

then it is straightforward to find projection operators Psym, T
(3)
1,1 , and thus

T
(1)
1,1 , given by

T
(1)
1,1 = Psym ⊗ 11H − T

(3)
1,1 . (3.72)

The same procedure may be applied to Eq. (3.67), which reads

Hant ⊗H = H(2) ⊕H(3)
2 . (3.73)

Indeed, we have:

H(3)
2 = Span

{∑d
j=1

[
|i〉 ⊗ |j〉 − |j〉 ⊗ |i〉

]
⊗ |j〉√

2(d− 1)

}
i

, (3.74)

yielding explicit forms for Pant, T
(3)
2,2 and T

(2)
1,1 , which is given by

T
(2)
1,1 = Pant ⊗ 11H − T

(3)
2,2 . (3.75)

It may be easily checked that T
(2)
1,1 is null when d = 2.

3.2.2 Covariance, Positivity, Normalization, Extremal-
ity

Finally, we are ready to implement the main results that were proved in
Section 3.1 (for a brief review, see Subsection 3.1.7). First of all, we remind
that S is covariant iff it is in the form (3.27): then, every two-fold SU(d)-
Covariant linear supermap S depends on at most

3∑
µ,ν=1

mµ∑
i,j=1

mν∑
k,l=1

= 36 (3.76)

complex parameters {r(µ,ν)
S;i,j,k,l}, regardless the dimension d of the Hilbert

spaces.
As we have already seen, C2P2 condition amounts to require matrices

R
(µ,ν)
S – defined by Eq. (3.40) – to be positive. Figure 3.2 on the next page

explicitly shows such matrices.
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S
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Furthermore, we have that (U,H) is evidently irreducible, so that we may
apply Lemma 3.3: then, S is TP2 if and only if it satisfies Eq. (3.29), where

coefficients c
(η,ν)
t,u,l,k are rewritten here as c

(1,ν)
1,1,l,k = Tr

[
PsymTrin[T

(ν)
l,k ]
]∗
,

c
(2,ν)
1,1,l,k = Tr

[
PantTrin[T

(ν)
l,k ]
]∗
.

(3.77)

Now, it is easy to check that

Trin[T
(ν)
l,k ] = δlk · dν ·


1

dsym

Psym for (ν, k) ∈ {(1, 1), (3, 1)},
1

dant

Pant for (ν, k) ∈ {(2, 1), (3, 2)},
(3.78)

so that

Tr
[
PsymTrin[T

(ν)
l,k ]
]∗

=

{
δlk · dν for (ν, k) ∈ {(1, 1), (3, 1)}
0 for (ν, k) ∈ {(2, 1), (3, 2)} , (3.79)

Tr
[
PantTrin[T

(ν)
l,k ]
]∗

=

{
0 for (ν, k) ∈ {(1, 1), (3, 1)}
δlk · dν for (ν, k) ∈ {(2, 1), (3, 2)} . (3.80)

Thus, TP2 condition – Eq. (3.29) – may be rewritten as

3∑
µ=1

dµ
d

mµ∑
i=1

∑
(ν,k)∈{(1,1),(3,1)}

dνr
(µ,ν)
S;i,i,k,k = dsym,

3∑
µ=1

dµ
d

mµ∑
i=1

∑
(ν,k)∈{(2,1),(3,2)}

dνr
(µ,ν)
S;i,i,k,k = dant.

(3.81)

Finally, we consider the necessary extremality condition, Eq. (3.55). This
turns out to be a very strong condition for we have, of course, |Irrep(U⊗2)| =
2 and m̃1 = m̃2 = 1: then, in this particular case it is equivalent to

3∑
µ,ν=1

rank2
(
R

(µ,ν)
S

)
≤

2∑
η=1

m̃2
η = 2. (3.82)

Thus, we have proved that a necessary condition for a two-fold SU(d)-

covariant Quantum Superchannel S to be extremal is that rank(R
(µ,ν)
S ) ≤ 1

for every µ, ν: using Eq. (3.39), we may thus write

RS =
3⊕

µ,ν=1

11H(µ) ⊗ 11H(ν) ⊗ |v(µ,ν)
S 〉〉〈〈v(µ,ν)

S |, (3.83)
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where |v(µ,ν)
S 〉〉 are vectors in Cmµ ⊗ Cmν such that

v
(µ,ν)
S;i,k v

(µ,ν)∗
S;j,l = r

(µ,ν)
S;i,j,k,l. (3.84)

Note thath positivity condition is thus trivially satisfied. Furthermore, notice
that extremality condition (3.82) also requires the existance of at most two

non-zero vectors |v(µ,ν)
S 〉〉.

3.2.3 Maximization of the Mean Fidelity

Now, let us consider the mean fidelity formula, Eq. (3.56): if S is an extremal
two-fold Covariant Quantum Superchannel, then we may introduce vectors
|v(µ,ν)

S 〉〉 defined in (3.84), so that we obtain

〈FS〉SU(d) =
1

d4

3∑
µ=1

dµ

∣∣∣∣∣
mµ∑
i=1

v
(µ,µ)
i,i

∣∣∣∣∣
2

=

=
1

d4

[
d1|v(1,1)

S;1,1|
2 + d2|v(2,2)

S;1,1|
2 + d3|v(3,3)

S;1,1 + v
(3,3)
S;2,2|

2
]
.

(3.85)

As we already pointed out, C2P2 condition is trivially satisfied by the choice
(3.84), whilst TP2 condition (3.81) may be rewritten here as

3∑
µ=1

dµ
d

mµ∑
i=1

∑
(ν,k)∈{(1,1),(3,1)}

dν |v(µ,ν)
S;i,k |

2 = dsym,

3∑
µ=1

dµ
d

mµ∑
i=1

∑
(ν,k)∈{(2,1),(3,2)}

dν |v(µ,ν)
S;i,k |

2 = dant.

(3.86)

We realize that only 4 out of the 16 absolute values {|v(µ,ν)
S;i,k |} do contribute

to 〈FS〉SU(d) and that they all appear in TP2 condition with a positive sign:
then, in order to maximize 〈FS〉SU(d), we are allowed to set

|v(µ,ν)
S;i,k | = δµ,νδi,k|v(µ,µ)

S;i,i |. (3.87)

With such a particular choice, TP2 condition may be rewritten as{
d2

1|v
(1,1)
S;1,1|

2 + d2
3|v

(3,3)
S;1,1|

2 = d · dsym,

d2
2|v

(2,2)
S;1,1|

2 + d2
3|v

(3,3)
S;2,2|

2 = d · dant.
(3.88)

Thus, in what follows we shall consider all multiplicity matrices R
(µ,ν)
S to be

zero matrices, except for R
(1,1)
S , R

(2,2)
S and R

(3,3)
S , that will be supposed to be
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in the forms

R
(1,1)
S = |v(1,1)

S;1,1|
2, (3.89)

R
(2,2)
S = |v(2,2)

S;1,1|
2, (3.90)

R
(3,3)
S =


|v(3,3)

S;1,1|2 0 0 v
(3,3)
S;1,1v

(3,3)∗
S;2,2

0 0 0 0
0 0 0 0

v
(3,3)∗
S;1,1 v

(3,3)
S;2,2 0 0 |v(3,3)

S;2,2|2

 . (3.91)

Now, in order to maximize the mean fidelity we are left with six options:
either there are two nonzero vectors (in which case they might be v

(1,1)
S and

v
(2,2)
S , or v

(1,1)
S and v

(3,3)
S , else v

(2,2)
S and v

(3,3)
S ), or there is only one (either

v
(1,1)
S , or v

(2,2)
S , else v

(3,3)
S ).

We realize immediatly that v
(1,1)
S cannot be the only nonzero vector, for

in that case TP2 condition (3.88) cannot be satisfied: the same remark holds

for v
(2,2)
S . On the other hand, let v

(1,1)
S be the only zero vector: then, TP2

condition (3.86) reads

|v(3,3)
S;1,1|

2 =
dsym

d

=
d+ 1

2
,

|v(3,3)
S;2,2|

2 =
d · dant − d2

2|v
(2,2)
S;1,1|2

d2

=
d− 1

2
− 1

4
(d+ 1)2(d− 2)2|v(2,2)

S;1,1|
2,

(3.92)

so that it is just a matter of calculation to show that fidelity reads

〈FS〉SU(d)

∣∣∣∣
v(1,1)=0

=
1

d3

[
d− 1

4
(d2 − 3d− 2)(d+ 1)(d− 2)|v(2,2)

S;1,1|
2+

+2

√
d+ 1

2

(
d− 1

2
− 1

4
(d+ 1)2(d− 2)2|v(2,2)

S;1,1|2
)

cos(φ
(3,3)
S;2,2 − φ

(3,3)
S;1,1)

]
,

(3.93)

where phases φ
(µ,ν)
S;i,k were introduced for every complex number v

(µ,ν)
S;i,k . Then,

it is clear that optimality is achived only if v
(2,2)
S is a zero vector too, in which

case the only nonzero vector is v
(3,3)
S , and the mean fidelity reads

〈FS〉SU(d)

∣∣∣∣
v
(1,1)
S =v

(2,2)
S =0

=
1

d3

[
d+

√
d2 − 1 cos(φ

(3,3)
S;2,2 − φ

(3,3)
S;1,1)

]
. (3.94)

82



3.2. UNIVERSAL TWO-FOLD COVARIANT CLONING

Similarly, setting v
(2,2)
S = 0 would eventually require us to set v

(1,1)
S = 0

in order to achieve optimality, so that once again v
(3,3)
S would be the only

non-zero vector.
Thus, we are left with one more case only, namely the one where v

(3,3)
S = 0:

in this case, v
(1,1)
S and v

(2,2)
S are fully specified (apart from their phases) by

TP2 condition (3.86), and by some straightforward algebra we obtain

〈FS〉SU(d)

∣∣∣∣
v(3,3)=0

= 2
d2 − 3

(d+ 2)(d+ 1)d2(d− 1)(d− 2)
. (3.95)

Clearly, this is not the optimal case, as it scales with d4, contrarily to
Eq. (3.94) which scales with d2.

Then, we have proved that optimality is reached when there is only one
nonzero, rank-1 multiplicity matrix R

(3,3)

S = |v(3,3)

S 〉〉〈〈v(3,3)

S | with

v
(3,3)

S =

 √d+1
2
eıφ√

d−1
2
eıφ

 , (3.96)

such that the optimal mean fidelity is given by Eq. (3.94), that we rewrite
here as

〈FS〉SU(d) =
d+

√
d2 − 1

d3
. (3.97)

3.2.4 Study on the Optimality

The present Subsection answers the question: How optimal is the optimal
cloner? That is to say, we want to compare the optimal mean fidelity (3.97)
with the mean fidelity we could achieve with other possible cloning schemes.

Clearly, the worst cloning scheme Sw one can imagine is the one where the
output map S(Ug • U †

g ) is chosen randomly and independently of the input
map. Actually, this is equivalent to the output being fixed, so that we may
set

S(Ug • U †
g )

.
= |11〉〉〈〈11| ∀ g ∈ G. (3.98)

Then, the mean fidelity of such a fixed-output supermap is

〈FSw〉G =
1

d4

∫
G

dgTr
[
(|11〉〉〈〈11|⊗2)(|Ug〉〉〈〈Ug|)⊗2

]
=

=
1

d4

∫
G

dg |〈〈11|Ug〉〉|4 =

=
1

d4

∫
G

dg |Tr [Ug]|4 =

=
1

d4

∫
G

dg
∣∣Tr
[
U⊗2
g

]∣∣2 .
(3.99)
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Now, using isotypic decomposition (3.62), we obtain

U⊗2
g = U⊗2

g |Hsym ⊕ U⊗2
g |Hant , (3.100)

so that ∣∣Tr
[
U⊗2
g

]∣∣2 =
∣∣Tr
[
U⊗2
g |Hsym

]∣∣2 +
∣∣Tr
[
U⊗2
g |Hant

]∣∣2 +

+ Tr
[
U⊗2
g |Hsym

]
· Tr

[
U⊗2
g |Hant

]∗
+

+ Tr
[
U⊗2
g |Hant

]
· Tr

[
U⊗2
g |Hsym

]∗
.

(3.101)

But then, since χ
(sym)
g = Tr

[
U⊗2
g |Hsym

]
and χ

(ant)
g = Tr

[
U⊗2
g |Hant

]
are the

characters of the representation (U⊗2,H⊗2), then we have∣∣Tr
[
U⊗2
g

]∣∣2 = (χ(sym)
g , χ(sym)

g ) + (χ(ant)
g , χ(ant)

g ) + 2Re
[
(χ(sym)

g , χ(ant)
g )

]
=

= 2,
(3.102)

thanks to the orthogonality of characters. Thus, substituting in Eq. (3.99)
yields

〈FSw〉G =
2

d4
. (3.103)

Now, we consider the case in which the unitary to be cloned is estimated,
and later re-prepared in two copies (semi-classical scheme). In Ref. [16] it
is proved that the optimal way to estimate an element Ug of a group G is
achieved by the following physical scheme:

1
d
|11〉〉〈〈11| Ug :=;<dPh

where {Ph | h ∈ G} is a POVM [4] explicitly given by Ph = d|Uh〉〉〈〈Uh| and
dPh = Phdh. Now, the probability density of estimating Uh when the input
unitary was Ug is given by

dp(h|g) = Tr

[
dPh

|Ug〉〉〈〈Ug|
d

]
, (3.104)

so that our scheme is able to achieve a fidelity which is given by

Fs.c.(Ug) =
1

d4

∫
SU(d)

dp (h|g)Tr
[
(|Ug〉〉〈〈Ug|⊗2)(|Uh〉〉〈〈Uh|⊗2)

]
=

=
1

d4

∫
SU(d)

dh |〈〈Ug|Uh〉〉|6
(3.105)
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and a mean fidelity

〈Fs.c.〉SU(d) =
1

d4

∫
SU(d)

dg

∫
SU(d)

dh |〈〈Ug|Uh〉〉|6 =

=
1

d4

∫
SU(d)

dh |〈〈11|Uh〉〉|6 =

=
1

d4

∫
SU(d)

dh |Tr[Uh]|6 =

=
1

d4

∫
SU(d)

dh
∣∣Tr[U⊗3

h ]
∣∣2 .

(3.106)

Now, using isotypic decomposition (3.68), we obtain

U⊗3
h =

3∑
µ=1

mµ∑
i=1

U⊗3
h |H(µ)

i
, (3.107)

where we remind that m1 = 1, m2 = 1 (apart for the case d = 2, where
m2 = 0), and m3 = 2. Then,

∣∣Tr[U⊗3
h ]
∣∣2 =

∣∣∣∣∣
3∑

µ=1

mµ∑
i=1

Tr
[
U⊗3
h |H(µ)

i

]∣∣∣∣∣
2

=

=

∣∣∣∣∣
3∑

µ=1

mµ∑
i=1

χ
(µ)
i;g

∣∣∣∣∣
2

=

=
3∑

µ=1

mµ∑
i=1

∣∣∣χ(µ)
i;g

∣∣∣2 =

=

{
5 for d = 2,
6 in all other cases,

(3.108)

once again thanks to the orthogonality of characters. So we conclude with

〈Fs.c.〉SU(d) =


5

d4
for d = 2,

6

d4
in all other cases.

(3.109)

In Figure 3.3 on the following page the three mean fidelities that have
been considered above are plotted for a few values of the dimension d of the
Hilbert space H.
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Figure 3.3: The three mean fidelities that have been considered in this Sub-
section are plotted in a logarithmic scale for a few integer values of the
dimension d of the Hilbert space H. Points connected by the solid line cor-
respond to the optimal mean fidelity. Those with long dashes correspond
to the semi-classical mean fidelity which is obtained by optimally estimating
the unitary and then preparing two copies. Tiny dashes correspond to the
fixed-output cloning .



Appendix A

Groups and Representations

This Appendix is not at all to be intended as a review of the theory of groups
and representations: for that purpose, there are several excellent books such
as [15, 17] to look up. On the contrary, it has the very particular aim of
proving Theorem A.2, which is needed for the characterization of covariant
supermaps. Then, in Section A.1 we give the definitions and the results that
are strictly necessary to prove, in A.2, the Schur Lemma and the subsequent
Theorem A.2.

A.1 Definitions and Basic Results

Definition A.1 (Group) A group is a couple (G, µ) where G is a set of
elements g and µ is an associative composition law µ : G×G → G admitting
one neutral element and the existance of the inverse. It is common use to
write µ(g, h) = gh, so that in symbols (G, µ) must satisfy

g1(g2g3) = (g1g2)g3 ∀ g1, g2, g3 ∈ G,
∃ e ∈ G | ge = eg = g ∀ g ∈ G,
∀ g ∈ G ∃ g−1 ∈ G | gg−1 = g−1g = e.

(A.1)

In the following, we will also say that G is a group, thus making the
presence of an associative composition law implicit.

A first important distinction between groups is that between finite and
continuous groups, the prototype of the former being the cyclic group of
permutation. In the class of continuous groups, a great relevance is given
to Lie groups, namely to groups G that are differentiable manifolds as well:
in particular, compact Lie groups such as U(d) and SU(d) (respectively, of
invertible unitary d× d matrices, and of unitary d× d matrices with unitary
determinant) share most of their properties with finite groups.
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The notion of Represenation of a group is introduced to study the action
of the group on a linear space.

Definition A.2 (Representation) Let G be a group. Then, the couple
(ρ, V ) is a representation of G when V is a linear space and ρ is an omo-
morphism of G into the group GL(V ) = Aut(V ) of invertible linear operators
on V , namely when

ρgρh = ρgh ∀ g, h ∈ G. (A.2)

In the present treatment, we are interested in the case where V is a
finite Hilbert space, and ρ is a unitary representation, namely ρg is a unitary
operator for all g ∈ G.

Definition A.3 (Equivalent Representations) Let (ρ, V ) and (ρ′, V ′) be
two representations for G. Then, they are said to be equivalent when there
exists an isomorphism T : V → V ′ such that

ρ′gT = Tρg ∀ g ∈ G, (A.3)

and we will write V
G∼= V ′.

An omomorphism T : V → V ′ is said to be an intertwining operator
when it satisfies Eq. (A.3), and the linear space of all intertwining operators
is commonly denoted with HomG(V, V ′). Thus, retaining the notation of
the previous definition, the two representations are equivalent if and only if
HomG(V, V ′) contains an invertible element. Also notice that, in the case of
unitary representations, all invertible intertwiners are isometric operators.

Definition A.4 (Invariant Spaces) Let (ρ, V ) be a representation for a
group G. Then, a subspace U of V is said to be invariant respect to G when
ρg(U) ⊆ U for all g ∈ G.

Of course, if we restrict ρ to its action ρ|U on an invariant subspace U of
V , we have that (ρ|U ,U) is still a representation of G: it is customary to call
this a sub-representation of (ρ, V ).

Definition A.5 (Irreducible Representations) Let (ρ, V ) be a represen-
tation for a group G. Then, it is irreducible when the only G-invariant
subspaces of V are the trivial ones.
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Reducible (as opposed to irreducible) representations of finite groups and
of compact Lie groups enjoy the very important propriety of complete re-
ducibility, namely they may be decomposed into the direct sum of a discrete
number of irreducible subrepresentations. In symbols, if we have a reducible
representation (ρ, V ) of a finite or a compact Lie group, then we may always
find a finite set of irreducible subrepresentations {(ρ|Vk

, Vk)} where

V =
⊕
k

Vk. (A.4)

Since it may happen that Vk
G∼= Vl for some l 6= k, then it is customary to

rewrite this decomposition as

V =

|Irrep(ρ)|⊕
µ=1

mµ∑
i=1

V
(µ)
i , (A.5)

where

Irrep(ρ) = {(ρ|V (µ) , V (µ)) | V (µ)
G

� V (ν) ∀ µ 6= ν} (A.6)

denotes the set of the mutually inequivalent irreducible representations ap-
pearing in Eq. (A.4), and mµ is the multiplicity of the µ-th irreducible repre-

sentation in decomposition (A.4), so that V (µ)
G∼= V

(µ)
i for all i = 1, . . . ,mµ.

Eq. (A.5) is known as isotypic decomposition [17].

A.2 Schur Lemma and its Consequences

Theorem A.1 (Schur Lemma) Let (ρ, V ) and (ρ′, V ′) be two irreducible
representations of the same group G. Then, if they are equivalent, for all
S ∈ HomG(V, V ′) we must have S = λT , where T is the isomorphic operator
introduced in Definition A.3. On the contrary, if they are not equivalent,
then HomG(V, V ′) = {0}.

Proof Let S ∈ HomG(V, V ′): clearly we have

Sρgv = ρ′gSv = 0 ∀ v ∈ Ker(S), (A.7)

namely ρgv ∈ Ker(S) for all v ∈ Ker(S) and for all g ∈ G: then Ker(S) is
an invariant subspace of V . Similarly we have

ρ′gw = ρ′gSv = Sρgv ∈ Rng(S) ∀ w ∈ Rng(S), (A.8)
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namely Rng(S) is an invariant subspace of V ′. On the other hand, the two
representations are irreducible by hypothesis, so that the only invariant sub-
spaces must be the trivial ones. In the case Ker(S) = V and Rng(S) = {0},
of course we have S = 0, whilst in the case Ker(S) = {0} and Rng(S) = V ′

we have that S is an isomorphism, so that the two representations are equiv-
alent: so we have proved that, if the two representations are not equivalent,
then HomG(V, V ′) = {0}.

Now, let the two representations be equivalent, let T be the isomorphism
that was introduced in Definition A.3, and let S be some non-null operator
in HomG(V, V ′); furthermore, let λ ∈ C be a proper eigenvalue of T−1S,
namely let Ker(T−1S− λI) 6= {0}. Then, it is easy to check that T−1S is an
intertwining operator in HomG(V, V ), so that the same applies to T−1S−λ11,
namely

[T−1S − λ11]ρg = ρg[T
−1S − λ11] ∀ g ∈ G, (A.9)

Now, since we have

[T−1S − λ11]ρgv = ρg[T
−1S − λ11]v = 0 ∀ v ∈ Ker(T−1S − λ11), (A.10)

then ρgv ∈ Ker(T−1S − λ11) for all v ∈∈ Ker(T−1S − λ11): this shows that
Ker(T−1S − λ11) is an invariant space under the action of G. But since
(ρ, V ) is irreducible by hypothesis, we have no choice but conclude that
Ker(T−1S − λ11) = V . Thus, T−1Sv = λv for all v ∈ V , namely S = λT . �

Finally, we prove the result that allows us to characterize covariant su-
permaps: as it will be clear by the very proof, it strongly depends on the
Schur Lemma.

Theorem A.2 (Characterization of the Commutant) Let (U,H) be a
unitary representation of the group G, and let O be a linear operator on H
commuting with the action of G via

[Ug, O] = O ∀ g ∈ G. (A.11)

Furthermore, let

H ∼=
[Irrep(U)]⊕
µ=1

mµ⊕
i=1

H(µ)
i (A.12)

be the isotypic decomposition of (U,H). Then, O admits the following de-
composition:

O =

[Irrep(U)]∑
µ=1

mµ∑
i,j=1

Tr[T
(µ)
i,j O]

dµ
T

(µ)
j,i , (A.13)
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where T
(µ)
j,i is any isometry mapping H(µ)

i into an equivalent module H(µ)
j ,

and dµ is the dimension of H(µ).

Proof Thanks to the definition of isotypic decomposition, each sub-represen-
tation (U |H(µ)

i
,H(µ)

i ) is irreducible. Then, consider a linear application O
(ν,µ)
j,i :

H(µ)
i → H(ν)

j , for some fixed µ, ν, i and j, commuting with the action of G
via

Ug|H(ν)
j
O

(ν,µ)
j,i = O

(ν,µ)
j,i Ug|H(µ)

i
∀ g ∈ G. (A.14)

Then, thanks to the Schur lemma, it must follow that

O
(ν,µ)
j,i = δµνλT

(µ)
j,i , (A.15)

where λ is a complex number depending on O
(ν,µ)
j,i , easily obtained, when

µ = ν, applying T
(µ)
i,j = T

(µ)
j,i

−1
on the left of the last Eq. and then taking the

trace of it, so that

Tr
[
T

(µ)
i,j O

(µ,µ)
j,i

]
= λ · Tr

[
T

(µ)
i,j T

(µ)
j,i

]
= λ · Tr

[
T

(µ)
i,i

]
=

= λ · dµ,

(A.16)

where we have put dµ
.
= dim(H(µ)). Thus, we have proved that all G-

commuting linear applications O
(ν,µ)
j,i of H(µ)

i into H(ν)
j need to be in the form

O
(ν,µ)
j,i = δµν

Tr
[
T

(µ)
i,j O

(µ,µ)
j,i

]
dµ

T
(µ)
j,i . (A.17)

Now, consider a G-commuting operator O ∈ B(H) as in the statement of
the Theorem. Then, since naturally

[Irrep(U)]∑
µ=1

mµ∑
i=1

T
(µ)
i,i = 11H,

T
(µ)
i,i T

(µ)
i,i = T

(µ)
i,i ,

(A.18)

we may rewrite Eq. (A.11) as

O = UgOU
†
g

q q
[Irrep(U)]∑
µ,ν=1

mµ∑
i=1

mν∑
j=1

T
(µ)
i,i OT

(ν)
j,j

[Irrep(U)]∑
µ,ν=1

mµ∑
i=1

mν∑
j=1

UgT
(µ)
i,i T

(µ)
i,i OT

(ν)
j,j T

(ν)
j,j U

†
g

(A.19)
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for all g in G. Now, let us define the ‘reduced’ linear application O
(µ,ν)
i,j of

H(µ)
i into H(ν)

j as

O
(ν,µ)
j,i

.
= T

(ν)
j,j OT

(µ)
i,i . (A.20)

Then, since naturally
U |H(µ)

i
≡ UT

(µ)
i,i , (A.21)

Eq. (A.19) may be rewritten as

[Irrep(U)]∑
µ,ν=1

mµ∑
i=1

mν∑
j=1

O
(µ,ν)
i,j =

[Irrep(U)]∑
µ,ν=1

mµ∑
i=1

mν∑
j=1

Ug|H(µ)
i
O

(µ,ν)
i,j Ug|†H(ν)

j

∀ g ∈ G.

(A.22)
Clearly, since terms in the sums are linearly independent, this is equivalent
to say that

O
(µ,ν)
i,j = Ug|H(µ)

i
O

(µ,ν)
i,j Ug|†H(ν)

j

∀ g ∈ G ∀ µ, ν, i, j, (A.23)

i.e. that all reduced linear applications O
(µ,ν)
i,j must commute with (the action

of) G. Then, thanks to the result we proved above, we know they are all in
the form (A.17), so that we may write

O =

[Irrep(U)]∑
µ,ν=1

mµ∑
i=1

mν∑
j=1

O
(µ,ν)
i,j =

=

[Irrep(U)]∑
µ=1

mµ∑
i,j=1

Tr
[
T

(µ)
i,j O

(µ,µ)
j,i

]
dµ

T
(µ)
j,i ,

(A.24)

where
Tr
[
T

(µ)
i,j O

(µ,µ)
j,i

]
= Tr

[
T

(µ)
i,j T

(µ)
j,j OT

(µ)
i,i

]
=

= Tr
[
T

(µ)
i,j O

]
,

(A.25)

as desired. �
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Conclusions

As we already pointed out, the original part of the present work stems
from the parallelism between states and Quantum Maps: thus, Quantum
Supermaps were axiomatically introduced to describe physical transforma-
tions of Quantum Maps, and their axiomatization was carried on in strict
analogy with that of Quantum Maps.

Then, a full mathematical characterization of Quantum Supermaps was
provided, and it was further proved that there exists a correspondence be-
tween Quantum Supermaps and a particular class of physically implementable
quantum circuits. Such a result allowed us to consider physical applications
of the formalism of supermaps: as an example, the problem of cloning unitary
transformations was considered.

Throughout the present work, the hierarchical structure of states, maps
and supermaps has been implicitly investigated: indeed, we have shown that
states are generalized by maps, and that maps are generalized by supermaps.
What distinguishes between them is the normalization condition that they
must satisfy; however, even such a condition may be seen as generalizing
itself, in passing from states to maps, and then to supermaps.

On the other hand, considering super-supermaps (namely maps of su-
permaps) does not seem to add any further generality to this hierarchy, as
it is straightforward to realize that normalization condition of such super-
supermaps would be strictly analogous to that of supermaps, namely super-
supermaps may be still regarded as supermaps. This shows that the class of
supermaps enjoys a property that we may call universality : that is to say,
the classes of states and of maps are two subclasses of supermaps, and all
generalizations of supermaps are trivial.

It also suggests that a more compact formalism treating equivalently
states, maps and supermaps may be favorable, and so motivates a future
development of this line of research.

Furthermore, we remark that the supermap formalism is expected to have
several applications, of which the cloning of unitaries is just an example. For
instance, the issue of programmability (namely, the possibility of performing
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specific operations that are triggered by programming states) is likely to enjoy
important simplifications due to the use of supermaps: suffice it to say that
any schematization for programming Quantum Channels using states must
be equivalent to some supermap being fed with such programming quantum
states – that, as we already pointed out, form a subclass of Quantum Maps.

94



Acknowledgements

During the last year, I had the privilege of taking part in the research ac-
tivity of the Quantum Information Theory Group here in Pavia University.
A friendly atmosphere, stimulating discussions, sharing of knowledge, all
of these factors created a fertile terrain from which this research work was
allowed to spring. I would like to thank Prof. Giacomo Mauro D’Ariano,
then, for giving me this great opportunity, as well as for his enthusiasm in
reasearch, and for his encouragements during the preparation of this thesis.
Paolo Perinotti and Giulio Chiribella were outstandingly supporting and pa-
tient with me, and they greatly enriched my education. Furthermore, their
observations on this presentation were always illuminating, and I would like
to thank them for their determination in reading and commenting on the
whole thesis. Davide Magnani, Massimiliano Sacchi, Lorenzo Maccone, Mar-
cella Medici, Giovanni De Cillis, Chiara Macchiavello, they were all very open
and friendly, and thus they contributed to making this a unique experience.

I also would like to thank all professors of the laurea courses who did not
limit themselves to teaching physics, but also showed how beautiful it can
be, often being able to transmit an enthusiasm which is really of great relief
when tackling difficult subjects.

In particolar modo nei primi anni di studio ho potuto godere dell’amicizia
e di un continuo confronto con i miei compagni di corso: Jackson, l’ingegnere,
la Fede, Giorgio & la Madda, il rasta, Teo, il Mariotti e tutti gli altri. . . aver
scelto strade parallele ma distinte, durante la laurea specialistica, è stato
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