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Experiments are performed to get information on 
the state of an object physical system.

Knowledge on such state will allow us to predict 
the results of forthcoming experiments on the 
same (similar) object system in a similar situation. 

Since necessarily we work with only partial prior 
knowledge of both system and experimental 
apparatus, the rules for the experiment must be 
given in a probabilistic setting.
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Postulates



• Postulate 1 (Independent systems) There exist independent systems.

• Postulate 2 (Informationally complete observable) For each physical system 
there exists an informationally complete observable (Hardy, Fuchs).

• Postulate 3 (Local observability principle) For every composite system there 
exist informationally complete observables made only of local informationally 
complete observables.

• Postulate 4 (Informationally complete discriminating observable) For every 
system there exists a minimal informationally complete observable that can be 
achieved using a joint discriminating observable on the system + an “ancilla” .

• Postulate 5 (Symmetric faithful state) For every composite system made of two 
identical physical systems there exist a symmetric joint state that is both 
dynamically and preparationally faithful.

Postulates



Experiment (or “action”): every experiment is described 
by a set                       of possible transformations       
having overall unit probability, with the apparatus 
signaling the outcome     labeling which transformation 
actually occurred.
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charge, etc. The object of the experiment is something unknown or not precisely known
on the system, and by definition, this will be considered in the notion of state, which will
be in Def. 2. For instance, depending on the context, the charge of a particle can be a
property defining the object system—and used to design the measuring apparatus—or,
if unknown, it could be object of the experiment itself, and as such it would enter the
definition of state. Again we emphasize that here the purpose is to give only the syntactic
manual of the empirical approach, not the semantics, i. e. the specific physical context.

General axiom 2 (On what is an experiment). An experiment on a object system consists
in having it interacting with an apparatus. The interaction between object and apparatus
produces one of a set of possible transformations of the object, each one occurring with
some probability. Information on the “state” of the object system at the beginning of the
experiment is gained from the knowledge of which transformation occurred, which is the
”outcome” of the experiment signaled by the apparatus.

It is clear that both ”object” and ”apparatus” are physical systems, and the asymmetry
between object and apparatus is just asymmetry in prior knowledge, namely the apparatus
is the system of which the experimenter has more a priori information. It is then clear that
the knowledge gained on the state of the object depends on the physical object system, on
the knowledge of details of the transformation produced on the object system, and, more
generally, also on prior knowledge on the “state” itself of the system. In other words, the
experiment can be always regarded as a refinement of knowledge on the object system.

One should convince himself that the above definition of experiment is very general,
and includes all possible situations. For example, at first sight it may seem that it doesn’t
consider the case in which the object is not under the experimenter control (e. g. astro-
nomical observations), in the sense that in such case one cannot establish an interaction
with the object system. However, also in this case there is an interaction between the ob-
ject of interest (e. g. the astronomical object) and another object (e. g. the light) which
should be regarded as a part of the apparatus (i. e. telescope plus light). Such cases can
also be regarded as ”indirect experiments”, namely the experiment is performed on an
auxiliary ”object” (e. g. the light) which is supposed to have had a previous interaction
with the true object of interest, and whose state depends on properties/quantities of it.
Also, the customary case in which a ”quantity” or a ”quality” is measured without in any
way affecting the system corresponds to the case in which all states are left invariant by
the transformations corresponding to each outcome.

Performing a different experiment on the same object obviously corresponds to use a
different experimental apparatus or, at least, to change some settings of the apparatus.
Abstractly, this corresponds to change the set {Aj} of possible transformations Aj that
the system can experience. Such change could actually mean really changing the ”dy-
namics” of the transformations, but may simply mean changing only their probabilities,
or, just their labeling outcomes. Any such change actually corresponds to a change of
the experimental setup. Therefore, the set of all possible transformations {Aj} will be
identified with the choice of experimental setting—the action—and this will be formalized
by the following definition

Definition 1 (Actions and outcomes). The action on the object system due to an exper-
iment is the set A ≡ {Aj} of possible transformations Aj having overall unit probability,
with the apparatus signaling the outcome j labeling which transformation actually oc-
curred.

Thus the action is just a complete set of possible transformations describing an ex-
periment. As we can see now, in a general probabilistic framework the action A is the
”cause”, whereas the outcome j labeling the transformation Aj that actually occurred
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State: A state     for a physical system is a rule which 
provides the probability for any possible transformation 
within an experiment, namely: 

6 GIACOMO MAURO D’ARIANO

is the ”effect” (the action has to be regarded as the cause, since it is the option of the
experimenter). The action can be also considered deterministic, in the sense that one
transformation Aj of the set will occur with certainty. On the other hand, the outcome—
i. e. which transformation Aj occurs— generally is not deterministic, and the particular
case of a deterministic transformation A corresponds to the singleton action A ≡ {A }.

3. States

According to General Axiom 1 by definition the knowledge of the state of a physical
system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.
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convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.
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is the ”effect” (the action has to be regarded as the cause, since it is the option of the
experimenter). The action can be also considered deterministic, in the sense that one
transformation Aj of the set will occur with certainty. On the other hand, the outcome—
i. e. which transformation Aj occurs— generally is not deterministic, and the particular
case of a deterministic transformation A corresponds to the singleton action A ≡ {A }.

3. States

According to General Axiom 1 by definition the knowledge of the state of a physical
system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
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mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
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(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.
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(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.
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Theorem 1. The group of isomorphisms of S leave the state χ(S) invariant. Moreover,
χ(S) is the only state that is left invariant.

Proof. Upon denoting by U the transformation corresponding to a particular isomor-
phism, by definition the convex set of states is left invariant, namely SU ≡ S. On the
other hand, [χ(S)]U ≡ χ(S), whence χ(S) is left invariant, and this must be true for
every isomorphism. We now prove that χ(S) is the only invariant state.

Any nontrivial isomorphism maps extremal states to extremal states, and for each
couple of extremal states there is always an isomorphism connecting them. The same
is no longer true for mixed states, since each isomorphism maps distinct extremal states
into distinct extremal states preserving convex combination, whence it cannot change the
coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
full-rank. . . .

4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely

(8) C ◦ (B ◦A ) = (C ◦B) ◦A .

Definition 9 (Independent systems and local transformations). We say that two physical
systems are independent if on each system it is possible to perform local transformations
that don’t affect the other system. This can be expressed synthetically with the commuta-
tivity of local transformations

(9) A1 ◦B2 = B2 ◦A1,

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
formation.

In the following, when we have more than one independent systems, we will denote
local transformations as ordered strings of transformations as follows

(10) (A , B, C , . . .)
.
= A1 ◦B2 ◦ C3 ◦ . . .

i. e. the transformation in parenthesis corresponds to the local transformation A on
system 1, B on system 2, etc.

Rule 4 (Bayes). When composing two transformations A and B, the probability p(B|A )
that B occurs conditioned that A happened before is given by the Bayes rule

(11) p(B|A ) =
ω(B ◦A )

ω(A )
.

The Bayes rule leads to the concept of conditional state:

Definition 10 (Conditional state). The conditional state ωA gives the probability that a
transformation B occurs on the physical system in the state ω after the transformation A
occurred, namely

(12) ωA (B)
.
=

ω(B ◦A )
ω(A )

.

8 GIACOMO MAURO D’ARIANO

Theorem 1. The group of isomorphisms of S leave the state χ(S) invariant. Moreover,
χ(S) is the only state that is left invariant.

Proof. Upon denoting by U the transformation corresponding to a particular isomor-
phism, by definition the convex set of states is left invariant, namely SU ≡ S. On the
other hand, [χ(S)]U ≡ χ(S), whence χ(S) is left invariant, and this must be true for
every isomorphism. We now prove that χ(S) is the only invariant state.

Any nontrivial isomorphism maps extremal states to extremal states, and for each
couple of extremal states there is always an isomorphism connecting them. The same
is no longer true for mixed states, since each isomorphism maps distinct extremal states
into distinct extremal states preserving convex combination, whence it cannot change the
coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
full-rank. . . .

4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely

(8) C ◦ (B ◦A ) = (C ◦B) ◦A .

Definition 9 (Independent systems and local transformations). We say that two physical
systems are independent if on each system it is possible to perform local transformations
that don’t affect the other system. This can be expressed synthetically with the commuta-
tivity of local transformations

(9) A1 ◦B2 = B2 ◦A1,

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
formation.

In the following, when we have more than one independent systems, we will denote
local transformations as ordered strings of transformations as follows

(10) (A , B, C , . . .)
.
= A1 ◦B2 ◦ C3 ◦ . . .

i. e. the transformation in parenthesis corresponds to the local transformation A on
system 1, B on system 2, etc.

Rule 4 (Bayes). When composing two transformations A and B, the probability p(B|A )
that B occurs conditioned that A happened before is given by the Bayes rule

(11) p(B|A ) =
ω(B ◦A )

ω(A )
.

The Bayes rule leads to the concept of conditional state:

Definition 10 (Conditional state). The conditional state ωA gives the probability that a
transformation B occurs on the physical system in the state ω after the transformation A
occurred, namely

(12) ωA (B)
.
=

ω(B ◦A )
ω(A )

.

8 GIACOMO MAURO D’ARIANO

Theorem 1. The group of isomorphisms of S leave the state χ(S) invariant. Moreover,
χ(S) is the only state that is left invariant.

Proof. Upon denoting by U the transformation corresponding to a particular isomor-
phism, by definition the convex set of states is left invariant, namely SU ≡ S. On the
other hand, [χ(S)]U ≡ χ(S), whence χ(S) is left invariant, and this must be true for
every isomorphism. We now prove that χ(S) is the only invariant state.

Any nontrivial isomorphism maps extremal states to extremal states, and for each
couple of extremal states there is always an isomorphism connecting them. The same
is no longer true for mixed states, since each isomorphism maps distinct extremal states
into distinct extremal states preserving convex combination, whence it cannot change the
coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
full-rank. . . .

4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely

(8) C ◦ (B ◦A ) = (C ◦B) ◦A .

Definition 9 (Independent systems and local transformations). We say that two physical
systems are independent if on each system it is possible to perform local transformations
that don’t affect the other system. This can be expressed synthetically with the commuta-
tivity of local transformations

(9) A1 ◦B2 = B2 ◦A1,

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
formation.
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Rule 2. The faces of a ”complete” set of states are themselves ”complete” sets of states.

The problem is to define what does it mean ”completeness”. This can only be defined
in terms of all possible invertible dynamical maps (i. e. isometric transformations of the
set: see the following).

Definition 7 (Maximally chaotic state). The maximally chaotic state χ(S) of the convex
set S is the baricenter of the set, i. e. it can be obtained by averaging over all pure states
with the uniform measure, namely

(6) χ(S)
.
=

Z

Extr S

d ψ ψ

where Extr S denotes the set of extremal points of S, and d ψ is the measure which is
invariant under isomorphisms of S.

Definition 8 (Alternative definition of maximally chaotic state). The maximally chaotic
state χ(S) of S is the most mixed state of S, in the sense that if ζ ! ω, then ζ ∼ ω.

From the definition it follows that the maximally chaotic state is full-rank, i. e.
rank[χ(S)] =

p
dim(S) + 1.

It is then easy to prove the following theorem

Theorem 1. The group of isomorphisms of S leave the state χ(S) invariant. Moreover,
χ(S) is the only state that is left invariant.

Proof. Upon denoting by U the transformation corresponding to a particular isomor-
phism, by definition the convex set of states is left invariant, namely SU ≡ S. On the
other hand, [χ(S)]U ≡ χ(S), whence χ(S) is left invariant, and this must be true for
every isomorphism. We now prove that χ(S) is the only invariant state.

Any nontrivial isomorphism maps extremal states to extremal states, and for each
couple of extremal states there is always an isomorphism connecting them. The same
is no longer true for mixed states, since each isomorphism maps distinct extremal states
into distinct extremal states preserving convex combination, whence it cannot change the
coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
full-rank. . . .

4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely

(8) C ◦ (B ◦A ) = (C ◦B) ◦A .

Definition 9 (Independent systems and local experiments). We say that two physical
systems are independent if on each system it is possible to perform local experiments that
don’t affect the other system for any joint state of the two systems. This can be expressed
synthetically with the commutativity of transformations of the local experiments, namely

(9) A (1) ◦B(2) = B(2) ◦A (1),

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
formation.
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In the following, when we have more than one independent systems, we will denote
local transformations as ordered strings of transformations as follows

(10) (A , B, C , . . .)
.
= A (1) ◦B(2) ◦ C (3) ◦ . . .

i. e. the transformation in parenthesis corresponds to the local transformation A on
system 1, B on system 2, etc.

Rule 4 (Bayes). When composing two transformations A and B, the probability p(B|A )
that B occurs conditioned that A happened before is given by the Bayes rule

(11) p(B|A ) =
ω(B ◦A )

ω(A )
.

The Bayes rule leads to the concept of conditional state:

Definition 10 (Conditional state). The conditional state ωA gives the probability that a
transformation B occurs on the physical system in the state ω after the transformation A
occurred, namely

(12) ωA (B)
.
=

ω(B ◦A )
ω(A )

.

Remark 3 (Linearity of evolution). At this point it is worth noticing that the present
definition of “state”, which logically follows from the definition of experiment, leads to a
notion of evolution as state conditioning. In this way, each transformation acts linearly on
the state space (in addition, since states are probability functionals on transformations, by
dualism (equivalence classes of) transformations are linear functionals over the probability
space). Indeed, a common misconception is that one cannot mimic Quantum Mechanics
as a mere classical probabilistic mechanics in terms of evolutions on a probability space,
because Quantum Mechanics restricts to linear evolution only, whereas classical mechanics
give evolutions which are generally nonlinear.

In the following we will make extensive use of the functional notation

(13) ωA
.
=

ω(· ◦A )
ω(A )

,

where the centered dot stands for the argument of the map. The notion of conditional
state describes the most general evolution.

For the following it is convenient to extend the notion of state to that of weight, namely
nonnegative bounded functionals ω̃ over T with 0 < ω̃(I ) < +∞. To each weight ω̃ it
corresponds the properly normalized state

(14) ω =
ω̃

ω̃(I )
.

Weights make the convex cone S̃ which is generated by the convex set of states S. We
are now in position to introduce the concept of operation.

Definition 11 (Operation). To each transformation A we can associate a linear map
OpA : S −→ S̃ which sends a state ω into the unnormalized state ω̃A

.
= OpA ω ∈ S̃

defined by the relation

(15) ω̃A (B) = ω(B ◦A ).

Similarly to a state, the linear form ω̃A ∈ S̃ for fixed A maps from the set of transfor-
mations T to the interval [0, 1]. It is not strictly a state only due to lack of normalization,
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4. Transformations and conditioned states
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don’t affect the other system for any joint state of the two systems. This can be expressed
synthetically with the commutativity of transformations of the local experiments, namely

(9) A (1) ◦B(2) = B(2) ◦A (1),

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
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Example 2. (1) s(ω, ζ) = 0 for ω !≺ ζ
(2) s(ω, ζ) = 0 for ζ pure and ζ != ω;
(3) a(ω, ζ) = 0 for ζ != ω, if either ζ or ω is pure.

A dual description of the mixing in S is given by the following theorem

Theorem 5. One has the following properties for s:

(1) For ω ∈ S, ζ $→ s(ω, ζ) is a concave function on S;
(2) For ζ ∈ S, ω $→ 1

s(ω,ζ) is a convex function on S;

(3) For ω, ζ ∈ S one has

(48) s(ω, ζ) = inf{u(ζ) : u concave on S, u ≥ 0 on S, u(x) = 1}.

Theorem 6. One has

(49) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,

or also

(50)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
greater than unit)

11. Local state

Definition 35 (Local state). In the presence of many independent systems in a joint state
Ω, we define the local state ω|n of the n-th system the state that gives the probability for
any local transformation A on the n-th system, with all other systems untouched, namely

(51) ω|n(A )
.
= Ω(I , . . . , I , A|{z}

nth

, I , . . .).

For example, for two systems only, (which is equivalent to group n− 1 systems into a
single one), we just write ω|1 = Ω(·, I ). Notice that generally the commutativity Rule 9
doesn’t imply that the occurrence of a transformation B on system 2 doesn’t change the
probability of occurrence of any other transformation A on system 1, namely, generally

(52) A (1) ◦B(2) = B(2) ◦A (1) !=⇒ Ω(·, B)
Ω(I , B)

= Ω(·, I ).

In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(53) ΩI ,B(·, I )
.
=

Ω(·, B)
Ω(I , B)

!= Ω(·, I ) ≡ ω|1.

Therefore, in order not to violate the relativity principle, for independent systems (e. g.
space-like separated) we need to require explicitly the acausality principle:

Rule 14 (Acausality of local transformations). Any local action on a system is equivalent
to the identity transformation when viewed from an independent system, namely, in terms
of states one has

(54) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω|1.

The acausality of local transformations Rule 14 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.

For a multipartite system we define the local state           
of the n-th system the state that gives the probability of 
any local transformation      on the n-th system with all 
other systems untouched, namely  
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Theorem 7. One has

(44) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,
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(45)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
greater than unit)
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X
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(50)
X

j

pjωj =
X

i

p′iω
′
i ≡ ω,

where

ωj =
ω(·, Aj)

ω(I , Aj)
, pj = ω(I , Aj),

ω′
i =

ω(·, Bi)
ω(I , Bi)

, p′i = ω(I , Bi),

ω
.
= ω(·, I ).

(51)
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Example 2. (1) s(ω, ζ) = 0 for ω !≺ ζ
(2) s(ω, ζ) = 0 for ζ pure and ζ != ω;
(3) a(ω, ζ) = 0 for ζ != ω, if either ζ or ω is pure.
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(53) ΩI ,B(·, I )
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=
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Conditional state

When composing two transformations      and      the 
probability that     occurs conditioned that      occurred 
before is given by the Bayes rule
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Theorem 1. The group of isomorphisms of S leave the state χ(S) invariant. Moreover,
χ(S) is the only state that is left invariant.

Proof. Upon denoting by U the transformation corresponding to a particular isomor-
phism, by definition the convex set of states is left invariant, namely SU ≡ S. On the
other hand, [χ(S)]U ≡ χ(S), whence χ(S) is left invariant, and this must be true for
every isomorphism. We now prove that χ(S) is the only invariant state.

Any nontrivial isomorphism maps extremal states to extremal states, and for each
couple of extremal states there is always an isomorphism connecting them. The same
is no longer true for mixed states, since each isomorphism maps distinct extremal states
into distinct extremal states preserving convex combination, whence it cannot change the
coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
full-rank. . . .

4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely

(8) C ◦ (B ◦A ) = (C ◦B) ◦A .

Definition 9 (Independent systems and local transformations). We say that two physical
systems are independent if on each system it is possible to perform local transformations
that don’t affect the other system. This can be expressed synthetically with the commuta-
tivity of local transformations

(9) A1 ◦B2 = B2 ◦A1,

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
formation.

In the following, when we have more than one independent systems, we will denote
local transformations as ordered strings of transformations as follows

(10) (A , B, C , . . .)
.
= A1 ◦B2 ◦ C3 ◦ . . .

i. e. the transformation in parenthesis corresponds to the local transformation A on
system 1, B on system 2, etc.

Rule 4 (Bayes). When composing two transformations A and B, the probability p(B|A )
that B occurs conditioned that A happened before is given by the Bayes rule

(11) p(B|A ) =
ω(B ◦A )

ω(A )
.

The Bayes rule leads to the concept of conditional state:

Definition 10 (Conditional state). The conditional state ωA gives the probability that a
transformation B occurs on the physical system in the state ω after the transformation A
occurred, namely

(12) ωA (B)
.
=

ω(B ◦A )
ω(A )

.
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Conditional state: the conditional state         gives the probability 
that a transformation      occurs on the physical system in the 
state       after the transformation       occurred, namely 
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4. CONDITIONED STATES AND LOCAL STATES

Rule 3 (Bayes) When composing two transformations A and B, the probability

p(B|A ) that B occurs conditional on the previous occurrence of A is given by the

Bayes rule

p(B|A ) =
!(B ◦A )
!(A )

. (10)

The Bayes rule leads to the concept of conditional state:

Definition 4 (Conditional state) The conditional state !A gives the probability that a

transformation B occurs on the physical system in the state ! after the transformation

A has occurred, namely

!A (B) .=
!(B ◦A )
!(A )

. (11)

In the following we will make extensive use of the functional notation

!A
.=
!(·◦A )
!(A )

, (12)

where the centered dot stands for the argument of the map. Therefore, the notion of

conditional state describes the most general evolution.

Definition 5 (Local state) In the presence of many independent systems in a joint state

!, we define the local state !|n of the n-th system the state that gives the probability

for any local transformation A on the n-th system, with all other systems untouched,

namely

!|n(A ) .=!(I , . . . ,I , A︸︷︷︸
nth

,I , . . .). (13)

For example, for two systems only, (which is equivalent to group n− 1 systems into a
single one), we just write !|1 =!(·,I ).

Remark 1 (Linearity of evolution) At this point it is worth noticing that the present

definition of “state”, which logically follows from the definition of experiment, leads to

a notion of evolution as state-conditioning. In this way, each transformation acts linearly

on the state space. In addition, since states are probability functionals on transforma-

tions, by dualism (equivalence classes of) transformations are linear functionals over

the state space.

For the following it is convenient to extend the notion of state to that of weight,

namely nonnegative bounded functionals !̃ over the set of transformations with 0 !
!̃(A ) ! !̃(I ) < +" for all transformations A . To each weight !̃ it corresponds the

properly normalized state

! =
!̃

!̃(I )
. (14)Weight: un-normalized state
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Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)

convex cone of weights:
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4. CONDITIONED STATES AND LOCAL STATES

Rule 3 (Bayes) When composing two transformations A and B, the probability

p(B|A ) that B occurs conditional on the previous occurrence of A is given by the

Bayes rule

p(B|A ) =
!(B ◦A )
!(A )

. (10)

The Bayes rule leads to the concept of conditional state:

Definition 4 (Conditional state) The conditional state !A gives the probability that a

transformation B occurs on the physical system in the state ! after the transformation

A has occurred, namely

!A (B) .=
!(B ◦A )
!(A )

. (11)

In the following we will make extensive use of the functional notation

!A
.=
!(·◦A )
!(A )

, (12)

where the centered dot stands for the argument of the map. Therefore, the notion of

conditional state describes the most general evolution.

Definition 5 (Local state) In the presence of many independent systems in a joint state

!, we define the local state !|n of the n-th system the state that gives the probability

for any local transformation A on the n-th system, with all other systems untouched,

namely

!|n(A ) .=!(I , . . . ,I , A︸︷︷︸
nth

,I , . . .). (13)

For example, for two systems only, (which is equivalent to group n− 1 systems into a
single one), we just write !|1 =!(·,I ).

Remark 1 (Linearity of evolution) At this point it is worth noticing that the present

definition of “state”, which logically follows from the definition of experiment, leads to

a notion of evolution as state-conditioning. In this way, each transformation acts linearly

on the state space. In addition, since states are probability functionals on transforma-

tions, by dualism (equivalence classes of) transformations are linear functionals over

the state space.

For the following it is convenient to extend the notion of state to that of weight,

namely nonnegative bounded functionals !̃ over the set of transformations with 0 !
!̃(A ) ! !̃(I ) < +" for all transformations A . To each weight !̃ it corresponds the

properly normalized state

! =
!̃

!̃(I )
. (14)Weight: un-normalized state
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weight to that of negative weight, by taking differences. Such generalized weights span
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since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-
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OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
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Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states
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Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
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4. CONDITIONED STATES AND LOCAL STATES

Rule 3 (Bayes) When composing two transformations A and B, the probability

p(B|A ) that B occurs conditional on the previous occurrence of A is given by the

Bayes rule

p(B|A ) =
!(B ◦A )
!(A )

. (10)

The Bayes rule leads to the concept of conditional state:

Definition 4 (Conditional state) The conditional state !A gives the probability that a

transformation B occurs on the physical system in the state ! after the transformation

A has occurred, namely

!A (B) .=
!(B ◦A )
!(A )

. (11)

In the following we will make extensive use of the functional notation

!A
.=
!(·◦A )
!(A )

, (12)

where the centered dot stands for the argument of the map. Therefore, the notion of

conditional state describes the most general evolution.

Definition 5 (Local state) In the presence of many independent systems in a joint state

!, we define the local state !|n of the n-th system the state that gives the probability

for any local transformation A on the n-th system, with all other systems untouched,

namely

!|n(A ) .=!(I , . . . ,I , A︸︷︷︸
nth

,I , . . .). (13)

For example, for two systems only, (which is equivalent to group n− 1 systems into a
single one), we just write !|1 =!(·,I ).

Remark 1 (Linearity of evolution) At this point it is worth noticing that the present

definition of “state”, which logically follows from the definition of experiment, leads to

a notion of evolution as state-conditioning. In this way, each transformation acts linearly

on the state space. In addition, since states are probability functionals on transforma-

tions, by dualism (equivalence classes of) transformations are linear functionals over

the state space.

For the following it is convenient to extend the notion of state to that of weight,

namely nonnegative bounded functionals !̃ over the set of transformations with 0 !
!̃(A ) ! !̃(I ) < +" for all transformations A . To each weight !̃ it corresponds the

properly normalized state

! =
!̃

!̃(I )
. (14)Weight: un-normalized state
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Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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the object identically undisturbed, independently on its state, but still with many dif-
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The above observation leads us to the following definitions of dynamical and informational
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B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
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B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.
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Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has
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The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule
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edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
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tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
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One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an

10 GIACOMO MAURO D’ARIANO

The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule
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Definition 16 (Indecomposable transformation). We call a transformation T indecom-
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Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
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equivalent to A , but which occurs with probability ω(λA ) = λω(A ).
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and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
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The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
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that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
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A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
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namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
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A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule
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Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).
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Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).
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The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
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that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
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in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
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Definition 15 (Informational compatibility or coexistence). We say that two transfor-
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The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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that introduced by Ludwig [12] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref.
[10] in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A and B we define the transformation S = A1 +A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(19) ∀ω ∈ S ω(A1 + A2) = ω(A1) + ω(A2),

whereas the state conditioning is given by

(20) ∀ω ∈ S ωA1+A2 =
ω(A1)

ω(A1 + A2)
ωA1 +

ω(A2)
ω(A1 + A2)

ωA2 .

Notice that the two rules in Eqs. (19) and (20) completely specify the transformation
A1 +A2, both informationally and dynamically (see also Section 5). Eq. (20) can be more
easily restated in terms of operations as follows:

(21) ∀ω ∈ S OpA1+A2
ω = OpA1

ω + OpA2
ω.

Addition of compatible transformations is the core for the description of partial knowledge
on the experimental apparatus. Notice also that the same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

From the above definition we can see that the equivalent of quantum unitary transfor-
mations could be defined in terms of indecomposable isometric transformations.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
action of the form A = {pjI }, it would provide no information on the state ω of the
object, since by definition the probabilities of the outcomes will be independent on ω,
because ω(pjI ) = pj . Therefore, a ”classical” experiment makes sense only for an action
A = {Aj} made of non identical transformations, but with the set of states restricted to
be all invariant under A.

It is now natural to introduce a norm over transformations as follows.

Theorem 1 (Norm for transformations). The following quantity
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is a norm on the set of transformations. In terms of such norm all transformations are
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Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
action of the form A = {pjI }, it would provide no information on the state ω of the
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
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transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref.
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A and B we define the transformation S = A1 +A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(19) ∀ω ∈ S ω(A1 + A2) = ω(A1) + ω(A2),

whereas the state conditioning is given by

(20) ∀ω ∈ S ωA1+A2 =
ω(A1)

ω(A1 + A2)
ωA1 +

ω(A2)
ω(A1 + A2)

ωA2 .

Notice that the two rules in Eqs. (19) and (20) completely specify the transformation
A1 +A2, both informationally and dynamically (see also Section 5). Eq. (20) can be more
easily restated in terms of operations as follows:

(21) ∀ω ∈ S OpA1+A2
ω = OpA1

ω + OpA2
ω.

Addition of compatible transformations is the core for the description of partial knowledge
on the experimental apparatus. Notice also that the same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

From the above definition we can see that the equivalent of quantum unitary transfor-
mations could be defined in terms of indecomposable isometric transformations.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
action of the form A = {pjI }, it would provide no information on the state ω of the
object, since by definition the probabilities of the outcomes will be independent on ω,
because ω(pjI ) = pj . Therefore, a ”classical” experiment makes sense only for an action
A = {Aj} made of non identical transformations, but with the set of states restricted to
be all invariant under A.

It is now natural to introduce a norm over transformations as follows.

Theorem 1 (Norm for transformations). The following quantity

(22) ||A || = sup
ω∈S

ω(A ),

is a norm on the set of transformations. In terms of such norm all transformations are
contractions.
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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No-signaling

The occurrence of the transformation      on system 1 generally 
affects the local state on system 2, i. e. 
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Theorem 7. One has

(44) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,

or also

(45)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
greater than unit)

11. Local state

Definition 32 (Local state). In the presence of many independent systems in a joint state
Ω, we define the local state ω(n) of the n-th system the state that gives the probability for
any local transformation A on the n-th system, with all other systems untouched, namely

(46) ω(n)(A )
.
= Ω(I , . . . , I , A|{z}

nth

, I , . . .).

For example, for two systems only, (which is equivalent to consider n − 1 systems
as a single one), we will write simply ω(1)(A ) = Ω(A , I ). Notice that generally the
commutativity Rule 9 doesn’t imply that the occurrence of a transformation B on system
2 doesn’t change the probability of occurrence of any other transformation A on system
1, namely, generally

(47) A1 ◦B2 = B2 ◦A1 %=⇒ Ω(·, I ) =
Ω(·, B)

Ω(I , B)
.

In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(48) ΩB2(·, I )
.
=

Ω(·, B)
Ω(I , B)

%= Ω(·, I ) ≡ ω(1)

Therefore, in order not to violate the relativity principle, for independent systems (e. g.
space-like separated) we need to require explicitly the a-causality principle:

Rule 16 (A-causality of local transformations). Any local action on a system is equivalent
to the identity transformation when viewed from an independent system, namely, in terms
of states one has

(49) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω(1)

The a-causality of local transformations Rule 16 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.

Corollary 4 (Existence of equivalent incompatible mixtures). For any two incompatible
actions A = {Aj} and B = {Bi}, the following mixtures are the same state

(50)
X

j

pjωj =
X

i

p′iω
′
i ≡ ω,

where

ωj =
ω(·, Aj)

ω(I , Aj)
, pj = ω(I , Aj),

ω′
i =

ω(·, Bi)
ω(I , Bi)

, p′i = ω(I , Bi),

ω
.
= ω(·, I ).

(51)

NO SIGNALLING

!B,I |2 !=!2 (82)

Theorem 3 (No signaling, i. e. acausality of local actions) Any local "action" (i. e. experiment) on a system does

not affect another independent system. More precisely, any local action on a system is equivalent to the identity

transformation when viewed from another independent system. In terms of states one has (S (A) := "A j∈A A j)

∀A !S (A),I |2 =!|2. (83)

Proof.

!|2(B) =!(I ,B) (84)

!S (A),I |2(B) =!((I ,B)◦ (S (A),I ) =!(S (A),B) (85)

!S (A),I |2(B) =!S (A),I (I ,B) = "
A j∈A

!A j ,I (I ,B)
!(A j,I )

"A j∈A!(A j,I )

= "
A j∈A

!(A j,B)
!(A j,I )

!(A j,I )
!(I ,I )

= "
A j∈A

!(A j,B) =!(I ,B) =!(S (A),B)
(86)

#S (A),I |2(B) =#S (A),I (I ,B) = "
A j∈A

#A j ,I (I ,B)
#(A j,I )

"A j∈A#(A j,I )

= "
A j∈A

#(A j,B)
#(A j,I )

#(A j,I )
#(S (A),I )

= "
A j∈A

#(A j,B) = #(S (A),B)
(87)

#S (A),I |2(B) =#S (A),I (I ,B) =
#(S (A),B)
#(S (A),I )

(88)

!S (A),I (G ) =!S (A),I (G ) = "
A j∈A

!A j ,I (G )
!(A j,I )

"A j∈A!(A j,I )

= "
A j∈A

!(G ◦ (A j,I ))
!(A j,I )

!(A j,I )
!(I ,I )

= "
A j∈A

!(G ◦ (A j,I )) =!(G )
(89)

GARBAGE

Proof. The no-signaling condition is an immediate consequence of the definition of independent systems and marginal-

ization. Marginalization is the statistical rule corresponding to

"
Ai∈A,B j∈B

!(Ai,B j) = 1 =⇒ "
B j∈B

!(Ai,B j) =!|1(Ai)≡!(Ai,I ),∀! ∈S×2 (90)

Therefore, if for a specific state one has #(A ,I ) = 1, then one has

1= #(A ,I )≡ #|2(A ) = "
B j∈B

#(A ,B j) (91)



However a local action                      on system 2 does 
not affect the local state on system 1, more precisely:
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charge, etc. The object of the experiment is something unknown or not precisely known
on the system, and by definition, this will be considered in the notion of state, which will
be in Def. 2. For instance, depending on the context, the charge of a particle can be a
property defining the object system—and used to design the measuring apparatus—or,
if unknown, it could be object of the experiment itself, and as such it would enter the
definition of state. Again we emphasize that here the purpose is to give only the syntactic
manual of the empirical approach, not the semantics, i. e. the specific physical context.

General axiom 2 (On what is an experiment). An experiment on a object system consists
in having it interacting with an apparatus. The interaction between object and apparatus
produces one of a set of possible transformations of the object, each one occurring with
some probability. Information on the “state” of the object system at the beginning of the
experiment is gained from the knowledge of which transformation occurred, which is the
”outcome” of the experiment signaled by the apparatus.

It is clear that both ”object” and ”apparatus” are physical systems, and the asymmetry
between object and apparatus is just asymmetry in prior knowledge, namely the apparatus
is the system of which the experimenter has more a priori information. It is then clear that
the knowledge gained on the state of the object depends on the physical object system, on
the knowledge of details of the transformation produced on the object system, and, more
generally, also on prior knowledge on the “state” itself of the system. In other words, the
experiment can be always regarded as a refinement of knowledge on the object system.

One should convince himself that the above definition of experiment is very general,
and includes all possible situations. For example, at first sight it may seem that it doesn’t
consider the case in which the object is not under the experimenter control (e. g. astro-
nomical observations), in the sense that in such case one cannot establish an interaction
with the object system. However, also in this case there is an interaction between the ob-
ject of interest (e. g. the astronomical object) and another object (e. g. the light) which
should be regarded as a part of the apparatus (i. e. telescope plus light). Such cases can
also be regarded as ”indirect experiments”, namely the experiment is performed on an
auxiliary ”object” (e. g. the light) which is supposed to have had a previous interaction
with the true object of interest, and whose state depends on properties/quantities of it.
Also, the customary case in which a ”quantity” or a ”quality” is measured without in any
way affecting the system corresponds to the case in which all states are left invariant by
the transformations corresponding to each outcome.

Performing a different experiment on the same object obviously corresponds to use a
different experimental apparatus or, at least, to change some settings of the apparatus.
Abstractly, this corresponds to change the set {Aj} of possible transformations Aj that
the system can experience. Such change could actually mean really changing the ”dy-
namics” of the transformations, but may simply mean changing only their probabilities,
or, just their labeling outcomes. Any such change actually corresponds to a change of
the experimental setup. Therefore, the set of all possible transformations {Aj} will be
identified with the choice of experimental setting—the action—and this will be formalized
by the following definition

Definition 1 (Actions and outcomes). The action on the object system due to an exper-
iment is the set A ≡ {Aj} of possible transformations Aj having overall unit probability,
with the apparatus signaling the outcome j labeling which transformation actually oc-
curred.

Thus the action is just a complete set of possible transformations describing an ex-
periment. As we can see now, in a general probabilistic framework the action A is the
”cause”, whereas the outcome j labeling the transformation Aj that actually occurred

No-signaling

The occurrence of the transformation      on system 1 generally 
affects the local state on system 2, i. e. 
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GARBAGE

Proof. The no-signaling condition is an immediate consequence of the definition of independent systems and marginal-

ization. Marginalization is the statistical rule corresponding to

"
Ai∈A,B j∈B

!(Ai,B j) = 1 =⇒ "
B j∈B

!(Ai,B j) =!|1(Ai)≡!(Ai,I ),∀! ∈S×2 (90)

Therefore, if for a specific state one has #(A ,I ) = 1, then one has

1= #(A ,I )≡ #|2(A ) = "
B j∈B

#(A ,B j) (91)



However a local action                      on system 2 does 
not affect the local state on system 1, more precisely:
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charge, etc. The object of the experiment is something unknown or not precisely known
on the system, and by definition, this will be considered in the notion of state, which will
be in Def. 2. For instance, depending on the context, the charge of a particle can be a
property defining the object system—and used to design the measuring apparatus—or,
if unknown, it could be object of the experiment itself, and as such it would enter the
definition of state. Again we emphasize that here the purpose is to give only the syntactic
manual of the empirical approach, not the semantics, i. e. the specific physical context.

General axiom 2 (On what is an experiment). An experiment on a object system consists
in having it interacting with an apparatus. The interaction between object and apparatus
produces one of a set of possible transformations of the object, each one occurring with
some probability. Information on the “state” of the object system at the beginning of the
experiment is gained from the knowledge of which transformation occurred, which is the
”outcome” of the experiment signaled by the apparatus.

It is clear that both ”object” and ”apparatus” are physical systems, and the asymmetry
between object and apparatus is just asymmetry in prior knowledge, namely the apparatus
is the system of which the experimenter has more a priori information. It is then clear that
the knowledge gained on the state of the object depends on the physical object system, on
the knowledge of details of the transformation produced on the object system, and, more
generally, also on prior knowledge on the “state” itself of the system. In other words, the
experiment can be always regarded as a refinement of knowledge on the object system.
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namics” of the transformations, but may simply mean changing only their probabilities,
or, just their labeling outcomes. Any such change actually corresponds to a change of
the experimental setup. Therefore, the set of all possible transformations {Aj} will be
identified with the choice of experimental setting—the action—and this will be formalized
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Definition 1 (Actions and outcomes). The action on the object system due to an exper-
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curred.
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No-signaling

The occurrence of the transformation      on system 1 generally 
affects the local state on system 2, i. e. 
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Theorem 7. One has

(44) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,

or also

(45)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
greater than unit)

11. Local state

Definition 32 (Local state). In the presence of many independent systems in a joint state
Ω, we define the local state ω(n) of the n-th system the state that gives the probability for
any local transformation A on the n-th system, with all other systems untouched, namely

(46) ω(n)(A )
.
= Ω(I , . . . , I , A|{z}

nth

, I , . . .).

For example, for two systems only, (which is equivalent to consider n − 1 systems
as a single one), we will write simply ω(1)(A ) = Ω(A , I ). Notice that generally the
commutativity Rule 9 doesn’t imply that the occurrence of a transformation B on system
2 doesn’t change the probability of occurrence of any other transformation A on system
1, namely, generally

(47) A1 ◦B2 = B2 ◦A1 %=⇒ Ω(·, I ) =
Ω(·, B)

Ω(I , B)
.

In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(48) ΩB2(·, I )
.
=

Ω(·, B)
Ω(I , B)

%= Ω(·, I ) ≡ ω(1)

Therefore, in order not to violate the relativity principle, for independent systems (e. g.
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Rule 16 (A-causality of local transformations). Any local action on a system is equivalent
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(49) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω(1)

The a-causality of local transformations Rule 16 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.

Corollary 4 (Existence of equivalent incompatible mixtures). For any two incompatible
actions A = {Aj} and B = {Bi}, the following mixtures are the same state

(50)
X

j

pjωj =
X

i

p′iω
′
i ≡ ω,

where

ωj =
ω(·, Aj)

ω(I , Aj)
, pj = ω(I , Aj),

ω′
i =

ω(·, Bi)
ω(I , Bi)

, p′i = ω(I , Bi),

ω
.
= ω(·, I ).

(51)
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acausality of local actions: any local action on a 
system is equivalent to the identity transformation 
on another independent system.

to denote the deterministic transformation S (A) that corresponds to the sum of all

possible transformations A j in A.

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a local "action" on system 2 does not affect the conditioned

local state on system 1. However, this is actually the case, as it is proved in the following
theorem.

Theorem 2 (No signaling, i. e. acausality of local actions) Any local "action" (i. e. ex-

periment) on a system does not affect another independent system. More precisely, any

local action on a system is equivalent to the identity transformation when viewed from

another independent system. In equations one has

∀! ∈S×2,∀A, !S (A),I |2 =!|2. (25)

Proof. By definition, for B ∈ T one has !|2(B) = !(I ,B), and using Eq. (24)
according to Rule 4 one has

!(S (A),B) = "
A j∈A

!(A j,B) =!(I ,B) =:!|2(B). (26)

On the other hand, we have

!S (A),I |2(B) =!((I ,B)◦ (S (A),I ) =!(S (A),B), (27)

namely the statement.!

Notice the consistency with Rule 4:

!S (A),I |2(B) =!S (A),I (I ,B) = "
A j∈A

!A j,I (I ,B)
!(A j,I )

"A j∈A!(A j,I )

= "
A j∈A

!(A j,B)
!(A j,I )

!(A j,I )
!(I ,I )

= "
A j∈A

!(A j,B) =!(I ,B).
(28)

It is worth noticing that the no-signaling is a mere consequence of our minimal notion

of dynamical independence in Def. 3.

Rule 5 (Multiplication of a transformation by a scalar) For each transformation A
the transformation !A for 0" ! " 1 is defined as the transformation which is dynam-

ically equivalent to A , but which occurs with probability "(!A ) = !"(A ).

Notice that according to Definition 10 two transformations are completely characterized

operationally by the informational and dynamical equivalence classes to which they

belong, whence Rule 5 is well posed.

Clearly !A1 and (1−! )A2 are coexistent ∀A1,A2 ∈ T, ! ∈ [0,1]. We can therefore
pose a convex structure over the set of physical transformations T.

namely the two transformations are also dynamically equivalent, whence they are com-

pletely equivalent.!
Notice that even though two transformations are completely equivalent, in principle

they can still be experimentally different, in the sense that they are achieved with dif-

ferent apparatus. However, we emphasize that outcomes in different experiments corre-

sponding to completely equivalent transformations always provide the same information

on the state of the object, and, always produce the same conditioning of the state.

The notions of dynamical and informational equivalences of transformations leads

one to introduce a convex structure also for transformations. We first need the notion of

informational compatibility.

Definition 11 (Informational compatibility or coexistence) We say that two transfor-

mations A and B are coexistent or informationally compatible if one has

!(A )+!(B) " 1, ∀! ∈S, (20)

The fact that two transformations are coexistent means that, in principle, they can occur

in the same experiment, namely there exists at least an experiment containing both

of them. We have named the present kind of compatibility "informational" since it is

actually defined on the informational equivalence classes of transformations.

We are now in position to define the "addition" of coexistent transformations.

Rule 4 (Addition of coexistent transformations) For any two coexistent transforma-

tions A and B we define the transformation S = A1+A2 as the transformation cor-

responding to the event e = {1,2}, namely the apparatus signals that either A1 or A2

occurred, but does not specify which one. By definition, one has

∀! ∈S !(A1+A2) = !(A1)+!(A2), (21)

whereas the state conditioning is given by

∀! ∈S !A1+A2
=

!(A1)
!(A1+A2)

!A1
+

!(A2)
!(A1+A2)

!A2
. (22)

Notice that the two rules in Eqs. (21) and (22) completely specify the transformation

A1+A2, both informationally and dynamically. Eq. (22) can be more easily restated in

terms of operations as follows:

∀! ∈S (A1+A2)! = A1!+A2!. (23)

It is easy to check that the composition "◦" of transformations is distributive with respect
to the addition "+". Addition of compatible transformations is the core of the description
of partial knowledge on the experimental apparatus. Notice also that the same notion of

coexistence can be extended to "effects" as well (see Definition 12). In the following we

will use the notation

S (A) := !
A j∈A

A j (24)
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Informational compatibility

Multiplication by a scalar: for each transformation        
the transformation         for                     is defined as the 
transformation which is dynamically equivalent to       
but occurs with probability

10 GIACOMO MAURO D’ARIANO

The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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Convex structure for transformations     
and for actions

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
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Remark 5 (Duality between the convex sets of states and of propensities). From the
Definition 2 of state it follows that the convex set of states S and the convex sets of
propensities T are dual each other, and the latter can be regarded as the set of positive
linear contractions over the set of states, namely the set of positive functionals l on S
with unit upper bound, and with the functional l[A ] corresponding to the propensity [A ]
being defined as

(26) l[A ](ω)
.
= ω(A ).

In the following we will often identify propensities with their corresponding functionals,
and denote them by lowercase letters a, b, c, . . ., or l1, l2, . . .. Finally, notice that the notion
of coexistence (informational compatibility) extends naturally to propensities.

Remark 6 (Dual cone notation). We can write the propensity linear functionals on S
with the equivalent pairing notations

(27) lA (ω)
.
= ω(A ) ≡ (A |ω).

Definition 18 (Generalized observable). We call generalized observable a set of propen-
sities L = {li} which is informationally equivalent to an action L ∈ A, namely such that
there exists an action A = {Aj} for of which one has li ∈ Aj.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.P
i li = 1.

Definition 19 (Informationally complete generalized observable). A generalized observ-
able L = {li} is informationally complete if each propensity can be written as a linear
combination of the of elements of L, namely for each propensity l there exist coefficients
ci(l) such that

(28) l =
X

i

ci(l)li.

Clearly, using an informationally complete generalized observable one can reconstruct
any state ω from just the probabilities li(ω), since one has

(29) ω(A ) =
X

i

ci(lA )li(ω).

Rule 9 (Partial ordering between propensities). For two propensities l1, l2 ∈ P we write
l1 ≤ l2 when l1(ω) ≤ l2(ω) ∀ω ∈ S.

In Ref. [6] the present partial ordering is interpreted saying that l2 is more sensitive
than l1. Upon introducing the notions of Kernel K0(l) for the propensity l, i. e. K0(l) =
{ω ∈ P |l(ω) = 0}, Ludwig introduces two axioms on increasing sensitivity of propensities:

Rule 10 (Axiom V1a of Ref.[6]). For two propensities there is always a third one such
that l3 ≥ l1, l2 and K0(l1) ∩K0(l2) ⊂ K0(l3).

Rule 11 (Axiom V1b of Ref.[6]). For each propensity there is always another one such
that l′ ≥ l and K0(l) ⊂ K0(l

′).

Introducing the notion of face generated by an ensemble C(ω), H. Neumann [7] also
considers the following axioms

Rule 12 (Axiom V2 of Ref. [7]). If C(ω2) ⊂ C(ω1) there is a propensity l with ω2 ∈ K0(l),
but ω1 (∈ K0(l)

Rule 13 (Axiom V3 of Ref. [7]). If C(ω1) ⊂ C(ω3) ⊂ C( 1
2ω1 + 1

2ω2) and C(ω2) and
C(ω3) are strictly separated, then C(ω1) = C(ω3)

A
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OpA B = B ◦ A = B ◦ A“Heisenberg picture”:
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Remark 5 (Duality between the convex sets of states and of propensities). From the
Definition 2 of state it follows that the convex set of states S and the convex sets of
propensities T are dual each other, and the latter can be regarded as the set of positive
linear contractions over the set of states, namely the set of positive functionals l on S
with unit upper bound, and with the functional l[A ] corresponding to the propensity [A ]
being defined as

(26) l[A ](ω)
.
= ω(A ).

In the following we will often identify propensities with their corresponding functionals,
and denote them by lowercase letters a, b, c, . . ., or l1, l2, . . .. Finally, notice that the notion
of coexistence (informational compatibility) extends naturally to propensities.

Remark 6 (Dual cone notation). We can write the propensity linear functionals on S
with the equivalent pairing notations

(27) lA (ω)
.
= ω(A ) ≡ (A |ω).

Definition 18 (Generalized observable). We call generalized observable a set of propen-
sities L = {li} which is informationally equivalent to an action L ∈ A, namely such that
there exists an action A = {Aj} for of which one has li ∈ Aj.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.P
i li = 1.

Definition 19 (Informationally complete generalized observable). A generalized observ-
able L = {li} is informationally complete if each propensity can be written as a linear
combination of the of elements of L, namely for each propensity l there exist coefficients
ci(l) such that

(28) l =
X

i

ci(l)li.

Clearly, using an informationally complete generalized observable one can reconstruct
any state ω from just the probabilities li(ω), since one has

(29) ω(A ) =
X

i

ci(lA )li(ω).

Rule 9 (Partial ordering between propensities). For two propensities l1, l2 ∈ P we write
l1 ≤ l2 when l1(ω) ≤ l2(ω) ∀ω ∈ S.

In Ref. [6] the present partial ordering is interpreted saying that l2 is more sensitive
than l1. Upon introducing the notions of Kernel K0(l) for the propensity l, i. e. K0(l) =
{ω ∈ P |l(ω) = 0}, Ludwig introduces two axioms on increasing sensitivity of propensities:
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Convex structure for effects

effects. We will denote the set of effects by P. We will also extend the notion of effect
to that of generalized effects by taking differences of effects (for the original notion, we
will use the name physical effects). The set of generalized effects will be denoted asPR.

Theorem 5 (Banach space of generalized effects) The generalized effects make a Ba-

nach space, with norm defined as follows

||A || = sup
!∈S

|!(A )|. (42)

Proof. We remind the axioms of norm: i) Sub-additivity ||A + B|| ! ||A ||+ ||B||; ii)
Multiplication by scalar ||"A ||= |" |||A ||; iii) ||A ||= 0 impliesA = 0. The quantity in
Eq. (42) satisfy the sub-additivity relation i), since

||A +B|| = sup
!∈S

|!(A )+!(B)|≤ sup
!∈S

|!(A )+ sup
! ′∈S

|! ′(B)| = ||A ||+ ||B||. (43)

Moreover, it obviously satisfies axiom ii). Finally, axiom iii) corresponds to a general-
ized effect that is the (multiple of a) difference of two informationally equivalent trans-

formations, namely the null effect. Closure with respect to the norm (42) makes the
real vector space of generalized effects a Banach space, which we will name the Ba-

nach space of generalized effects. The norm closure corresponds to an approximability
criterion for preparability of transformations in terms of probabilities (see also Remark

5)."

Theorem 6 (Bound between norms of transformation and effect) The following

bound holds

||A ||≤ ||A ||. (44)

and for transformation A ∈ T±
R one has the identity

||A || = ||A ||. (45)

Proof. One can easily check the bound

||A || = sup
!∈S

|!(A )| ! sup
!∈S,C∈T

|!(C ◦A )| = ||A ||. (46)

For A ∈ T±
R !A is a physical state, and one also has the reverse bound

||A || = sup
!∈S,C∈T

|!(C ◦A )| = sup
!∈S,C∈T

|!A (C )!(A )| ! sup
!∈S

|!(A )| = ||A ||. (47)

"
From the bound (44) it follows that for a physical effect A one has ||A || ≤ 1.

Therefore, it follows that the set T of physical effects is a spherically truncated convex
cone.

Remark 6 (Duality between the convex sets of states and of effects) From the Defi-

nition 2 of state it follows that the convex set of states S and the convex sets of effects P
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weights                     

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
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belong, whence Rule 5 is well posed. As we will see in the following (see Rule 6),

due to Rule 5 the set T of all possible transformations of a physical system is a convex
set in form of a truncated convex cone.

Remark 3 (Algebra of generalized transformations) Using Eqs. (25) and (27) one

can extend the addition of coexistent transformations to generic linear combinations,

that we will call generalized transformations (to be contrasted with the original notion,

for which we will keep the name physical transformations). The generalized transfor-
mations constitute a real vector space—hereafter denoted as TR—which is the affine
space of the convex space T. Composition of transformations can be extended via lin-
earity to generalized transformations, making their space a real algebra, the algebra of

generalized transformations.

Remark 4 (Cone and double-cone of generalized transformations) The generalized

transformations G of the form G = !A with A physical transformation and ! ! 0

make a cone whereas for ! ∈ R make a double cone. Notice that for B ∈ TR generally

out of the double cone the conditioning "B is no longer a state (e. g. there exist a

physical transformation A for which "G (A ) > 1 or "G (A ) < 0, even though "G is

normalized. On the other hand, for generalized transformations in the double cone "G
is always a true state. We will denote the cone as T+

R and the double cone as T±
R .

Indeed, for a generalized transformation G = !A ∈ T±
R proportional to a physical

transformation A one has

"G (B) =
"(B ◦G )
"(G )

=
"(B ◦!G )
"(!G )

=
"(B ◦A )
"(A )

. (28)

However, for a generalized transformation G = A1−A2 $∈ T±
R one has

"A1−A2
=

"(A1)
"(A1)−"(A2)

"A1
− "(A2)
"(A1)−"(A2)

"A2
= !"A1

+(1−! )"A2
, (29)

and, generally one can have ! > 1, in which case consider e. g. a transformation B for
which "A1

(B) ! !−1 and "A2
(B) = 0. Then, one has "A1−A2

(B) > 1.

The linear space of generalized weightsWR can be equipped with a norm as follows.

Theorem 3 (Banach space of generalized weights) The generalized weights make a

Banach space, with norm defined as follows

||"̃ || := sup
A ∈T

|"̃(A )|. (30)

Proof. The quantity in Eq. (30) satisfies the sub-additivity relation ||"̃+ #̃ ||" ||"̃ ||+ ||#̃ ||,
since

||"̃+ #̃ || = sup
A ∈T

[|"̃(A )+ #̃ (A )|]≤ sup
A ∈T

[|"̃(A )|+ |#̃ (A )|]

≤ sup
A ∈T

|"̃(A )|+ sup
A ∈T

|#̃ (A )]| = ||"̃ ||+ ||#̃ ||.
(31)
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since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-
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!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
(real algebra)
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(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
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convex sets/cones     (affine) linear spaces

belong, whence Rule 5 is well posed. As we will see in the following (see Rule 6),

due to Rule 5 the set T of all possible transformations of a physical system is a convex
set in form of a truncated convex cone.

Remark 3 (Algebra of generalized transformations) Using Eqs. (25) and (27) one

can extend the addition of coexistent transformations to generic linear combinations,

that we will call generalized transformations (to be contrasted with the original notion,

for which we will keep the name physical transformations). The generalized transfor-
mations constitute a real vector space—hereafter denoted as TR—which is the affine
space of the convex space T. Composition of transformations can be extended via lin-
earity to generalized transformations, making their space a real algebra, the algebra of

generalized transformations.

Remark 4 (Cone and double-cone of generalized transformations) The generalized

transformations G of the form G = !A with A physical transformation and ! ! 0

make a cone whereas for ! ∈ R make a double cone. Notice that for B ∈ TR generally

out of the double cone the conditioning "B is no longer a state (e. g. there exist a

physical transformation A for which "G (A ) > 1 or "G (A ) < 0, even though "G is

normalized. On the other hand, for generalized transformations in the double cone "G
is always a true state. We will denote the cone as T+

R and the double cone as T±
R .

Indeed, for a generalized transformation G = !A ∈ T±
R proportional to a physical

transformation A one has

"G (B) =
"(B ◦G )
"(G )

=
"(B ◦!G )
"(!G )

=
"(B ◦A )
"(A )

. (28)

However, for a generalized transformation G = A1−A2 $∈ T±
R one has

"A1−A2
=

"(A1)
"(A1)−"(A2)

"A1
− "(A2)
"(A1)−"(A2)

"A2
= !"A1

+(1−! )"A2
, (29)

and, generally one can have ! > 1, in which case consider e. g. a transformation B for
which "A1

(B) ! !−1 and "A2
(B) = 0. Then, one has "A1−A2

(B) > 1.

The linear space of generalized weightsWR can be equipped with a norm as follows.

Theorem 3 (Banach space of generalized weights) The generalized weights make a

Banach space, with norm defined as follows

||"̃ || := sup
A ∈T

|"̃(A )|. (30)

Proof. The quantity in Eq. (30) satisfies the sub-additivity relation ||"̃+ #̃ ||" ||"̃ ||+ ||#̃ ||,
since

||"̃+ #̃ || = sup
A ∈T

[|"̃(A )+ #̃ (A )|]≤ sup
A ∈T

[|"̃(A )|+ |#̃ (A )|]

≤ sup
A ∈T

|"̃(A )|+ sup
A ∈T

|#̃ (A )]| = ||"̃ ||+ ||#̃ ||.
(31)
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Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)
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!̃A
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In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
(real algebra)
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theorem.
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are dual each other, and the latter can be regarded as the set of positive linear contrac-

tions over the set of states, namely the set of positive functionals l on S with unit upper

bound, and with the functional lA corresponding to the effect A being defined as

lA (!) .= !(A ). (48)

The above duality naturally extends to generalized effects and generalized weights.

Therefore, WR and PR are a dual Banach pair.

In the following we will often identify generalized effects with their corresponding
functionals, and denote them by lowercase letters a,b,c, . . ., or l1, l2, . . ..

Definition 13 (Observable) We call observable a set of effects L = {li} which is in-
formationally equivalent to an action L ∈ A, namely such that there exists an action
A = {A j} for which one has li ∈A j.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.

!i li = 1.

Definition 14 (Informationally complete observable) An observableL = {li} is infor-
mationally complete if each effect can be written as a linear combination of the of ele-

ments of L, namely for each effect l there exist coefficients ci(l) such that

l =!
i

ci(l)li. (49)

We call the informationally complete observable minimal when its effects are linearly

independent.

Clearly, using an informationally complete observable one can reconstruct any state !
from just the probabilities li(!), since one has

!(A ) =!
i

ci(lA )li(!). (50)

Definition 15 (Predictability and resolution) We will call a transformation A—and

likewise its effect—predictable if there exists a state for which A occurs with certainty

and some other state for which it never occurs. The transformation (effect) will be also

called resolved if the state for which it occurs with certainty is unique—whence pure.

An action will be called predictable when it is made only of predictable transformations,
and resolved when all transformations are resolved.

The present notion of predictability for effect corresponds to that of "decision effects"
of Ludwig [4]. For a predictable transformation A one has ||A || = 1. Notice that a

predictable transformation is not deterministic, and it can generally occur with nonunit
probability on some state ! . Predictable effectsA correspond to affine functions fA on

the state space S with 0! fA ! 1 achieving both bounds. Their set will be denoted by
Pp.

Definition 16 (Perfectly discriminable set of states) We call a set of states {!n}n=1,N
perfectly discriminable if there exists an action A = {A j} j=1,N with transformations

effects. We will denote the set of effects by P. We will also extend the notion of effect
to that of generalized effects by taking differences of effects (for the original notion, we
will use the name physical effects). The set of generalized effects will be denoted asPR.

Theorem 5 (Banach space of generalized effects) The generalized effects make a Ba-

nach space, with norm defined as follows

||A || = sup
!∈S

|!(A )|. (42)

Proof. We remind the axioms of norm: i) Sub-additivity ||A + B|| ! ||A ||+ ||B||; ii)
Multiplication by scalar ||"A ||= |" |||A ||; iii) ||A ||= 0 impliesA = 0. The quantity in
Eq. (42) satisfy the sub-additivity relation i), since

||A +B|| = sup
!∈S

|!(A )+!(B)|≤ sup
!∈S

|!(A )+ sup
! ′∈S

|! ′(B)| = ||A ||+ ||B||. (43)

Moreover, it obviously satisfies axiom ii). Finally, axiom iii) corresponds to a general-
ized effect that is the (multiple of a) difference of two informationally equivalent trans-

formations, namely the null effect. Closure with respect to the norm (42) makes the
real vector space of generalized effects a Banach space, which we will name the Ba-

nach space of generalized effects. The norm closure corresponds to an approximability
criterion for preparability of transformations in terms of probabilities (see also Remark

5)."

Theorem 6 (Bound between norms of transformation and effect) The following

bound holds

||A ||≤ ||A ||. (44)

and for transformation A ∈ T±
R one has the identity

||A || = ||A ||. (45)

Proof. One can easily check the bound

||A || = sup
!∈S

|!(A )| ! sup
!∈S,C∈T

|!(C ◦A )| = ||A ||. (46)

For A ∈ T±
R !A is a physical state, and one also has the reverse bound

||A || = sup
!∈S,C∈T

|!(C ◦A )| = sup
!∈S,C∈T

|!A (C )!(A )| ! sup
!∈S

|!(A )| = ||A ||. (47)

"
From the bound (44) it follows that for a physical effect A one has ||A || ≤ 1.

Therefore, it follows that the set T of physical effects is a spherically truncated convex
cone.

Remark 6 (Duality between the convex sets of states and of effects) From the Defi-

nition 2 of state it follows that the convex set of states S and the convex sets of effects P gen. effects 



Real Banach spaces
norms:



Real Banach spaces
norms:

gen. effects        :

are dual each other, and the latter can be regarded as the set of positive linear contrac-

tions over the set of states, namely the set of positive functionals l on S with unit upper

bound, and with the functional lA corresponding to the effect A being defined as

lA (!) .= !(A ). (48)

The above duality naturally extends to generalized effects and generalized weights.

Therefore, WR and PR are a dual Banach pair.

In the following we will often identify generalized effects with their corresponding
functionals, and denote them by lowercase letters a,b,c, . . ., or l1, l2, . . ..

Definition 13 (Observable) We call observable a set of effects L = {li} which is in-
formationally equivalent to an action L ∈ A, namely such that there exists an action
A = {A j} for which one has li ∈A j.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.

!i li = 1.

Definition 14 (Informationally complete observable) An observableL = {li} is infor-
mationally complete if each effect can be written as a linear combination of the of ele-

ments of L, namely for each effect l there exist coefficients ci(l) such that

l =!
i

ci(l)li. (49)

We call the informationally complete observable minimal when its effects are linearly

independent.

Clearly, using an informationally complete observable one can reconstruct any state !
from just the probabilities li(!), since one has

!(A ) =!
i

ci(lA )li(!). (50)

Definition 15 (Predictability and resolution) We will call a transformation A—and

likewise its effect—predictable if there exists a state for which A occurs with certainty

and some other state for which it never occurs. The transformation (effect) will be also

called resolved if the state for which it occurs with certainty is unique—whence pure.

An action will be called predictable when it is made only of predictable transformations,
and resolved when all transformations are resolved.

The present notion of predictability for effect corresponds to that of "decision effects"
of Ludwig [4]. For a predictable transformation A one has ||A || = 1. Notice that a

predictable transformation is not deterministic, and it can generally occur with nonunit
probability on some state ! . Predictable effectsA correspond to affine functions fA on

the state space S with 0! fA ! 1 achieving both bounds. Their set will be denoted by
Pp.

Definition 16 (Perfectly discriminable set of states) We call a set of states {!n}n=1,N
perfectly discriminable if there exists an action A = {A j} j=1,N with transformations
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Start from norm of generalized effects, defined as follows

||A || := sup
!∈S

|!(A )|, (1)

and then define the norm on generalized weights as follows

||!̃|| := sup
PR"||A ||!1

|!̃(A )|. (2)

Then define norm for transformations as follows

||A || := sup
PR"||B||!1

||B ◦A || = sup
PR"||B||!1

sup
!∈S

!(B ◦A ). (3)

Now, for x in a Banach space and T a map on the Banach space one has

||Tx|| =
∣∣∣∣

∣∣∣∣T
x

||x||

∣∣∣∣

∣∣∣∣ ||x|| ! sup
||y||=1

||Ty||||x|| ! sup
||y||!1

||Ty||||x|| =: ||T ||||x||, (4)

namely

||Tx|| ! ||T ||||x||, (5)

and applying the last identity twice one has for operators on the Banach space

||AB|| ! ||A||||B||, (6)

since

||AB|| = sup
||x||!1

||ABx|| ! sup
||x||!1

||A||||B||||x|| = ||A||||B||. (7)

This implies that ||B ◦A || ! ||B||||A ||, whence the generalized transformations make a Banach algebra.
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Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
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are dual each other, and the latter can be regarded as the set of positive linear contrac-

tions over the set of states, namely the set of positive functionals l on S with unit upper

bound, and with the functional lA corresponding to the effect A being defined as

lA (!) .= !(A ). (48)

The above duality naturally extends to generalized effects and generalized weights.

Therefore, WR and PR are a dual Banach pair.

In the following we will often identify generalized effects with their corresponding
functionals, and denote them by lowercase letters a,b,c, . . ., or l1, l2, . . ..

Definition 13 (Observable) We call observable a set of effects L = {li} which is in-
formationally equivalent to an action L ∈ A, namely such that there exists an action
A = {A j} for which one has li ∈A j.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.

!i li = 1.

Definition 14 (Informationally complete observable) An observableL = {li} is infor-
mationally complete if each effect can be written as a linear combination of the of ele-

ments of L, namely for each effect l there exist coefficients ci(l) such that

l =!
i

ci(l)li. (49)

We call the informationally complete observable minimal when its effects are linearly

independent.

Clearly, using an informationally complete observable one can reconstruct any state !
from just the probabilities li(!), since one has

!(A ) =!
i

ci(lA )li(!). (50)

Definition 15 (Predictability and resolution) We will call a transformation A—and

likewise its effect—predictable if there exists a state for which A occurs with certainty

and some other state for which it never occurs. The transformation (effect) will be also

called resolved if the state for which it occurs with certainty is unique—whence pure.

An action will be called predictable when it is made only of predictable transformations,
and resolved when all transformations are resolved.

The present notion of predictability for effect corresponds to that of "decision effects"
of Ludwig [4]. For a predictable transformation A one has ||A || = 1. Notice that a

predictable transformation is not deterministic, and it can generally occur with nonunit
probability on some state ! . Predictable effectsA correspond to affine functions fA on

the state space S with 0! fA ! 1 achieving both bounds. Their set will be denoted by
Pp.

Definition 16 (Perfectly discriminable set of states) We call a set of states {!n}n=1,N
perfectly discriminable if there exists an action A = {A j} j=1,N with transformations
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Start from norm of generalized effects, defined as follows

||A || := sup
!∈S

|!(A )|, (1)

and then define the norm on generalized weights as follows

||!̃|| := sup
PR"||A ||!1

|!̃(A )|. (2)

Then define norm for transformations as follows

||A || := sup
PR"||B||!1

||B ◦A || = sup
PR"||B||!1

sup
!∈S

!(B ◦A ). (3)

Now, for x in a Banach space and T a map on the Banach space one has

||Tx|| =
∣∣∣∣

∣∣∣∣T
x

||x||

∣∣∣∣

∣∣∣∣ ||x|| ! sup
||y||=1

||Ty||||x|| ! sup
||y||!1

||Ty||||x|| =: ||T ||||x||, (4)

namely

||Tx|| ! ||T ||||x||, (5)

and applying the last identity twice one has for operators on the Banach space

||AB|| ! ||A||||B||, (6)

since

||AB|| = sup
||x||!1

||ABx|| ! sup
||x||!1

||A||||B||||x|| = ||A||||B||. (7)

This implies that ||B ◦A || ! ||B||||A ||, whence the generalized transformations make a Banach algebra.



Real Banach spaces
norms:

gen. weights        :

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
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This implies that ||B ◦A || ! ||B||||A ||, whence the generalized transformations make a Banach algebra.

gen. transformations       :

belong, whence Rule 5 is well posed. As we will see in the following (see Rule 6),

due to Rule 5 the set T of all possible transformations of a physical system is a convex
set in form of a truncated convex cone.

Remark 3 (Algebra of generalized transformations) Using Eqs. (25) and (27) one

can extend the addition of coexistent transformations to generic linear combinations,

that we will call generalized transformations (to be contrasted with the original notion,

for which we will keep the name physical transformations). The generalized transfor-
mations constitute a real vector space—hereafter denoted as TR—which is the affine
space of the convex space T. Composition of transformations can be extended via lin-
earity to generalized transformations, making their space a real algebra, the algebra of

generalized transformations.

Remark 4 (Cone and double-cone of generalized transformations) The generalized

transformations G of the form G = !A with A physical transformation and ! ! 0

make a cone whereas for ! ∈ R make a double cone. Notice that for B ∈ TR generally

out of the double cone the conditioning "B is no longer a state (e. g. there exist a

physical transformation A for which "G (A ) > 1 or "G (A ) < 0, even though "G is

normalized. On the other hand, for generalized transformations in the double cone "G
is always a true state. We will denote the cone as T+

R and the double cone as T±
R .

Indeed, for a generalized transformation G = !A ∈ T±
R proportional to a physical

transformation A one has

"G (B) =
"(B ◦G )
"(G )

=
"(B ◦!G )
"(!G )

=
"(B ◦A )
"(A )

. (28)

However, for a generalized transformation G = A1−A2 $∈ T±
R one has

"A1−A2
=

"(A1)
"(A1)−"(A2)

"A1
− "(A2)
"(A1)−"(A2)

"A2
= !"A1

+(1−! )"A2
, (29)

and, generally one can have ! > 1, in which case consider e. g. a transformation B for
which "A1

(B) ! !−1 and "A2
(B) = 0. Then, one has "A1−A2

(B) > 1.

The linear space of generalized weightsWR can be equipped with a norm as follows.

Theorem 3 (Banach space of generalized weights) The generalized weights make a

Banach space, with norm defined as follows

||"̃ || := sup
A ∈T

|"̃(A )|. (30)

Proof. The quantity in Eq. (30) satisfies the sub-additivity relation ||"̃+ #̃ ||" ||"̃ ||+ ||#̃ ||,
since

||"̃+ #̃ || = sup
A ∈T

[|"̃(A )+ #̃ (A )|]≤ sup
A ∈T

[|"̃(A )|+ |#̃ (A )|]

≤ sup
A ∈T

|"̃(A )|+ sup
A ∈T

|#̃ (A )]| = ||"̃ ||+ ||#̃ ||.
(31)
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gen. effects        :

are dual each other, and the latter can be regarded as the set of positive linear contrac-

tions over the set of states, namely the set of positive functionals l on S with unit upper

bound, and with the functional lA corresponding to the effect A being defined as

lA (!) .= !(A ). (48)

The above duality naturally extends to generalized effects and generalized weights.

Therefore, WR and PR are a dual Banach pair.

In the following we will often identify generalized effects with their corresponding
functionals, and denote them by lowercase letters a,b,c, . . ., or l1, l2, . . ..

Definition 13 (Observable) We call observable a set of effects L = {li} which is in-
formationally equivalent to an action L ∈ A, namely such that there exists an action
A = {A j} for which one has li ∈A j.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.

!i li = 1.

Definition 14 (Informationally complete observable) An observableL = {li} is infor-
mationally complete if each effect can be written as a linear combination of the of ele-

ments of L, namely for each effect l there exist coefficients ci(l) such that

l =!
i

ci(l)li. (49)

We call the informationally complete observable minimal when its effects are linearly

independent.

Clearly, using an informationally complete observable one can reconstruct any state !
from just the probabilities li(!), since one has

!(A ) =!
i

ci(lA )li(!). (50)

Definition 15 (Predictability and resolution) We will call a transformation A—and

likewise its effect—predictable if there exists a state for which A occurs with certainty

and some other state for which it never occurs. The transformation (effect) will be also

called resolved if the state for which it occurs with certainty is unique—whence pure.

An action will be called predictable when it is made only of predictable transformations,
and resolved when all transformations are resolved.

The present notion of predictability for effect corresponds to that of "decision effects"
of Ludwig [4]. For a predictable transformation A one has ||A || = 1. Notice that a

predictable transformation is not deterministic, and it can generally occur with nonunit
probability on some state ! . Predictable effectsA correspond to affine functions fA on

the state space S with 0! fA ! 1 achieving both bounds. Their set will be denoted by
Pp.

Definition 16 (Perfectly discriminable set of states) We call a set of states {!n}n=1,N
perfectly discriminable if there exists an action A = {A j} j=1,N with transformations

Errors in How to Derive the Hilbert-Space Formulation ....

Giacomo Mauro D’Ariano

QUIT Group, Dipartimento di Fisica “A. Volta”, via Bassi 6, I-27100 Pavia, Italy, http://www.qubit.it
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208

Abstract.

Keywords: Foundations, Axiomatics, Measurement Theory
PACS: 03.65.-w

Start from norm of generalized effects, defined as follows

||A || := sup
!∈S

|!(A )|, (1)

and then define the norm on generalized weights as follows

||!̃|| := sup
PR"||A ||!1

|!̃(A )|. (2)

Then define norm for transformations as follows

||A || := sup
PR"||B||!1

||B ◦A || = sup
PR"||B||!1

sup
!∈S

!(B ◦A ). (3)

Now, for x in a Banach space and T a map on the Banach space one has

||Tx|| =
∣∣∣∣

∣∣∣∣T
x

||x||

∣∣∣∣

∣∣∣∣ ||x|| ! sup
||y||=1

||Ty||||x|| ! sup
||y||!1

||Ty||||x|| =: ||T ||||x||, (4)

namely

||Tx|| ! ||T ||||x||, (5)

and applying the last identity twice one has for operators on the Banach space

||AB|| ! ||A||||B||, (6)

since

||AB|| = sup
||x||!1

||ABx|| ! sup
||x||!1

||A||||B||||x|| = ||A||||B||. (7)

This implies that ||B ◦A || ! ||B||||A ||, whence the generalized transformations make a Banach algebra.



Real Banach spaces

dual Banach pair

lA (ω)
.
= ω(A )

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
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set in form of a truncated convex cone.
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that we will call generalized transformations (to be contrasted with the original notion,

for which we will keep the name physical transformations). The generalized transfor-
mations constitute a real vector space—hereafter denoted as TR—which is the affine
space of the convex space T. Composition of transformations can be extended via lin-
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generalized transformations.

Remark 4 (Cone and double-cone of generalized transformations) The generalized

transformations G of the form G = !A with A physical transformation and ! ! 0

make a cone whereas for ! ∈ R make a double cone. Notice that for B ∈ TR generally

out of the double cone the conditioning "B is no longer a state (e. g. there exist a

physical transformation A for which "G (A ) > 1 or "G (A ) < 0, even though "G is

normalized. On the other hand, for generalized transformations in the double cone "G
is always a true state. We will denote the cone as T+

R and the double cone as T±
R .

Indeed, for a generalized transformation G = !A ∈ T±
R proportional to a physical

transformation A one has

"G (B) =
"(B ◦G )
"(G )

=
"(B ◦!G )
"(!G )

=
"(B ◦A )
"(A )

. (28)

However, for a generalized transformation G = A1−A2 $∈ T±
R one has

"A1−A2
=

"(A1)
"(A1)−"(A2)

"A1
− "(A2)
"(A1)−"(A2)

"A2
= !"A1

+(1−! )"A2
, (29)

and, generally one can have ! > 1, in which case consider e. g. a transformation B for
which "A1

(B) ! !−1 and "A2
(B) = 0. Then, one has "A1−A2

(B) > 1.

The linear space of generalized weightsWR can be equipped with a norm as follows.

Theorem 3 (Banach space of generalized weights) The generalized weights make a

Banach space, with norm defined as follows

||"̃ || := sup
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since
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|"̃(A )|+ sup
A ∈T

|#̃ (A )]| = ||"̃ ||+ ||#̃ ||.
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In the following we will often identify generalized effects with their corresponding
functionals, and denote them by lowercase letters a,b,c, . . ., or l1, l2, . . ..

Definition 13 (Observable) We call observable a set of effects L = {li} which is in-
formationally equivalent to an action L ∈ A, namely such that there exists an action
A = {A j} for which one has li ∈A j.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.

!i li = 1.

Definition 14 (Informationally complete observable) An observableL = {li} is infor-
mationally complete if each effect can be written as a linear combination of the of ele-

ments of L, namely for each effect l there exist coefficients ci(l) such that

l =!
i

ci(l)li. (49)

We call the informationally complete observable minimal when its effects are linearly

independent.

Clearly, using an informationally complete observable one can reconstruct any state !
from just the probabilities li(!), since one has

!(A ) =!
i

ci(lA )li(!). (50)

Definition 15 (Predictability and resolution) We will call a transformation A—and

likewise its effect—predictable if there exists a state for which A occurs with certainty

and some other state for which it never occurs. The transformation (effect) will be also

called resolved if the state for which it occurs with certainty is unique—whence pure.

An action will be called predictable when it is made only of predictable transformations,
and resolved when all transformations are resolved.

The present notion of predictability for effect corresponds to that of "decision effects"
of Ludwig [4]. For a predictable transformation A one has ||A || = 1. Notice that a

predictable transformation is not deterministic, and it can generally occur with nonunit
probability on some state ! . Predictable effectsA correspond to affine functions fA on

the state space S with 0! fA ! 1 achieving both bounds. Their set will be denoted by
Pp.

Definition 16 (Perfectly discriminable set of states) We call a set of states {!n}n=1,N
perfectly discriminable if there exists an action A = {A j} j=1,N with transformations
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Start from norm of generalized effects, defined as follows

||A || := sup
!∈S

|!(A )|, (1)

and then define the norm on generalized weights as follows

||!̃|| := sup
PR"||A ||!1

|!̃(A )|. (2)

Then define norm for transformations as follows

||A || := sup
PR"||B||!1

||B ◦A || = sup
PR"||B||!1

sup
!∈S

!(B ◦A ). (3)

Now, for x in a Banach space and T a map on the Banach space one has

||Tx|| =
∣∣∣∣

∣∣∣∣T
x

||x||

∣∣∣∣

∣∣∣∣ ||x|| ! sup
||y||=1

||Ty||||x|| ! sup
||y||!1

||Ty||||x|| =: ||T ||||x||, (4)

namely

||Tx|| ! ||T ||||x||, (5)

and applying the last identity twice one has for operators on the Banach space

||AB|| ! ||A||||B||, (6)

since

||AB|| = sup
||x||!1

||ABx|| ! sup
||x||!1

||A||||B||||x|| = ||A||||B||. (7)

This implies that ||B ◦A || ! ||B||||A ||, whence the generalized transformations make a Banach algebra.



Real Banach spaces

dual Banach pair

lA (ω)
.
= ω(A )

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned
local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
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and some other state for which it never occurs. The transformation (effect) will be also

called resolved if the state for which it occurs with certainty is unique—whence pure.
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The present notion of predictability for effect corresponds to that of "decision effects"
of Ludwig [4]. For a predictable transformation A one has ||A || = 1. Notice that a

predictable transformation is not deterministic, and it can generally occur with nonunit
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theorem.
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on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-
dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
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∣∣∣∣ ||x|| ! sup
||y||=1

||Ty||||x|| ! sup
||y||!1

||Ty||||x|| =: ||T ||||x||, (4)

namely

||Tx|| ! ||T ||||x||, (5)

and applying the last identity twice one has for operators on the Banach space

||AB|| ! ||A||||B||, (6)

since

||AB|| = sup
||x||!1

||ABx|| ! sup
||x||!1

||A||||B||||x|| = ||A||||B||. (7)

This implies that ||B ◦A || ! ||B||||A ||, whence the generalized transformations make a Banach algebra.

gen. transformations       :

belong, whence Rule 5 is well posed. As we will see in the following (see Rule 6),

due to Rule 5 the set T of all possible transformations of a physical system is a convex
set in form of a truncated convex cone.

Remark 3 (Algebra of generalized transformations) Using Eqs. (25) and (27) one

can extend the addition of coexistent transformations to generic linear combinations,

that we will call generalized transformations (to be contrasted with the original notion,

for which we will keep the name physical transformations). The generalized transfor-
mations constitute a real vector space—hereafter denoted as TR—which is the affine
space of the convex space T. Composition of transformations can be extended via lin-
earity to generalized transformations, making their space a real algebra, the algebra of

generalized transformations.

Remark 4 (Cone and double-cone of generalized transformations) The generalized

transformations G of the form G = !A with A physical transformation and ! ! 0

make a cone whereas for ! ∈ R make a double cone. Notice that for B ∈ TR generally

out of the double cone the conditioning "B is no longer a state (e. g. there exist a

physical transformation A for which "G (A ) > 1 or "G (A ) < 0, even though "G is

normalized. On the other hand, for generalized transformations in the double cone "G
is always a true state. We will denote the cone as T+

R and the double cone as T±
R .

Indeed, for a generalized transformation G = !A ∈ T±
R proportional to a physical

transformation A one has

"G (B) =
"(B ◦G )
"(G )

=
"(B ◦!G )
"(!G )

=
"(B ◦A )
"(A )

. (28)

However, for a generalized transformation G = A1−A2 $∈ T±
R one has

"A1−A2
=

"(A1)
"(A1)−"(A2)

"A1
− "(A2)
"(A1)−"(A2)

"A2
= !"A1

+(1−! )"A2
, (29)

and, generally one can have ! > 1, in which case consider e. g. a transformation B for
which "A1

(B) ! !−1 and "A2
(B) = 0. Then, one has "A1−A2

(B) > 1.

The linear space of generalized weightsWR can be equipped with a norm as follows.

Theorem 3 (Banach space of generalized weights) The generalized weights make a

Banach space, with norm defined as follows

||"̃ || := sup
A ∈T

|"̃(A )|. (30)

Proof. The quantity in Eq. (30) satisfies the sub-additivity relation ||"̃+ #̃ ||" ||"̃ ||+ ||#̃ ||,
since

||"̃+ #̃ || = sup
A ∈T

[|"̃(A )+ #̃ (A )|]≤ sup
A ∈T

[|"̃(A )|+ |#̃ (A )|]

≤ sup
A ∈T

|"̃(A )|+ sup
A ∈T

|#̃ (A )]| = ||"̃ ||+ ||#̃ ||.
(31)
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||B ◦A || = sup
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sup
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Now, for x in a Banach space and T a map on the Banach space one has
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∣∣∣∣ ||x|| ! sup
||y||=1

||Ty||||x|| ! sup
||y||!1

||Ty||||x|| =: ||T ||||x||, (4)

namely

||Tx|| ! ||T ||||x||, (5)

and applying the last identity twice one has for operators on the Banach space

||AB|| ! ||A||||B||, (6)

since

||AB|| = sup
||x||!1

||ABx|| ! sup
||x||!1

||A||||B||||x|| = ||A||||B||. (7)

This implies that ||B ◦A || ! ||B||||A ||, whence the generalized transformations make a Banach algebra.

gen. effects        :

are dual each other, and the latter can be regarded as the set of positive linear contrac-

tions over the set of states, namely the set of positive functionals l on S with unit upper

bound, and with the functional lA corresponding to the effect A being defined as

lA (!) .= !(A ). (48)

The above duality naturally extends to generalized effects and generalized weights.

Therefore, WR and PR are a dual Banach pair.

In the following we will often identify generalized effects with their corresponding
functionals, and denote them by lowercase letters a,b,c, . . ., or l1, l2, . . ..

Definition 13 (Observable) We call observable a set of effects L = {li} which is in-
formationally equivalent to an action L ∈ A, namely such that there exists an action
A = {A j} for which one has li ∈A j.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.

!i li = 1.

Definition 14 (Informationally complete observable) An observableL = {li} is infor-
mationally complete if each effect can be written as a linear combination of the of ele-

ments of L, namely for each effect l there exist coefficients ci(l) such that

l =!
i

ci(l)li. (49)

We call the informationally complete observable minimal when its effects are linearly

independent.

Clearly, using an informationally complete observable one can reconstruct any state !
from just the probabilities li(!), since one has

!(A ) =!
i

ci(lA )li(!). (50)

Definition 15 (Predictability and resolution) We will call a transformation A—and

likewise its effect—predictable if there exists a state for which A occurs with certainty

and some other state for which it never occurs. The transformation (effect) will be also

called resolved if the state for which it occurs with certainty is unique—whence pure.

An action will be called predictable when it is made only of predictable transformations,
and resolved when all transformations are resolved.

The present notion of predictability for effect corresponds to that of "decision effects"
of Ludwig [4]. For a predictable transformation A one has ||A || = 1. Notice that a

predictable transformation is not deterministic, and it can generally occur with nonunit
probability on some state ! . Predictable effectsA correspond to affine functions fA on

the state space S with 0! fA ! 1 achieving both bounds. Their set will be denoted by
Pp.

Definition 16 (Perfectly discriminable set of states) We call a set of states {!n}n=1,N
perfectly discriminable if there exists an action A = {A j} j=1,N with transformations
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belong, whence Rule 5 is well posed. As we will see in the following (see Rule 6),

due to Rule 5 the set T of all possible transformations of a physical system is a convex
set in form of a truncated convex cone.

Remark 3 (Algebra of generalized transformations) Using Eqs. (25) and (27) one

can extend the addition of coexistent transformations to generic linear combinations,

that we will call generalized transformations (to be contrasted with the original notion,

for which we will keep the name physical transformations). The generalized transfor-
mations constitute a real vector space—hereafter denoted as TR—which is the affine
space of the convex space T. Composition of transformations can be extended via lin-
earity to generalized transformations, making their space a real algebra, the algebra of

generalized transformations.

Remark 4 (Cone and double-cone of generalized transformations) The generalized

transformations G of the form G = !A with A physical transformation and ! ! 0

make a cone whereas for ! ∈ R make a double cone. Notice that for B ∈ TR generally

out of the double cone the conditioning "B is no longer a state (e. g. there exist a

physical transformation A for which "G (A ) > 1 or "G (A ) < 0, even though "G is

normalized. On the other hand, for generalized transformations in the double cone "G
is always a true state. We will denote the cone as T+

R and the double cone as T±
R .

Indeed, for a generalized transformation G = !A ∈ T±
R proportional to a physical

transformation A one has

"G (B) =
"(B ◦G )
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=
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"(!G )

=
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. (28)

However, for a generalized transformation G = A1−A2 $∈ T±
R one has
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"(A1)
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and, generally one can have ! > 1, in which case consider e. g. a transformation B for
which "A1

(B) ! !−1 and "A2
(B) = 0. Then, one has "A1−A2

(B) > 1.

The linear space of generalized weightsWR can be equipped with a norm as follows.

Theorem 3 (Banach space of generalized weights) The generalized weights make a

Banach space, with norm defined as follows

||"̃ || := sup
A ∈T

|"̃(A )|. (30)

Proof. The quantity in Eq. (30) satisfies the sub-additivity relation ||"̃+ #̃ ||" ||"̃ ||+ ||#̃ ||,
since

||"̃+ #̃ || = sup
A ∈T

[|"̃(A )+ #̃ (A )|]≤ sup
A ∈T
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≤ sup
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(31)
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Informationally complete observable
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Remark 5 (Duality between the convex sets of states and of propensities). From the
Definition 2 of state it follows that the convex set of states S and the convex sets of
propensities T are dual each other, and the latter can be regarded as the set of positive
linear contractions over the set of states, namely the set of positive functionals l on S
with unit upper bound, and with the functional l[A ] corresponding to the propensity [A ]
being defined as

(26) l[A ](ω)
.
= ω(A ).

In the following we will often identify propensities with their corresponding functionals,
and denote them by lowercase letters a, b, c, . . ., or l1, l2, . . .. Finally, notice that the notion
of coexistence (informational compatibility) extends naturally to propensities.

Remark 6 (Dual cone notation). We can write the propensity linear functionals on S
with the equivalent pairing notations

(27) lA (ω)
.
= ω(A ) ≡ (A |ω).

Definition 18 (Generalized observable). We call generalized observable a set of propen-
sities L = {li} which is informationally equivalent to an action L ∈ A, namely such that
there exists an action A = {Aj} for of which one has li ∈ Aj.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.P
i li = 1.

Definition 19 (Informationally complete generalized observable). A generalized observ-
able L = {li} is informationally complete if each propensity can be written as a linear
combination of the of elements of L, namely for each propensity l there exist coefficients
ci(l) such that

(28) l =
X

i

ci(l)li.

Clearly, using an informationally complete generalized observable one can reconstruct
any state ω from just the probabilities li(ω), since one has

(29) ω(A ) =
X

i

ci(lA )li(ω).

Rule 9 (Partial ordering between propensities). For two propensities l1, l2 ∈ P we write
l1 ≤ l2 when l1(ω) ≤ l2(ω) ∀ω ∈ S.

In Ref. [6] the present partial ordering is interpreted saying that l2 is more sensitive
than l1. Upon introducing the notions of Kernel K0(l) for the propensity l, i. e. K0(l) =
{ω ∈ P |l(ω) = 0}, Ludwig introduces two axioms on increasing sensitivity of propensities:

Rule 10 (Axiom V1a of Ref.[6]). For two propensities there is always a third one such
that l3 ≥ l1, l2 and K0(l1) ∩K0(l2) ⊂ K0(l3).

Rule 11 (Axiom V1b of Ref.[6]). For each propensity there is always another one such
that l′ ≥ l and K0(l) ⊂ K0(l

′).

Introducing the notion of face generated by an ensemble C(ω), H. Neumann [7] also
considers the following axioms

Rule 12 (Axiom V2 of Ref. [7]). If C(ω2) ⊂ C(ω1) there is a propensity l with ω2 ∈ K0(l),
but ω1 (∈ K0(l)

Rule 13 (Axiom V3 of Ref. [7]). If C(ω1) ⊂ C(ω3) ⊂ C( 1
2ω1 + 1

2ω2) and C(ω2) and
C(ω3) are strictly separated, then C(ω1) = C(ω3)
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Figure 5. Preparability of transformations. Illustration of Eq. (9).

14. Affine-space notation

For the following we will fix a minimal informationally complete observable, denoted
by {nj}, in terms of which we can expand (in a unique way) any propensity as follows

(66) lA =
X

j

mj(A )nj .

It will turn out to be convenient to replace one element of the informationally complete
observable {nj} with the normalization functional n0 defined as

(67) n0(ω̃) = ω̃(I ), ∀ω̃ ∈ S̃,

[n0(ω) = 1 for normalized states ω]. We will then use the Minkowskian notation

(68) n
.
= (n0, n), mn

.
=

X

j

mjnj = m · n + m0n0.

In the following we will also denote q
.
= m0. Therefore, for any propensity A , we will

write

(69) lA (ω) = m(A )n(ω) ≡ m(A ) · n(ω) + q(A ).

Clearly one can extend the convex set of propensities P to the complexification CP of
the underlying affine space, by keeping the coefficients mj of the expansion as complex,
namely a generic element l ∈ CP will be given by

(70) l =
X

j

mjnj , mj ∈ C.

Notice that n(ω) gives a complete description of the state ω, since for any transformation
A one can write

(71) ω(A ) = m(A ) · n(ω) + q(A ).

On the other hand, by denoting with X j and lj the propensity such that [m(X j)]l = δjl

we have

(72) nj(ω) = lX j
(ω)

.
= lj(ω).

Notice that X 0 ≡ I . We will call n(ω) the Bloch vector representing the state ω. The
Bloch representation is faithful (i. e. one-to-one), since the informationally complete
observable {lj} is minimal, namely the functionals lj are linearly independent.

We now recover the linear transformation describing conditioning. The conditioning
is given by the operation. More precisely, the conditioning of the state ω given that the
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(67) n0(ω̃) = ω̃(I ), ∀ω̃ ∈ S̃,
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In the following we will also denote q
.
= m0. Therefore, for any propensity A , we will

write

(69) lA (ω) = m(A )n(ω) ≡ m(A ) · n(ω) + q(A ).

Clearly one can extend the convex set of propensities P to the complexification CP of
the underlying affine space, by keeping the coefficients mj of the expansion as complex,
namely a generic element l ∈ CP will be given by
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transformation A occurred is given by the unnormalized state OpA ω ≡ ω̃A , and, more
explicitely

(73) OpA ω(B) ≡ ω̃A (B) = ω(B ◦A ) = ω(B ◦A ) ≡ lB(ω̃A )

From linearity of transformations (see remark 4) one can introduce a matrix {Mjl(A )},
and write

(74) ω(X j ◦A ) =
X

l

Mjl(A )ll(ω) + Mj0(A ),

and, in particular,

(75) ω(X0 ◦A ) ≡ ω(A ) =
X

l

M0l(A )ll(ω) + M00(A ) ≡ m(A ) · n(ω) + q(A ),

from which we derive the identities

(76) M0l(A ) ≡ [m(A )]l, M00(A ) ≡ q(A ).

The real matrices Mjl(A ) are a representation of the (real) Banach algebra of transfor-
mations. The first row of the matrix is a representation of the propensity A (see Fig.
6).

In the Bloch-vector notation, one has

nj(ω̃A ) =lX j
(ω̃A ) = ω(Xj ◦A ),

n0(ω̃A ) =lX 0(ω̃A ) = ω(A ).
(77)

n(ω̃A ) =M (A )n(ω) + k(A ), n0(ω̃A ) = m(A ) · n(ω) + q(A )

kj(A )
.
=q(Xj ◦A ),

(78)

(79) ω̃A (B) = m(B) · n(ω̃A ) + q(B)n0(ω̃A )

The matrix representation of the transformation is synthesized in Fig. 6. Since the Bloch

Mij(A ) =

0

BBBBBBBBBBBBBBBB@

q(A ) m(A )

k(A ) M (A )

1

CCCCCCCCCCCCCCCCA

Figure 6. Matrix representation of the real algebra of transforma-
tions. The first row represents the propensity A of the transformation
A . It gives the transformation of the zero-component of the Bloch vec-
tor n0(ω̃A ) ≡ ω(A ) = m(A ) · n(ω) + q(A ), namely the probability of
the transformation. The following rows represent the affine transforma-
tion of the Bloch vector n(ω) corresponding to the quantum operation
OpA , the first column giving the translation k(A ) , and the remaining
square matrix M (A ) the linear part. Overall, the Bloch vector of the
state ω is transformed as n(OpA ω) = Mn(ω) + k(A ).

representation is faithful, then the dimension of the affine space of the Bloch vector n(ω)
is just the affine dimension adm(S) of the convex set of states S. The affine dimension of
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Therefore, summarizing we have found the following conditioning transformation

(80) n(ω) −→ n(ωA ) =
M (A )n(ω) + k(A )
m(A ) · n(ω) + q(A )

,

with the transformation occurring with probability given by

(81) p(A ; ω) = m(A ) · n(ω) + q(A ).

We will now make the following operational assumption

Postulate 1 (Local observability principle). For every composite system there exist infor-
mationally complete observables made only of local informationally complete observables.

The local observability principle is operationally crucial, since it reduces enormously the
complexity of informationally complete observations on composite systems, by guarantee-
ing that only local (although jointly executed!) experiments are sufficient for retrieving a
complete information, also any correlations between the component systems. This prin-
ciple directly implies the following upper bound for the affine dimension of a composed
system

(82) adm(S12) ≤ adm(S1) adm(S2) + adm(S1) + adm(S2).

In fact, if the number of outcomes of a minimal informationally complete observable on
S is N , the affine dimension is given by adm(S) = N − 1. Now, consider a global in-
formationally complete measurement made of two local minimal informationally complete
observable measured jointly. It has number of outcomes [adm(S1) + 1][adm(S2) + 1].
However, we are not guaranteed that the joint observable is itself minimal, whence the
bound (82) follows.

Using joint local informationally complete observable, we can built a Bloch represen-
tation of joint states and of transformations of the composed system. We introduce the
dual tensor notation n $ n with the following meaning

(83) (n $ n)ij(Φ) ≡ ni $ nj(Φ)
.
= lX i,X j

(Φ),

and with the matrix composition rule

(84) (M (A )$M (B))(n $ n)(Φ) = (M (A )n $M (A )n)(Φ).

For example, one has

Φ(X i ◦A , X j ◦B) =(M (A )n $M (B)n)ij(Φ) + (k(A ))n0 $M (B)n)ij(Φ)

+(M (A ))n $ k(B)n0)ij(Φ) + ki(A )kj(B)
(85)

where we used the identity (n0 $ n0)(Φ) = 1.
We now translate the concept of dynamically faithful state in the present Bloch rep-

resentation. If the state Φ is (dynamically) faithful, then the output state ΦA ,I (con-
ditioned that the transformation A occurred locally on the first system) is in one-to-one
correspondence with the transformation A .

!

!
Φ

A

ΦA ,I

Therefore, one can completely determine the transformation by determining the output
state. We need to determine the matrix M (A ) plus the vectors k(A ) and m(A ), plus the
parameter q(A ), namely adm(S)2 + 2adm(S) + 1 parameters. However, one parameter,
say q(A ) is determined by the overall probability of occurrence of A on the state Φ, from
which the conditioned state is independent. Therefore, in order to have a joint faithful
state we need to have at least adm(S)[adm(S) + 2] independent parameters for the joint
state, namely we have the lower bound for the affine dimension of the joint system

(86) adm(S×2) ≥ adm(S)[adm(S) + 2].
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Conditioning: 
fractional affine 
transformation



Dynamically faithful state: we say that a state      of a bipartite 
system is dynamically faithful if when acting on it with a local 
transformation      on one system the output  conditioned 
weight                is in 1-to-1 correspondence with the 
transformation
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Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows

(52) ΩA2(·, I )
.
=

Ω(·, A )
Ω(I , A )

= ω(1)
A2

.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !

"
#
$ !

!
Φ

A

ΦA ,I

Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.

!

!
"

#
$A

Φ

Φ(A , ·)

In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.
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system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.
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Preparationally faithful state: we say that a state       
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achieved by a suitable local transformation       on the 
other component system
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when
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Perfectly discriminating observable

Perfectly discriminable states/observable       : there 
exists an observable               such that 

ON THE MISSING AXIOM OF QUANTUM MECHANICS 13

Remark 5 (Duality between the convex sets of states and of propensities). From the
Definition 2 of state it follows that the convex set of states S and the convex sets of
propensities T are dual each other, and the latter can be regarded as the set of positive
linear contractions over the set of states, namely the set of positive functionals l on S
with unit upper bound, and with the functional l[A ] corresponding to the propensity [A ]
being defined as

(26) l[A ](ω)
.
= ω(A ).

In the following we will often identify propensities with their corresponding functionals,
and denote them by lowercase letters a, b, c, . . ., or l1, l2, . . .. Finally, notice that the notion
of coexistence (informational compatibility) extends naturally to propensities.

Remark 6 (Dual cone notation). We can write the propensity linear functionals on S
with the equivalent pairing notations

(27) lA (ω)
.
= ω(A ) ≡ (A |ω).

Definition 18 (Generalized observable). We call generalized observable a set of propen-
sities L = {li} which is informationally equivalent to an action L ∈ A, namely such that
there exists an action A = {Aj} for of which one has li ∈ Aj.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.P
i li = 1.

Definition 19 (Informationally complete generalized observable). A generalized observ-
able L = {li} is informationally complete if each propensity can be written as a linear
combination of the of elements of L, namely for each propensity l there exist coefficients
ci(l) such that

(28) l =
X

i

ci(l)li.

Clearly, using an informationally complete generalized observable one can reconstruct
any state ω from just the probabilities li(ω), since one has

(29) ω(A ) =
X

i

ci(lA )li(ω).

Rule 9 (Partial ordering between propensities). For two propensities l1, l2 ∈ P we write
l1 ≤ l2 when l1(ω) ≤ l2(ω) ∀ω ∈ S.

In Ref. [6] the present partial ordering is interpreted saying that l2 is more sensitive
than l1. Upon introducing the notions of Kernel K0(l) for the propensity l, i. e. K0(l) =
{ω ∈ P |l(ω) = 0}, Ludwig introduces two axioms on increasing sensitivity of propensities:

Rule 10 (Axiom V1a of Ref.[6]). For two propensities there is always a third one such
that l3 ≥ l1, l2 and K0(l1) ∩K0(l2) ⊂ K0(l3).

Rule 11 (Axiom V1b of Ref.[6]). For each propensity there is always another one such
that l′ ≥ l and K0(l) ⊂ K0(l

′).

Introducing the notion of face generated by an ensemble C(ω), H. Neumann [7] also
considers the following axioms

Rule 12 (Axiom V2 of Ref. [7]). If C(ω2) ⊂ C(ω1) there is a propensity l with ω2 ∈ K0(l),
but ω1 (∈ K0(l)

Rule 13 (Axiom V3 of Ref. [7]). If C(ω1) ⊂ C(ω3) ⊂ C( 1
2ω1 + 1

2ω2) and C(ω2) and
C(ω3) are strictly separated, then C(ω1) = C(ω3)

{ωj}

li(ωj) = δij
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perfectly discriminable states

dim#(S)



Postulate 4: Informationally complete 
discriminating observable 

For every system there exists a minimal informationally 
complete observable that can be achieved using a joint 
discriminating observable on the system + an 
“ancilla” (identical independent system).
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dim(S) = dim#(S×2) − 1



Dimensionality identities

=⇒

P2 (infoc.) dim(PR) = dim(S) + 1 (D2)
P3 (loc. obs.) dim(S12) = dim(S1) dim(S2) + dim(S1) + dim(S2) (D3)
P4 (infoc. discr.) dim(S) = dim#(S×2) − 1 (D5)
(D3)+(D5) dim(S×2) = dim#(S×2)2 − 1 (D35)
(D35) dim(S) = dim#(S)2 − 1 (D35b)
(D5+D35b) dim#(S×2) = dim#(S)2 (⊗)
P5 (faith.) dim(T) = dim(S×2) + 1 (T)
(D2)+(D35b) dim(PR) = dim#(S)2 (P)
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Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows

(52) ΩA2(·, I )
.
=

Ω(·, A )
Ω(I , A )

= ω(1)
A2

.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !

"
#
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Φ

A

ΦA ,I

Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.

!

!
"

#
$A

Φ

Φ(A , ·)

In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.

8.2. The complex Hilbert space structure

In this subsection I derive the existence of the complex Hilbert space structure of

Quantum Mechanics. The faithful state ! naturally provides a bilinear form !(A ,B)
over effects A ,B, which is certainly positive over physical effects, since !(A ,B)
is just their probability. However, unfortunately, the fact that the form is positive over

physical effects, doesn’t guarantee that it remains positive when extended to the linear
space of generalized effects, namely to their linear combinations with real (generally non

positive) coefficients. This problem can be easily cured by considering the absolute value
of the bilinear form |!| :=!+−!−, and then adopting |!|(A ,B) as the definition for
the scalar product between A and B. The absolute value |!| can be defined thanks
to the fact that ! is real symmetric, whence it can be diagonalized over the linear

space of generalized effects. Upon denoting by P± the orthogonal projectors over the
linear space corresponding to positive and negative eigenvalues, respectively, one has

!± =!(·,P±·), namely

|!|(A ,B) =!(A ,!(B)), !(A ) = (P+−P−)(A ). (62)

The map ! is an involution, namely !2 = I . Notice that there is no non zero generalized
effect C with |!|(C ,C ) = 0. Indeed, the requirement that the state ! is also prepara-

tionally faithful implies that for every state " there exists a suitable transformation T"

such that " =!I ,T"
|1 with !(I ,T") > 0, whence

"(C ) =!I ,T"
|1(C ) =!(C ,!(T̃ ")) = |!|(C ,T̃ "), T̃ " =

!(T ")
!(I ,T ")

, (63)

and due to non-negativity of |!| one has

"(C ) !
√

|!|(C ,C ) |!|(T̃ " ,T̃ "), (64)

which implies that "(C ) = 0 for all states " , i. e. C = 0. Therefore, |!|(A ,B)
defines a strictly positive real symmetric scalar product, whence the linear space PR of
generalized effects becomes a real pre-Hilbert space. The Hilbert space is then obtained

by completion in the norm topology (for the operational relevance of norm closure see
Remark 5). Notice that the Hilbert space is a real one, since both its linear space and the

scalar product are real. Let’s denote by W! such Hilbert space. Its dimension is given
by

dim(W!) = adm(S)+1, (65)

since the linear space of generalized effects is just the space of the linear functionals

over states, which has one more dimension than the convex set of states corresponding
to normalization. But from Eqs. (59) and (65) it follows that

dim(W!) = idim(S)2, (66)

whence, for finite dimensions the real Hilbert spaceW! is isomorphic to the real Hilbert

space of Hermitian complex matrices representing selfadjoint operators over a complex
Hilbert space H of dimensions dim(H) = idim(S). This is the Hilbert space formulation
of Quantum Mechanics.
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Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows
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.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !

"
#
$ !

!
Φ

A

ΦA ,I

Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.

!

!
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Φ

Φ(A , ·)

In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.

8.2. The complex Hilbert space structure

In this subsection I derive the existence of the complex Hilbert space structure of

Quantum Mechanics. The faithful state ! naturally provides a bilinear form !(A ,B)
over effects A ,B, which is certainly positive over physical effects, since !(A ,B)
is just their probability. However, unfortunately, the fact that the form is positive over

physical effects, doesn’t guarantee that it remains positive when extended to the linear
space of generalized effects, namely to their linear combinations with real (generally non

positive) coefficients. This problem can be easily cured by considering the absolute value
of the bilinear form |!| :=!+−!−, and then adopting |!|(A ,B) as the definition for
the scalar product between A and B. The absolute value |!| can be defined thanks
to the fact that ! is real symmetric, whence it can be diagonalized over the linear
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, (63)

and due to non-negativity of |!| one has

"(C ) !
√

|!|(C ,C ) |!|(T̃ " ,T̃ "), (64)

which implies that "(C ) = 0 for all states " , i. e. C = 0. Therefore, |!|(A ,B)
defines a strictly positive real symmetric scalar product, whence the linear space PR of
generalized effects becomes a real pre-Hilbert space. The Hilbert space is then obtained

by completion in the norm topology (for the operational relevance of norm closure see
Remark 5). Notice that the Hilbert space is a real one, since both its linear space and the

scalar product are real. Let’s denote by W! such Hilbert space. Its dimension is given
by

dim(W!) = adm(S)+1, (65)

since the linear space of generalized effects is just the space of the linear functionals

over states, which has one more dimension than the convex set of states corresponding
to normalization. But from Eqs. (59) and (65) it follows that

dim(W!) = idim(S)2, (66)

whence, for finite dimensions the real Hilbert spaceW! is isomorphic to the real Hilbert

space of Hermitian complex matrices representing selfadjoint operators over a complex
Hilbert space H of dimensions dim(H) = idim(S). This is the Hilbert space formulation
of Quantum Mechanics.
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Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows

(52) ΩA2(·, I )
.
=

Ω(·, A )
Ω(I , A )

= ω(1)
A2

.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !

"
#
$ !

!
Φ

A

ΦA ,I

Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.

!

!
"

#
$A

Φ

Φ(A , ·)

In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.

8.2. The complex Hilbert space structure

In this subsection I derive the existence of the complex Hilbert space structure of

Quantum Mechanics. The faithful state ! naturally provides a bilinear form !(A ,B)
over effects A ,B, which is certainly positive over physical effects, since !(A ,B)
is just their probability. However, unfortunately, the fact that the form is positive over

physical effects, doesn’t guarantee that it remains positive when extended to the linear
space of generalized effects, namely to their linear combinations with real (generally non

positive) coefficients. This problem can be easily cured by considering the absolute value
of the bilinear form |!| :=!+−!−, and then adopting |!|(A ,B) as the definition for
the scalar product between A and B. The absolute value |!| can be defined thanks
to the fact that ! is real symmetric, whence it can be diagonalized over the linear

space of generalized effects. Upon denoting by P± the orthogonal projectors over the
linear space corresponding to positive and negative eigenvalues, respectively, one has

!± =!(·,P±·), namely

|!|(A ,B) =!(A ,!(B)), !(A ) = (P+−P−)(A ). (62)

The map ! is an involution, namely !2 = I . Notice that there is no non zero generalized
effect C with |!|(C ,C ) = 0. Indeed, the requirement that the state ! is also prepara-

tionally faithful implies that for every state " there exists a suitable transformation T"

such that " =!I ,T"
|1 with !(I ,T") > 0, whence

"(C ) =!I ,T"
|1(C ) =!(C ,!(T̃ ")) = |!|(C ,T̃ "), T̃ " =

!(T ")
!(I ,T ")

, (63)

and due to non-negativity of |!| one has

"(C ) !
√

|!|(C ,C ) |!|(T̃ " ,T̃ "), (64)

which implies that "(C ) = 0 for all states " , i. e. C = 0. Therefore, |!|(A ,B)
defines a strictly positive real symmetric scalar product, whence the linear space PR of
generalized effects becomes a real pre-Hilbert space. The Hilbert space is then obtained

by completion in the norm topology (for the operational relevance of norm closure see
Remark 5). Notice that the Hilbert space is a real one, since both its linear space and the

scalar product are real. Let’s denote by W! such Hilbert space. Its dimension is given
by

dim(W!) = adm(S)+1, (65)

since the linear space of generalized effects is just the space of the linear functionals

over states, which has one more dimension than the convex set of states corresponding
to normalization. But from Eqs. (59) and (65) it follows that

dim(W!) = idim(S)2, (66)

whence, for finite dimensions the real Hilbert spaceW! is isomorphic to the real Hilbert

space of Hermitian complex matrices representing selfadjoint operators over a complex
Hilbert space H of dimensions dim(H) = idim(S). This is the Hilbert space formulation
of Quantum Mechanics.
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For finite dimensions the real Hilbert space        is 
isomorphic to the real Hilbert space of Hermitian complex 
matrices representing selfadjoint operators over a complex 
Hilbert space     of dimensions                                     . 

The complex Hilbert space formulation

2. determining the following probabilities

Φ(X j ◦A ,X k) =
[(M(A )n) j"nk](Φ)+ k j(A )(n0"nk)(Φ)

Φ(A ,I )
,

Φ(X 0 ◦A ,X j) =(m(A ) · n"n j)(Φ)+q(A ), j = 1, . . .adm(S),
k = 0,1, . . .adm(S);

(104)

3. invert the above equations in terms of M(A ), k(A ), m(A ), and q(A ).

Assuming now Postulate 4 gives a bound for the informational dimension of the infor-
mational dimension of convex sets of states. In fact, if for any bipartite system made
of two identical components and for some preparations of one component there exists
a discriminating observable that is informationally complete for the other component,
this means that adm(S) ≥ idim(S×2)− 1, with the equal sign if the informationally
complete observable is also minimal, namely

adm(S) = idim(S×2)−1. (105)

By comparing this with the affine dimension of the bipartite system, we get

adm(S×2) =adm(S)[adm(S)+2] = [idim(S×2)−1][idim(S×2)+1]
= idim(S×2)2−1,

(106)

which, generalizing to any convex set gives the identification

adm(S) = idim(S)2−1, (107)

corresponding to the dimension of the quantum convex sets S originated from Hilbert
spaces. Moreover, upon substituting Eq. (105) into Eq. (107) one obtain

idim(S×2) = idim(S)2, (108)

which is the tensor product rule for informational dimensionalities.
According to Theorem 8 we have the identity

dim(Hϕ) = adm(S)+1, (109)

since Hϕ is identified with the vector space of the generalized propensities, namely the
space of the linear functionals over states which has one more dimension than the convex
set of states corresponding to normalization. From Eqs. (107) and (109) we now have

dim(Hϕ) = idim(S)2. (110)

Then, for finite dimensions the real Hilbert space Hϕ is isomorphic to the real Hilbert
space of Hermitian complex matrices representing selfadjoint operators over a complex
Hilbert space H of dimensions dim(H) = idim(S), with scalar product corresponding to
the trace pairing used in the Born rule, and with the convex cones of propensities and
states corresponding to the convex cone of positive matrices. This is the Hilbert space
formulation of Quantum Mechanics. In infinite dimensions the selfadjoint operators are

PR

dim(H) = dim#(S)
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Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows

(52) ΩA2(·, I )
.
=

Ω(·, A )
Ω(I , A )

= ω(1)
A2

.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !
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Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.

8.2. The complex Hilbert space structure

In this subsection I derive the existence of the complex Hilbert space structure of

Quantum Mechanics. The faithful state ! naturally provides a bilinear form !(A ,B)
over effects A ,B, which is certainly positive over physical effects, since !(A ,B)
is just their probability. However, unfortunately, the fact that the form is positive over

physical effects, doesn’t guarantee that it remains positive when extended to the linear
space of generalized effects, namely to their linear combinations with real (generally non

positive) coefficients. This problem can be easily cured by considering the absolute value
of the bilinear form |!| :=!+−!−, and then adopting |!|(A ,B) as the definition for
the scalar product between A and B. The absolute value |!| can be defined thanks
to the fact that ! is real symmetric, whence it can be diagonalized over the linear

space of generalized effects. Upon denoting by P± the orthogonal projectors over the
linear space corresponding to positive and negative eigenvalues, respectively, one has

!± =!(·,P±·), namely

|!|(A ,B) =!(A ,!(B)), !(A ) = (P+−P−)(A ). (62)

The map ! is an involution, namely !2 = I . Notice that there is no non zero generalized
effect C with |!|(C ,C ) = 0. Indeed, the requirement that the state ! is also prepara-

tionally faithful implies that for every state " there exists a suitable transformation T"

such that " =!I ,T"
|1 with !(I ,T") > 0, whence

"(C ) =!I ,T"
|1(C ) =!(C ,!(T̃ ")) = |!|(C ,T̃ "), T̃ " =

!(T ")
!(I ,T ")

, (63)

and due to non-negativity of |!| one has

"(C ) !
√

|!|(C ,C ) |!|(T̃ " ,T̃ "), (64)

which implies that "(C ) = 0 for all states " , i. e. C = 0. Therefore, |!|(A ,B)
defines a strictly positive real symmetric scalar product, whence the linear space PR of
generalized effects becomes a real pre-Hilbert space. The Hilbert space is then obtained

by completion in the norm topology (for the operational relevance of norm closure see
Remark 5). Notice that the Hilbert space is a real one, since both its linear space and the

scalar product are real. Let’s denote by W! such Hilbert space. Its dimension is given
by

dim(W!) = adm(S)+1, (65)

since the linear space of generalized effects is just the space of the linear functionals

over states, which has one more dimension than the convex set of states corresponding
to normalization. But from Eqs. (59) and (65) it follows that

dim(W!) = idim(S)2, (66)

whence, for finite dimensions the real Hilbert spaceW! is isomorphic to the real Hilbert

space of Hermitian complex matrices representing selfadjoint operators over a complex
Hilbert space H of dimensions dim(H) = idim(S). This is the Hilbert space formulation
of Quantum Mechanics.
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Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows

(52) ΩA2(·, I )
.
=

Ω(·, A )
Ω(I , A )

= ω(1)
A2

.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !

"
#
$ !

!
Φ

A

ΦA ,I

Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.

!

!
"

#
$A

Φ

Φ(A , ·)

In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.

8.2. The complex Hilbert space structure

In this subsection I derive the existence of the complex Hilbert space structure of

Quantum Mechanics. The faithful state ! naturally provides a bilinear form !(A ,B)
over effects A ,B, which is certainly positive over physical effects, since !(A ,B)
is just their probability. However, unfortunately, the fact that the form is positive over

physical effects, doesn’t guarantee that it remains positive when extended to the linear
space of generalized effects, namely to their linear combinations with real (generally non

positive) coefficients. This problem can be easily cured by considering the absolute value
of the bilinear form |!| :=!+−!−, and then adopting |!|(A ,B) as the definition for
the scalar product between A and B. The absolute value |!| can be defined thanks
to the fact that ! is real symmetric, whence it can be diagonalized over the linear

space of generalized effects. Upon denoting by P± the orthogonal projectors over the
linear space corresponding to positive and negative eigenvalues, respectively, one has

!± =!(·,P±·), namely

|!|(A ,B) =!(A ,!(B)), !(A ) = (P+−P−)(A ). (62)

The map ! is an involution, namely !2 = I . Notice that there is no non zero generalized
effect C with |!|(C ,C ) = 0. Indeed, the requirement that the state ! is also prepara-

tionally faithful implies that for every state " there exists a suitable transformation T"

such that " =!I ,T"
|1 with !(I ,T") > 0, whence

"(C ) =!I ,T"
|1(C ) =!(C ,!(T̃ ")) = |!|(C ,T̃ "), T̃ " =

!(T ")
!(I ,T ")

, (63)

and due to non-negativity of |!| one has

"(C ) !
√

|!|(C ,C ) |!|(T̃ " ,T̃ "), (64)

which implies that "(C ) = 0 for all states " , i. e. C = 0. Therefore, |!|(A ,B)
defines a strictly positive real symmetric scalar product, whence the linear space PR of
generalized effects becomes a real pre-Hilbert space. The Hilbert space is then obtained

by completion in the norm topology (for the operational relevance of norm closure see
Remark 5). Notice that the Hilbert space is a real one, since both its linear space and the

scalar product are real. Let’s denote by W! such Hilbert space. Its dimension is given
by

dim(W!) = adm(S)+1, (65)

since the linear space of generalized effects is just the space of the linear functionals

over states, which has one more dimension than the convex set of states corresponding
to normalization. But from Eqs. (59) and (65) it follows that

dim(W!) = idim(S)2, (66)

whence, for finite dimensions the real Hilbert spaceW! is isomorphic to the real Hilbert

space of Hermitian complex matrices representing selfadjoint operators over a complex
Hilbert space H of dimensions dim(H) = idim(S). This is the Hilbert space formulation
of Quantum Mechanics.
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For symmetric faithful state it is easy to check that the 
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transposed: 

A ⇐⇒ A
′

1. (A + B)′ = A
′ + B

′

2. (A ′)′ = A ,

3. (A ◦ B)′ = B
′
◦ A

′

Operational definition of transposed



Operational definition of transposed

Symmetric 
dyn. faithful state

Theorems
Axioms
Postulates



Operational definition of transposed

Symmetric 
dyn. faithful state

Transposition

Theorems
Axioms
Postulates



GNS construction for representing 
transformations

Extend    to an involution over transformations

9.2. Gelfand-Naimark-Segal (GNS) construction of real Hilbert space

structure

Unfortunately, even though the transposition defined in identity (67) works as an

adjoint for the symmetric bilinear form ! as in Eqs. (70) and (71), however, it is
not the right adjoint for the scalar product given by the strictly positive bilinear form

|!|(A ,B) in Eq. (62), due to the presence of the involution ! . In order to introduce
an adjoint for generalized transformations (with respect to the scalar product between

effects) one needs to extend the involution ! to generalized transformations. This can
be easily done, since the bilinear form of the faithful state is already defined over

generalized transformations, and, analogously to effects, also transformations comprise
a linear space, whose dimension is adm(S×2)+ 1, since we postulate the existence of
an informationally faithful state. Therefore, with a procedure analogous to that used for
effects we can define the absolute value of the bilinear form! also over transformations,

whence extend the scalar product to transformations. Clearly, since the bilinear form

!(A ,B) will anyway depend only on the informational equivalence classes A and B
of the two transformations, one can have different extensions of the involution ! from
generalized effects to generalized transformations, which work equally well. One has

!(A ) =:A ! ∈ !(A ), (72)

with a transformation A ! := !(A ) belonging to the informational class !(A ). Clearly
one has !2(A ) = !(A ! )∈A , and generally !2(A ) #= A , however, one can legitimately
choose the extension such that it is itself an involution (see also the following for the

choice of the extension). The idea is now that such an involution plays the role of

the complex conjugation, such that the composition with the transposition provides
the adjoint. Inspection of Eq. (71) shows that in order to have the right adjoint of

transformations with respect to the scalar product, we need to define the scalar product
via the bilinear form !(A ′,B′) over transposed transformations. Therefore, we define
the scalar product between generalized effects as follows

!〈B|A 〉! :=!(B′,!(A ′)). (73)

In the following we will equivalently write the entries of the scalar product as general-

ized transformations or as generalized effects, with !〈A |B〉! := !〈A |B〉!, the gener-
alized effects being the actual vectors of the linear factor space of generalized transfor-

mations modulo informational equivalence. Notice that from Eq. (40) it also follows the

nice rule !〈C ◦A |B〉! = !(A ′ ◦C ′,!(B′)), corresponding to the operator-like form
of the action of transformations over effect |C ′ ◦A 〉! = |C ′ ◦A 〉!. We can easily check
the following steps

!〈C ′ ◦A |B〉! =!(A ′ ◦C ,!(B′)) =!(A ′,!(B′)◦C ′)
=|!|(A ′,!(!(B′)◦C ′)).

(74)

Now, for composition-preserving involution (i. e. !(B ◦A ) = B! ◦A ! ) one can easily

verify that

!〈C ′ ◦A |B〉! = |!|(A ′,B′ ◦ !(C ′)) = !〈A |(!(C ′))′ ◦B〉!, (75)
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namely,

!〈!(C ′)◦A |B〉! = !〈A |(B′ ◦ !2(C ′))′〉! = !〈A |C ◦B〉!, (76)

whence A † := !(A ′) works as an adjoint for the scalar product, namely

!〈C † ◦A |B〉! = !〈A |C ◦B〉!. (77)

In terms of the adjoint the scalar product can also be written as follows

!〈B|A 〉! =!|2(A †B). (78)

The involution ! is composition-preserving if !(T) = T namely if the involution

preserves physical transformations (this is true for an identity-preserving involution

!(I ) = I which is cone-preserving !(T+
R) = T+

R). Indeed, for !(T) = T one can

consider the involution on transformations induced by the involutive isomorphism

" → "! of the convex set of states S defined as follows

"(!(A )) := "! (A ), ∀" ∈S, ∀A ∈ T. (79)

Consistency of state-reduction "A =⇒ "
!

A with the involution onS corresponds to the

identity

∀" ∈S, ∀A ,B ∈ T, "
!

A (B)≡ "A ! (B! ) (80)

which, along with identity (79) is equivalent to

∀" ∈S, ∀A ,B ∈ T, "(!(B ◦A )) = "(B! ◦A ! ). (81)

The involution ! of S is just the inversion of the principal axes corresponding to

negative eigenvalues of the symmetric bilinear form ! of the faithful state in a minimal

informational complete basis (the so-called Bloch representation: see Ref. [1]).

By taking complex linear combinations of generalized transformations and defining

!(cA ) = c∗!(A ) for c ∈C, we can now extend the adjoint to complex linear combina-
tions of generalized transformations—that we will also call complex-generalized trans-

formations, and will denote their linear space by TC. Analogously we can extend the
adjoint to complex linear combinations of generalized effects—or complex-generalized

effects, that we will denote by PC. The complex algebra TC (that we will also denote
by A) is a Banach space, and likewise PC is a Banach space, and they are reciprocally
dual.

We have now a scalar product !〈A |B〉! between transformations and an adjoint of
transformations with respect to such scalar product. Symmetry and positivity imply the

bounding

!〈A |B〉! ! ||A ||!||B||!, (82)

where we introduced the norm induced by the scalar product

||A ||2!
.= !〈A |A 〉!. (83)

The bounding (82) is obtained from positivity of !〈A − zB|A − zB〉! for every z ∈C.
Using the bounding (82) for the scalar product !〈A ′ ◦A ◦X |X 〉! we also see that the
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one induced by the scalar product. The Riesz theorem implies that the affine space of
generalized propensities (linear real forms over states or, equivalently, over generalized
weights) is itself a real Hilbert space isomorphic to H.

Gelfand-Naimark-Segal (GNS) construction of real Hilbert space
structure

With the introduction of a generalized adjoint given in Definition in 24 corresponding
to the operational concept of twin involution, the real algebra A of generalized trans-
formations becomes a real ∗-algebra. Then each real positive form ϕ over the ∗-algebra
A—e. g. the local state ϕ .= Φ|1 of a faithful symmetric state Φ—defines a Hilbert space
Hϕ and a representation πϕ of A by linear operators acting on Hϕ . Indeed, A is a linear
space over R and ϕ defines a symmetric (positive semi-definite) scalar product on A as
follows

ϕ〈A |B〉ϕ
.= ϕ(A ′ ◦B)≡ Φ(A ′,B′), A ,B ∈A, (82)

where we remind the use of notation defined in Eq. (9). Indeed, condition a) of Definition
25 implies the symmetry ϕ〈B|A 〉ϕ = ϕ〈A |B〉ϕ , whereas condition b) implies the
positivity ϕ〈A |A 〉ϕ ≥ 0. Also, it is easy to check that

ϕ〈C ′ ◦A |B〉ϕ = ϕ〈A |C ◦B〉ϕ , (83)

as it can be derived from the definition (82) as follows

ϕ〈C ′ ◦A |B〉ϕ =Φ(A ′ ◦C ,B′) = Φ̃C ,I (A ′,B′) = Φ̃I ,C ′(A ′,B′)
=Φ(A ′,B′ ◦C ′) = ϕ〈A |C ◦B〉ϕ

(84)

Symmetry and positivity imply the bounding

ϕ〈A |B〉ϕ ≤
√

ϕ〈A |A 〉ϕ ϕ〈B|B〉ϕ . (85)

Using the bounding (85) for the scalar product ϕ〈A ′ ◦A ◦X |X 〉ϕ we can easily see
that the set I⊆A consisting of all elements X ∈A with ϕ(X ′ ◦X ) = 0 is a left ideal,
i. e. a linear subspace of A which is stable under multiplication by any element of A
on the left (i. e. X ∈ I, A ∈ A implies A ◦X ∈ I). The set of equivalence classes
A/I thus becomes a real pre-Hilbert space equipped with a symmetric scalar product,
an element of the space being an equivalence class. Notice that the scalar product does
not depend on the algebraic representatives chosen for classes, namely

ϕ〈{A }|{B}〉ϕ = ϕ〈A |B〉ϕ , ∀A ∈ {A }, ∀B ∈ {B}, (86)

{A } denoting the equivalence class containing A . For the equivalence classes we can
define the norm

||X ||2ϕ
.= ϕ〈X |X 〉ϕ , X ∈A/I. (87)

We keep the subindex ϕ for the norm in order to distinguish it from the previously
defined norm (22). The Hilbert space is then obtained by completion of A/I in the

norm topology (the Hilbert space closure is not operationally relevant: see Remark 5).
The product in A defines the action of A on the vectors in A/I, by associating to each
element A ∈ A the linear operator πϕ(A ) defined on the dense domain A/I ⊆ Hϕ as
follows

πϕ(A )|X 〉ϕ
.= |{A ◦B}〉ϕ , X = {B}. (88)

The norm (87) can be extended to a seminorm on the whole A as follows

||A ||ϕ
.= ||{A }||ϕ =

√
ϕ〈{A }|{A }〉ϕ . (89)

On the other hand, on A/I one can easily verify that || · ||ϕ indeed satisfies all axioms of
norm, since clearly ||A ||ϕ = 0 implies that A ∈ I, corresponding to the null vector, and

||{λA }||ϕ = ||λ{A }||ϕ = λ ||{A }||ϕ ,

||{A +B}||ϕ = ||{A }+{B}||ϕ ≤ ||{A }||ϕ + ||{B}||ϕ .
(90)

If A were a Banach ∗-algebra the domain of definition of πϕ(A ) could be easily
extended to the whole Hϕ by continuity, since to a Cauchy sequence Xn ∈ A/I there
correspond Cauchy sequences A Bn, Bn ∈Xn as a consequence of the norm bounding

||πϕ(A )Xn−πϕ(A )Xm||ϕ =||{A (Bn−Bm)}||ϕ = ||A (Bn−Bm)||ϕ
≤||A ||ϕ ||Bn−Bm||ϕ .

(91)

However, the last step is not necessarily true, since conditions ||B◦A ||ϕ ≤ ||B||ϕ ||A ||ϕ ,
and ||A ′||ϕ = ||A ||ϕ do not necessarily hold, whence the possibility of representing
generalized transformations as operators over Hϕ remains an open problem for the
infinite dimensional case. Also, the use of the seminorm (30) closure is not of much
help, since one can just prove that

||A ||ϕ ≤ ||A ′||, ||A ||2ϕ ≤ ||A ′||||A ||, (92)

but we cannot prove a bounding ||B||≤ ||X ||ϕ , B ∈X . The first bound in Eq. (92) can
be derived as follows

||A ||ϕ = Φ(A ′,A ′) = ΦI ,A ′(A ′,I )Φ(I ,A ′) = ΦI ,A ′|1(A ′)Φ|2(A ′)≤ ||A ′||2,
(93)

where Φ is any faithful state corresponding to ϕ . The second bound in Eq. (92) is implied
by the inequality

||A ||2ϕ = ϕ(A ′ ◦A )≤ ||A ′A ||≤ ||A ′||||A ||. (94)

Also we do not have that ||A ′|| = ||A ||, not even ||A ′||≤ ||A ||.
In terms of the faithful state Φ and of its Bloch representation the scalar product (82)

rewrites as

ϕ〈A |B〉ϕ = Φ(A ′,B′) = (A′FB′τ)00 = (FτAτFτ−1BF)00. (95)

Remark 10 (Pairing between states and propensities) From the definition (82) of the
scalar product we have

ϕ〈A ′|B〉ϕ = ϕB(A )ϕ(B) = ΦI ,B′ |1(A ), (96)

πΦ(A )|B〉Φ
.
= |A ◦ B〉Φ

πΦ

GNS construction for representing 
transformations
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ϕ〈C ′ ◦A |B〉ϕ =Φ(A ′ ◦C ,B′) = Φ̃C ,I (A ′,B′) = Φ̃I ,C ′(A ′,B′)
=Φ(A ′,B′ ◦C ′) = ϕ〈A |C ◦B〉ϕ

(84)

Symmetry and positivity imply the bounding

ϕ〈A |B〉ϕ ≤
√

ϕ〈A |A 〉ϕ ϕ〈B|B〉ϕ . (85)

Using the bounding (85) for the scalar product ϕ〈A ′ ◦A ◦X |X 〉ϕ we can easily see
that the set I⊆A consisting of all elements X ∈A with ϕ(X ′ ◦X ) = 0 is a left ideal,
i. e. a linear subspace of A which is stable under multiplication by any element of A
on the left (i. e. X ∈ I, A ∈ A implies A ◦X ∈ I). The set of equivalence classes
A/I thus becomes a real pre-Hilbert space equipped with a symmetric scalar product,
an element of the space being an equivalence class. Notice that the scalar product does
not depend on the algebraic representatives chosen for classes, namely

ϕ〈{A }|{B}〉ϕ = ϕ〈A |B〉ϕ , ∀A ∈ {A }, ∀B ∈ {B}, (86)

{A } denoting the equivalence class containing A . For the equivalence classes we can
define the norm

||X ||2ϕ
.= ϕ〈X |X 〉ϕ , X ∈A/I. (87)

We keep the subindex ϕ for the norm in order to distinguish it from the previously
defined norm (22). The Hilbert space is then obtained by completion of A/I in the

norm topology (the Hilbert space closure is not operationally relevant: see Remark 5).
The product in A defines the action of A on the vectors in A/I, by associating to each
element A ∈ A the linear operator πϕ(A ) defined on the dense domain A/I ⊆ Hϕ as
follows

πϕ(A )|X 〉ϕ
.= |{A ◦B}〉ϕ , X = {B}. (88)

The norm (87) can be extended to a seminorm on the whole A as follows

||A ||ϕ
.= ||{A }||ϕ =

√
ϕ〈{A }|{A }〉ϕ . (89)

On the other hand, on A/I one can easily verify that || · ||ϕ indeed satisfies all axioms of
norm, since clearly ||A ||ϕ = 0 implies that A ∈ I, corresponding to the null vector, and

||{λA }||ϕ = ||λ{A }||ϕ = λ ||{A }||ϕ ,

||{A +B}||ϕ = ||{A }+{B}||ϕ ≤ ||{A }||ϕ + ||{B}||ϕ .
(90)

If A were a Banach ∗-algebra the domain of definition of πϕ(A ) could be easily
extended to the whole Hϕ by continuity, since to a Cauchy sequence Xn ∈ A/I there
correspond Cauchy sequences A Bn, Bn ∈Xn as a consequence of the norm bounding

||πϕ(A )Xn−πϕ(A )Xm||ϕ =||{A (Bn−Bm)}||ϕ = ||A (Bn−Bm)||ϕ
≤||A ||ϕ ||Bn−Bm||ϕ .

(91)

However, the last step is not necessarily true, since conditions ||B◦A ||ϕ ≤ ||B||ϕ ||A ||ϕ ,
and ||A ′||ϕ = ||A ||ϕ do not necessarily hold, whence the possibility of representing
generalized transformations as operators over Hϕ remains an open problem for the
infinite dimensional case. Also, the use of the seminorm (30) closure is not of much
help, since one can just prove that

||A ||ϕ ≤ ||A ′||, ||A ||2ϕ ≤ ||A ′||||A ||, (92)

but we cannot prove a bounding ||B||≤ ||X ||ϕ , B ∈X . The first bound in Eq. (92) can
be derived as follows

||A ||ϕ = Φ(A ′,A ′) = ΦI ,A ′(A ′,I )Φ(I ,A ′) = ΦI ,A ′|1(A ′)Φ|2(A ′)≤ ||A ′||2,
(93)

where Φ is any faithful state corresponding to ϕ . The second bound in Eq. (92) is implied
by the inequality

||A ||2ϕ = ϕ(A ′ ◦A )≤ ||A ′A ||≤ ||A ′||||A ||. (94)

Also we do not have that ||A ′|| = ||A ||, not even ||A ′||≤ ||A ||.
In terms of the faithful state Φ and of its Bloch representation the scalar product (82)

rewrites as

ϕ〈A |B〉ϕ = Φ(A ′,B′) = (A′FB′τ)00 = (FτAτFτ−1BF)00. (95)

Remark 10 (Pairing between states and propensities) From the definition (82) of the
scalar product we have

ϕ〈A ′|B〉ϕ = ϕB(A )ϕ(B) = ΦI ,B′ |1(A ), (96)

πΦ(A )|B〉Φ
.
= |A ◦ B〉Φ

πΦ

set I⊆ A of zero norm elements X ∈ A is a left ideal, i. e. it is a linear subspace of A
which is stable under multiplication by any element ofA on the left (i. e.X ∈ I,A ∈A
implies A ◦X ∈ I). The set of equivalence classes A/I thus becomes a complex pre-
Hilbert space equipped with a symmetric scalar product, an element of the space being

an equivalence class. On the other hand, since |!|(X ′,X ′) = 0=⇒X ′ = 0=⇒X = 0
(we have seen that |!| is a strictly positive form over generalized effects) the elements
of A/I are indeed the generalized effects, i. e. A/I & PC as linear spaces. Therefore,
informationally equivalent transformationsA andB correspond to the same vector , and

there exists a generalized transformationX with ||X ||! = 0 such thatA = B+X , and
|| · ||!, which is a norm onPC, will be just a semi-norm on A. Completion of A/I&PC
in the norm topology3 will give a Hilbert space that we will denote by H! (for the
operational relevance of closure see Remark 5). The product in A defines the action

of A on the vectors in A/I, by associating to each element A ∈ A the linear operator
!!(A ) defined on the dense domain A/I⊆ H! as follows

!!(A )|B〉!
.= |A ◦B〉!. (84)

One also has |A ◦B〉! = |A ◦B〉! which corresponds to the transposed version of
(40).

Theorem 7 (Born rule) From the definition (73) of the scalar product the Born rule

rewrites in terms of the pairing

"(A ) =!|2(!!(")†!!(A ))≡ !〈!!(A )|!!(")〉! (85)

with representations of effects and states given by

!!(") = T̃ " :=
T ′

"

!(I ,T ")
, !!(A ) = A ′. (86)

The representation of transformations is given by

"(B ◦A ) = !〈B′|!!(A # )|!!(")〉!. (87)

Proof. This easily follows from the definition of preparationally faithful state. One has

"(A ) =!I ,T"
|1(A ) =!I ,T"

|1(A ) =
!(A ,T ")
!(I ,T ")

=|!|(A ′′,#(T̃
′
")) =!|2(!!(")†!!(A )).

(88)

3 If A were a Banach ∗−algebra (we define a Banach ∗-algebra as in Ref. [10], namely simply as a
Banach algebra—i. e. ||B ◦A || ! ||A ||||B||—equipped with an adjoint A → A †, and we don’t require

that ||A †|| = ||A ||) the domain of definition of !!(A ) could be easily extended to the whole H! by
continuity, since to a Cauchy sequence X n ∈ A/I in the Banach algebra it will correspond the Cauchy
sequence A ◦X n in the Hilbert space, as a consequence of the norm bounding

||!!(A )Xn−!!(A )Xm||! = ||A ◦ (X n−X m)||! ≤ ||A ||!||X n−X m||! ! $−1||A ||||X n−X m||.

The Born rule rewrites in the form of pairing:

GNS construction for representing 
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one induced by the scalar product. The Riesz theorem implies that the affine space of
generalized propensities (linear real forms over states or, equivalently, over generalized
weights) is itself a real Hilbert space isomorphic to H.

Gelfand-Naimark-Segal (GNS) construction of real Hilbert space
structure

With the introduction of a generalized adjoint given in Definition in 24 corresponding
to the operational concept of twin involution, the real algebra A of generalized trans-
formations becomes a real ∗-algebra. Then each real positive form ϕ over the ∗-algebra
A—e. g. the local state ϕ .= Φ|1 of a faithful symmetric state Φ—defines a Hilbert space
Hϕ and a representation πϕ of A by linear operators acting on Hϕ . Indeed, A is a linear
space over R and ϕ defines a symmetric (positive semi-definite) scalar product on A as
follows

ϕ〈A |B〉ϕ
.= ϕ(A ′ ◦B)≡ Φ(A ′,B′), A ,B ∈A, (82)

where we remind the use of notation defined in Eq. (9). Indeed, condition a) of Definition
25 implies the symmetry ϕ〈B|A 〉ϕ = ϕ〈A |B〉ϕ , whereas condition b) implies the
positivity ϕ〈A |A 〉ϕ ≥ 0. Also, it is easy to check that

ϕ〈C ′ ◦A |B〉ϕ = ϕ〈A |C ◦B〉ϕ , (83)

as it can be derived from the definition (82) as follows

ϕ〈C ′ ◦A |B〉ϕ =Φ(A ′ ◦C ,B′) = Φ̃C ,I (A ′,B′) = Φ̃I ,C ′(A ′,B′)
=Φ(A ′,B′ ◦C ′) = ϕ〈A |C ◦B〉ϕ

(84)

Symmetry and positivity imply the bounding

ϕ〈A |B〉ϕ ≤
√

ϕ〈A |A 〉ϕ ϕ〈B|B〉ϕ . (85)

Using the bounding (85) for the scalar product ϕ〈A ′ ◦A ◦X |X 〉ϕ we can easily see
that the set I⊆A consisting of all elements X ∈A with ϕ(X ′ ◦X ) = 0 is a left ideal,
i. e. a linear subspace of A which is stable under multiplication by any element of A
on the left (i. e. X ∈ I, A ∈ A implies A ◦X ∈ I). The set of equivalence classes
A/I thus becomes a real pre-Hilbert space equipped with a symmetric scalar product,
an element of the space being an equivalence class. Notice that the scalar product does
not depend on the algebraic representatives chosen for classes, namely

ϕ〈{A }|{B}〉ϕ = ϕ〈A |B〉ϕ , ∀A ∈ {A }, ∀B ∈ {B}, (86)

{A } denoting the equivalence class containing A . For the equivalence classes we can
define the norm

||X ||2ϕ
.= ϕ〈X |X 〉ϕ , X ∈A/I. (87)

We keep the subindex ϕ for the norm in order to distinguish it from the previously
defined norm (22). The Hilbert space is then obtained by completion of A/I in the

norm topology (the Hilbert space closure is not operationally relevant: see Remark 5).
The product in A defines the action of A on the vectors in A/I, by associating to each
element A ∈ A the linear operator πϕ(A ) defined on the dense domain A/I ⊆ Hϕ as
follows

πϕ(A )|X 〉ϕ
.= |{A ◦B}〉ϕ , X = {B}. (88)

The norm (87) can be extended to a seminorm on the whole A as follows

||A ||ϕ
.= ||{A }||ϕ =

√
ϕ〈{A }|{A }〉ϕ . (89)

On the other hand, on A/I one can easily verify that || · ||ϕ indeed satisfies all axioms of
norm, since clearly ||A ||ϕ = 0 implies that A ∈ I, corresponding to the null vector, and

||{λA }||ϕ = ||λ{A }||ϕ = λ ||{A }||ϕ ,

||{A +B}||ϕ = ||{A }+{B}||ϕ ≤ ||{A }||ϕ + ||{B}||ϕ .
(90)

If A were a Banach ∗-algebra the domain of definition of πϕ(A ) could be easily
extended to the whole Hϕ by continuity, since to a Cauchy sequence Xn ∈ A/I there
correspond Cauchy sequences A Bn, Bn ∈Xn as a consequence of the norm bounding

||πϕ(A )Xn−πϕ(A )Xm||ϕ =||{A (Bn−Bm)}||ϕ = ||A (Bn−Bm)||ϕ
≤||A ||ϕ ||Bn−Bm||ϕ .

(91)

However, the last step is not necessarily true, since conditions ||B◦A ||ϕ ≤ ||B||ϕ ||A ||ϕ ,
and ||A ′||ϕ = ||A ||ϕ do not necessarily hold, whence the possibility of representing
generalized transformations as operators over Hϕ remains an open problem for the
infinite dimensional case. Also, the use of the seminorm (30) closure is not of much
help, since one can just prove that

||A ||ϕ ≤ ||A ′||, ||A ||2ϕ ≤ ||A ′||||A ||, (92)

but we cannot prove a bounding ||B||≤ ||X ||ϕ , B ∈X . The first bound in Eq. (92) can
be derived as follows

||A ||ϕ = Φ(A ′,A ′) = ΦI ,A ′(A ′,I )Φ(I ,A ′) = ΦI ,A ′|1(A ′)Φ|2(A ′)≤ ||A ′||2,
(93)

where Φ is any faithful state corresponding to ϕ . The second bound in Eq. (92) is implied
by the inequality

||A ||2ϕ = ϕ(A ′ ◦A )≤ ||A ′A ||≤ ||A ′||||A ||. (94)

Also we do not have that ||A ′|| = ||A ||, not even ||A ′||≤ ||A ||.
In terms of the faithful state Φ and of its Bloch representation the scalar product (82)

rewrites as

ϕ〈A |B〉ϕ = Φ(A ′,B′) = (A′FB′τ)00 = (FτAτFτ−1BF)00. (95)

Remark 10 (Pairing between states and propensities) From the definition (82) of the
scalar product we have

ϕ〈A ′|B〉ϕ = ϕB(A )ϕ(B) = ΦI ,B′ |1(A ), (96)

πΦ(A )|B〉Φ
.
= |A ◦ B〉Φ

πΦ

set I⊆ A of zero norm elements X ∈ A is a left ideal, i. e. it is a linear subspace of A
which is stable under multiplication by any element ofA on the left (i. e.X ∈ I,A ∈A
implies A ◦X ∈ I). The set of equivalence classes A/I thus becomes a complex pre-
Hilbert space equipped with a symmetric scalar product, an element of the space being

an equivalence class. On the other hand, since |!|(X ′,X ′) = 0=⇒X ′ = 0=⇒X = 0
(we have seen that |!| is a strictly positive form over generalized effects) the elements
of A/I are indeed the generalized effects, i. e. A/I & PC as linear spaces. Therefore,
informationally equivalent transformationsA andB correspond to the same vector , and

there exists a generalized transformationX with ||X ||! = 0 such thatA = B+X , and
|| · ||!, which is a norm onPC, will be just a semi-norm on A. Completion of A/I&PC
in the norm topology3 will give a Hilbert space that we will denote by H! (for the
operational relevance of closure see Remark 5). The product in A defines the action

of A on the vectors in A/I, by associating to each element A ∈ A the linear operator
!!(A ) defined on the dense domain A/I⊆ H! as follows

!!(A )|B〉!
.= |A ◦B〉!. (84)

One also has |A ◦B〉! = |A ◦B〉! which corresponds to the transposed version of
(40).

Theorem 7 (Born rule) From the definition (73) of the scalar product the Born rule

rewrites in terms of the pairing

"(A ) =!|2(!!(")†!!(A ))≡ !〈!!(A )|!!(")〉! (85)

with representations of effects and states given by

!!(") = T̃ " :=
T ′

"

!(I ,T ")
, !!(A ) = A ′. (86)

The representation of transformations is given by

"(B ◦A ) = !〈B′|!!(A # )|!!(")〉!. (87)

Proof. This easily follows from the definition of preparationally faithful state. One has

"(A ) =!I ,T"
|1(A ) =!I ,T"

|1(A ) =
!(A ,T ")
!(I ,T ")

=|!|(A ′′,#(T̃
′
")) =!|2(!!(")†!!(A )).

(88)

3 If A were a Banach ∗−algebra (we define a Banach ∗-algebra as in Ref. [10], namely simply as a
Banach algebra—i. e. ||B ◦A || ! ||A ||||B||—equipped with an adjoint A → A †, and we don’t require

that ||A †|| = ||A ||) the domain of definition of !!(A ) could be easily extended to the whole H! by
continuity, since to a Cauchy sequence X n ∈ A/I in the Banach algebra it will correspond the Cauchy
sequence A ◦X n in the Hilbert space, as a consequence of the norm bounding

||!!(A )Xn−!!(A )Xm||! = ||A ◦ (X n−X m)||! ≤ ||A ||!||X n−X m||! ! $−1||A ||||X n−X m||.

The Born rule rewrites in the form of pairing:

set I⊆ A of zero norm elements X ∈ A is a left ideal, i. e. it is a linear subspace of A
which is stable under multiplication by any element ofA on the left (i. e.X ∈ I,A ∈A
implies A ◦X ∈ I). The set of equivalence classes A/I thus becomes a complex pre-
Hilbert space equipped with a symmetric scalar product, an element of the space being

an equivalence class. On the other hand, since |!|(X ′,X ′) = 0=⇒X ′ = 0=⇒X = 0
(we have seen that |!| is a strictly positive form over generalized effects) the elements
of A/I are indeed the generalized effects, i. e. A/I & PC as linear spaces. Therefore,
informationally equivalent transformationsA andB correspond to the same vector , and

there exists a generalized transformationX with ||X ||! = 0 such thatA = B+X , and
|| · ||!, which is a norm onPC, will be just a semi-norm on A. Completion of A/I&PC
in the norm topology3 will give a Hilbert space that we will denote by H! (for the
operational relevance of closure see Remark 5). The product in A defines the action

of A on the vectors in A/I, by associating to each element A ∈ A the linear operator
!!(A ) defined on the dense domain A/I⊆ H! as follows

!!(A )|B〉!
.= |A ◦B〉!. (84)

One also has |A ◦B〉! = |A ◦B〉! which corresponds to the transposed version of
(40).

Theorem 7 (Born rule) From the definition (73) of the scalar product the Born rule

rewrites in terms of the pairing

"(A ) =!|2(!!(")†!!(A ))≡ !〈!!(A )|!!(")〉! (85)

with representations of effects and states given by

!!(") = T̃ " :=
T ′

"

!(I ,T ")
, !!(A ) = A ′. (86)

The representation of transformations is given by

"(B ◦A ) = !〈B′|!!(A # )|!!(")〉!. (87)

Proof. This easily follows from the definition of preparationally faithful state. One has

"(A ) =!I ,T"
|1(A ) =!I ,T"

|1(A ) =
!(A ,T ")
!(I ,T ")

=|!|(A ′′,#(T̃
′
")) =!|2(!!(")†!!(A )).

(88)

3 If A were a Banach ∗−algebra (we define a Banach ∗-algebra as in Ref. [10], namely simply as a
Banach algebra—i. e. ||B ◦A || ! ||A ||||B||—equipped with an adjoint A → A †, and we don’t require

that ||A †|| = ||A ||) the domain of definition of !!(A ) could be easily extended to the whole H! by
continuity, since to a Cauchy sequence X n ∈ A/I in the Banach algebra it will correspond the Cauchy
sequence A ◦X n in the Hilbert space, as a consequence of the norm bounding

||!!(A )Xn−!!(A )Xm||! = ||A ◦ (X n−X m)||! ≤ ||A ||!||X n−X m||! ! $−1||A ||||X n−X m||.

with representation of states and effects given by
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one induced by the scalar product. The Riesz theorem implies that the affine space of
generalized propensities (linear real forms over states or, equivalently, over generalized
weights) is itself a real Hilbert space isomorphic to H.

Gelfand-Naimark-Segal (GNS) construction of real Hilbert space
structure

With the introduction of a generalized adjoint given in Definition in 24 corresponding
to the operational concept of twin involution, the real algebra A of generalized trans-
formations becomes a real ∗-algebra. Then each real positive form ϕ over the ∗-algebra
A—e. g. the local state ϕ .= Φ|1 of a faithful symmetric state Φ—defines a Hilbert space
Hϕ and a representation πϕ of A by linear operators acting on Hϕ . Indeed, A is a linear
space over R and ϕ defines a symmetric (positive semi-definite) scalar product on A as
follows

ϕ〈A |B〉ϕ
.= ϕ(A ′ ◦B)≡ Φ(A ′,B′), A ,B ∈A, (82)

where we remind the use of notation defined in Eq. (9). Indeed, condition a) of Definition
25 implies the symmetry ϕ〈B|A 〉ϕ = ϕ〈A |B〉ϕ , whereas condition b) implies the
positivity ϕ〈A |A 〉ϕ ≥ 0. Also, it is easy to check that

ϕ〈C ′ ◦A |B〉ϕ = ϕ〈A |C ◦B〉ϕ , (83)

as it can be derived from the definition (82) as follows

ϕ〈C ′ ◦A |B〉ϕ =Φ(A ′ ◦C ,B′) = Φ̃C ,I (A ′,B′) = Φ̃I ,C ′(A ′,B′)
=Φ(A ′,B′ ◦C ′) = ϕ〈A |C ◦B〉ϕ

(84)

Symmetry and positivity imply the bounding

ϕ〈A |B〉ϕ ≤
√

ϕ〈A |A 〉ϕ ϕ〈B|B〉ϕ . (85)

Using the bounding (85) for the scalar product ϕ〈A ′ ◦A ◦X |X 〉ϕ we can easily see
that the set I⊆A consisting of all elements X ∈A with ϕ(X ′ ◦X ) = 0 is a left ideal,
i. e. a linear subspace of A which is stable under multiplication by any element of A
on the left (i. e. X ∈ I, A ∈ A implies A ◦X ∈ I). The set of equivalence classes
A/I thus becomes a real pre-Hilbert space equipped with a symmetric scalar product,
an element of the space being an equivalence class. Notice that the scalar product does
not depend on the algebraic representatives chosen for classes, namely

ϕ〈{A }|{B}〉ϕ = ϕ〈A |B〉ϕ , ∀A ∈ {A }, ∀B ∈ {B}, (86)

{A } denoting the equivalence class containing A . For the equivalence classes we can
define the norm

||X ||2ϕ
.= ϕ〈X |X 〉ϕ , X ∈A/I. (87)

We keep the subindex ϕ for the norm in order to distinguish it from the previously
defined norm (22). The Hilbert space is then obtained by completion of A/I in the

norm topology (the Hilbert space closure is not operationally relevant: see Remark 5).
The product in A defines the action of A on the vectors in A/I, by associating to each
element A ∈ A the linear operator πϕ(A ) defined on the dense domain A/I ⊆ Hϕ as
follows

πϕ(A )|X 〉ϕ
.= |{A ◦B}〉ϕ , X = {B}. (88)

The norm (87) can be extended to a seminorm on the whole A as follows

||A ||ϕ
.= ||{A }||ϕ =

√
ϕ〈{A }|{A }〉ϕ . (89)

On the other hand, on A/I one can easily verify that || · ||ϕ indeed satisfies all axioms of
norm, since clearly ||A ||ϕ = 0 implies that A ∈ I, corresponding to the null vector, and

||{λA }||ϕ = ||λ{A }||ϕ = λ ||{A }||ϕ ,

||{A +B}||ϕ = ||{A }+{B}||ϕ ≤ ||{A }||ϕ + ||{B}||ϕ .
(90)

If A were a Banach ∗-algebra the domain of definition of πϕ(A ) could be easily
extended to the whole Hϕ by continuity, since to a Cauchy sequence Xn ∈ A/I there
correspond Cauchy sequences A Bn, Bn ∈Xn as a consequence of the norm bounding

||πϕ(A )Xn−πϕ(A )Xm||ϕ =||{A (Bn−Bm)}||ϕ = ||A (Bn−Bm)||ϕ
≤||A ||ϕ ||Bn−Bm||ϕ .

(91)

However, the last step is not necessarily true, since conditions ||B◦A ||ϕ ≤ ||B||ϕ ||A ||ϕ ,
and ||A ′||ϕ = ||A ||ϕ do not necessarily hold, whence the possibility of representing
generalized transformations as operators over Hϕ remains an open problem for the
infinite dimensional case. Also, the use of the seminorm (30) closure is not of much
help, since one can just prove that

||A ||ϕ ≤ ||A ′||, ||A ||2ϕ ≤ ||A ′||||A ||, (92)

but we cannot prove a bounding ||B||≤ ||X ||ϕ , B ∈X . The first bound in Eq. (92) can
be derived as follows

||A ||ϕ = Φ(A ′,A ′) = ΦI ,A ′(A ′,I )Φ(I ,A ′) = ΦI ,A ′|1(A ′)Φ|2(A ′)≤ ||A ′||2,
(93)

where Φ is any faithful state corresponding to ϕ . The second bound in Eq. (92) is implied
by the inequality

||A ||2ϕ = ϕ(A ′ ◦A )≤ ||A ′A ||≤ ||A ′||||A ||. (94)

Also we do not have that ||A ′|| = ||A ||, not even ||A ′||≤ ||A ||.
In terms of the faithful state Φ and of its Bloch representation the scalar product (82)

rewrites as

ϕ〈A |B〉ϕ = Φ(A ′,B′) = (A′FB′τ)00 = (FτAτFτ−1BF)00. (95)

Remark 10 (Pairing between states and propensities) From the definition (82) of the
scalar product we have

ϕ〈A ′|B〉ϕ = ϕB(A )ϕ(B) = ΦI ,B′ |1(A ), (96)

πΦ(A )|B〉Φ
.
= |A ◦ B〉Φ

πΦ

set I⊆ A of zero norm elements X ∈ A is a left ideal, i. e. it is a linear subspace of A
which is stable under multiplication by any element ofA on the left (i. e.X ∈ I,A ∈A
implies A ◦X ∈ I). The set of equivalence classes A/I thus becomes a complex pre-
Hilbert space equipped with a symmetric scalar product, an element of the space being

an equivalence class. On the other hand, since |!|(X ′,X ′) = 0=⇒X ′ = 0=⇒X = 0
(we have seen that |!| is a strictly positive form over generalized effects) the elements
of A/I are indeed the generalized effects, i. e. A/I & PC as linear spaces. Therefore,
informationally equivalent transformationsA andB correspond to the same vector , and

there exists a generalized transformationX with ||X ||! = 0 such thatA = B+X , and
|| · ||!, which is a norm onPC, will be just a semi-norm on A. Completion of A/I&PC
in the norm topology3 will give a Hilbert space that we will denote by H! (for the
operational relevance of closure see Remark 5). The product in A defines the action

of A on the vectors in A/I, by associating to each element A ∈ A the linear operator
!!(A ) defined on the dense domain A/I⊆ H! as follows

!!(A )|B〉!
.= |A ◦B〉!. (84)

One also has |A ◦B〉! = |A ◦B〉! which corresponds to the transposed version of
(40).

Theorem 7 (Born rule) From the definition (73) of the scalar product the Born rule

rewrites in terms of the pairing

"(A ) =!|2(!!(")†!!(A ))≡ !〈!!(A )|!!(")〉! (85)

with representations of effects and states given by

!!(") = T̃ " :=
T ′

"

!(I ,T ")
, !!(A ) = A ′. (86)

The representation of transformations is given by

"(B ◦A ) = !〈B′|!!(A # )|!!(")〉!. (87)

Proof. This easily follows from the definition of preparationally faithful state. One has

"(A ) =!I ,T"
|1(A ) =!I ,T"

|1(A ) =
!(A ,T ")
!(I ,T ")

=|!|(A ′′,#(T̃
′
")) =!|2(!!(")†!!(A )).

(88)

3 If A were a Banach ∗−algebra (we define a Banach ∗-algebra as in Ref. [10], namely simply as a
Banach algebra—i. e. ||B ◦A || ! ||A ||||B||—equipped with an adjoint A → A †, and we don’t require

that ||A †|| = ||A ||) the domain of definition of !!(A ) could be easily extended to the whole H! by
continuity, since to a Cauchy sequence X n ∈ A/I in the Banach algebra it will correspond the Cauchy
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Hilbert space equipped with a symmetric scalar product, an element of the space being
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3 If A were a Banach ∗−algebra (we define a Banach ∗-algebra as in Ref. [10], namely simply as a
Banach algebra—i. e. ||B ◦A || ! ||A ||||B||—equipped with an adjoint A → A †, and we don’t require

that ||A †|| = ||A ||) the domain of definition of !!(A ) could be easily extended to the whole H! by
continuity, since to a Cauchy sequence X n ∈ A/I in the Banach algebra it will correspond the Cauchy
sequence A ◦X n in the Hilbert space, as a consequence of the norm bounding

||!!(A )Xn−!!(A )Xm||! = ||A ◦ (X n−X m)||! ≤ ||A ||!||X n−X m||! ! $−1||A ||||X n−X m||.

with representation of states and effects given by

set I⊆ A of zero norm elements X ∈ A is a left ideal, i. e. it is a linear subspace of A
which is stable under multiplication by any element ofA on the left (i. e.X ∈ I,A ∈A
implies A ◦X ∈ I). The set of equivalence classes A/I thus becomes a complex pre-
Hilbert space equipped with a symmetric scalar product, an element of the space being

an equivalence class. On the other hand, since |!|(X ′,X ′) = 0=⇒X ′ = 0=⇒X = 0
(we have seen that |!| is a strictly positive form over generalized effects) the elements
of A/I are indeed the generalized effects, i. e. A/I & PC as linear spaces. Therefore,
informationally equivalent transformationsA andB correspond to the same vector , and

there exists a generalized transformationX with ||X ||! = 0 such thatA = B+X , and
|| · ||!, which is a norm onPC, will be just a semi-norm on A. Completion of A/I&PC
in the norm topology3 will give a Hilbert space that we will denote by H! (for the
operational relevance of closure see Remark 5). The product in A defines the action

of A on the vectors in A/I, by associating to each element A ∈ A the linear operator
!!(A ) defined on the dense domain A/I⊆ H! as follows

!!(A )|B〉!
.= |A ◦B〉!. (84)

One also has |A ◦B〉! = |A ◦B〉! which corresponds to the transposed version of
(40).

Theorem 7 (Born rule) From the definition (73) of the scalar product the Born rule

rewrites in terms of the pairing

"(A ) =!|2(!!(")†!!(A ))≡ !〈!!(A )|!!(")〉! (85)

with representations of effects and states given by

!!(") = T̃ " :=
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3 If A were a Banach ∗−algebra (we define a Banach ∗-algebra as in Ref. [10], namely simply as a
Banach algebra—i. e. ||B ◦A || ! ||A ||||B||—equipped with an adjoint A → A †, and we don’t require

that ||A †|| = ||A ||) the domain of definition of !!(A ) could be easily extended to the whole H! by
continuity, since to a Cauchy sequence X n ∈ A/I in the Banach algebra it will correspond the Cauchy
sequence A ◦X n in the Hilbert space, as a consequence of the norm bounding

||!!(A )Xn−!!(A )Xm||! = ||A ◦ (X n−X m)||! ≤ ||A ||!||X n−X m||! ! $−1||A ||||X n−X m||.

The representation of transformations is given by
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