
Relativity principle without space-time

Giacomo Mauro D'Ariano 

Università degli Studi di Pavia

Is quantum theory exact? 
The endeavor for the theory beyond standard quantum mechanics. 
Second Edition FQT2015

Frascati September 23-25 2015



Program
Derive the whole Physics from principles 

Physics as an axiomatic theory  

with thorough physical interpretation



Principles for 
Quantum Theory

Selected for a Viewpoint in Physics

PHYSICAL REVIEW A 84, 012311 (2011)

Informational derivation of quantum theory

Giulio Chiribella∗

Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Ontario, Canada N2L 2Y5†

Giacomo Mauro D’Ariano‡ and Paolo Perinotti§

QUIT Group, Dipartimento di Fisica “A. Volta” and INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy∥

(Received 29 November 2010; published 11 July 2011)

We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect
distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of
theories of information processing that can be regarded as standard. One postulate—purification—singles out
quantum theory within this class.
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I. INTRODUCTION

More than 80 years after its formulation, quantum theory
is still mysterious. The theory has a solid mathematical foun-
dation, addressed by Hilbert, von Neumann, and Nordheim
in 1928 [1] and brought to completion in the monumental
work by von Neumann [2]. However, this formulation is based
on the abstract framework of Hilbert spaces and self-adjoint
operators, which, to say the least, are far from having an
intuitive physical meaning. For example, the postulate stating
that the pure states of a physical system are represented by
unit vectors in a suitable Hilbert space appears as rather
artificial: which are the physical laws that lead to this very
specific choice of mathematical representation? The problem
with the standard textbook formulations of quantum theory
is that the postulates therein impose particular mathematical
structures without providing any fundamental reason for this
choice: the mathematics of Hilbert spaces is adopted without
further questioning as a prescription that “works well” when
used as a black box to produce experimental predictions. In
a satisfactory axiomatization of quantum theory, instead, the
mathematical structures of Hilbert spaces (or C* algebras)
should emerge as consequences of physically meaningful
postulates, that is, postulates formulated exclusively in the
language of physics: this language refers to notions like
physical system, experiment, or physical process and not to
notions like Hilbert space, self-adjoint operator, or unitary
operator. Note that any serious axiomatization has to be based
on postulates that can be precisely translated in mathematical
terms. However, the point with the present status of quantum
theory is that there are postulates that have a precise mathe-
matical statement, but cannot be translated back into language
of physics. Those are the postulates that one would like to
avoid.

The need for a deeper understanding of quantum the-
ory in terms of fundamental principles was clear since
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the very beginning. Von Neumann himself expressed his
dissatisfaction with his mathematical formulation of quan-
tum theory with the surprising words “I don’t believe in
Hilbert space anymore,” reported by Birkhoff in [3]. Re-
alizing the physical relevance of the axiomatization prob-
lem, Birkhoff and von Neumann made an attempt to un-
derstand quantum theory as a new form of logic [4]:
the key idea was that propositions about the physical world
must be treated in a suitable logical framework, different from
classical logics, where the operations AND and OR are no longer
distributive. This work inaugurated the tradition of quantum
logics, which led to several attempts to axiomatize quantum
theory, notably by Mackey [5] and Jauch and Piron [6] (see
Ref. [7] for a review on the more recent progresses of quantum
logics). In general, a certain degree of technicality, mainly
related to the emphasis on infinite-dimensional systems, makes
these results far from providing a clear-cut description of
quantum theory in terms of fundamental principles. Later
Ludwig initiated an axiomatization program [8] adopting an
operational approach, where the basic notions are those of
preparation devices and measuring devices and the postulates
specify how preparations and measurements combine to give
the probabilities of experimental outcomes. However, despite
the original intent, Ludwig’s axiomatization did not succeed
in deriving Hilbert spaces from purely operational notions, as
some of the postulates still contained mathematical notions
with no operational interpretation.

More recently, the rise of quantum information science
moved the emphasis from logics to information processing.
The new field clearly showed that the mathematical principles
of quantum theory imply an enormous amount of information-
theoretic consequences, such as the no-cloning theorem [9,10],
the possibility of teleportation [11], secure key distribution
[12–14], or of factoring numbers in polynomial time [15]. The
natural question is whether the implication can be reversed: is
it possible to retrieve quantum theory from a set of purely
informational principles? Another contribution of quantum
information has been to shift the emphasis to finite dimensional
systems, which allow for a simpler treatment but still possess
all the remarkable quantum features. In a sense, the study
of finite dimensional systems allows one to decouple the
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Linearity ⇒ Quantum Walk (free QFT) 
Quantum Cellular Automaton

U U† = A 

Fock space ⇒ von Neumann algebra

• There exists a group L of 
permutations of S+, transitive over 
S+ that leaves the Cayley graph 
invariant 

• a nontrivial unitary s-dimensional 
(projective) representation {Ll} of L 
such that: 

A =

∑

h∈S

Th ⊗Ah =

∑

h∈S

Tlh ⊗ LlAhL
†
l

Isotropy

Linearity  (free QFT) 
Quantum Cellular Automaton ⇒ Quantum Walk

U U† = A 

von Neumann algebra ⇒ Fock space
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G = ⟨a, b|aba−1b−1⟩ ≡ Z × Z
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FIG. 2. Cayley graph of G = ha, b|aba�1b�1i. The graph is
isotropic.

FIG. 3. Cayley graph of G = ha, b|a2b�2i. The graph is
isotropic.

CLOSURE

Proposition 2. All the Ah (with h 2 S) are not full

rank.

Proof. The unitarity condition
P

h�h0=h00 AhA
†
h0 = 0

with h00 = 2h leads to AhA
†
�h = 0. Then either Ah

is full rank and A†
�h = 0 (against hypothesis) or both

Ah and A†
�h are not full rank. ⌅

Proposition 3. For s = 2, if isotropy holds all the Ah

with h 2 S and |S+| = d belong to a ring/group/albegra

(vedere cosa e’) made of at most d2 elements.

Proof. Being s = 2, the Ah have rank equals to 1. Then
a generic Ah can be written as Ah = |⌘hih#h|. The com-

FIG. 4. Cayley graph of G = ha, b|a5, b4, (ab)2i. The graph is
NOT isotropic.

FIG. 5. Cayley graph of G = ha, b|a5, b5, (ab)2i. The graph is
isotropic.

position of two arbitrary Ah, Ak leads to

AhAk = |⌘hih#h| |⌘kih#k| = h#h|⌘ki |⌘hih#k|.

Thanks to isotropy we have h#h|⌘ki = c for every ⌘k,#h.
⌅

Remark 2. For s = 2. For G Abelian, and the automaton

a
b

Theorem: every virtually Abelian QW 
with cell dimension s is equivalent to 
an Abelian QW with quantum cell 
dimension multiple of s. 



Quantum walk on Cayley graph

Theorem: A group is quasi-isometrically 
embeddable in Rd iff it is virtually Abelian

Virtually Abelian groups 
have polynomial growth 
(Gromov)

# points ~rd
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information “transmitted” over 
the graph decreases as exp(-r)

# points ~ exp(r)

→ exponential growth



Informationalism: 
Principles for QFT

• QCA is a discrete theory

•Ultra-relativistic regime (k~1) [Planck scale]: 
nonlinear Lorentz

• Relativistic regime (k≪1): free QFT 
(Weyl, Dirac, and Maxwell)

•QFT derived:

• without assuming Special Relativity 
• without assuming mechanics (quantum ab-initio)

1. Discrete contains continuum as special regime 
2. Testing mechanisms in quantum simulations 
3. Falsifiable discrete-scale hypothesis 
4. Natural scenario for holographic principle 
5. Solves all issues in QFT originating from 

continuum:
i) uv divergencies 
ii) localization issue 
iii)Path-integral

Motivations to keep it discrete:

6. Fully-fledged theory to evaluate cutoffs

• QFT derived in terms of countably 
many quantum systems in interaction 

Min algorithmic complexity principle

add principles

Quantum Cellular 
Automata on the 
Cayley graph of a 
group G
}

• linearity 
• isotropy 
• minimal-dimension 
• Cayley qi-embedded in Rd

Restrictions}
• homogeneity  
• locality 
• reversibility

G virtually Abelian



• Uni+Iso ⇒ the only possible Cayley is the BCC!! 
• Iso ⇒ Fermionic ψ (d=3)

☞ Minimal dimension for nontrivial unitary Abelian QW is s=2

The Weyl QCA
D'Ariano, Perinotti, PRA 90 062106 (2014)

Two QWs 
connected 

by P

sα = sin
kα
√

3

cα = cos
kα
√

3

A±
k =� i�

x

(s
x

c
y

c
z

± c
x

s
y

s
z

)

⌥ i�
y

(c
x

s
y

c
z

⌥ s
x

c
y

s
z

)

� i�
z

(c
x

c
y

s
z

± s
x

s
y

c
z

)

+ I(c
x

c
y

c
z

⌥ s
x

s
y

s
z

)

Unitary operator: A =

Z �

B
dkAk

B
Qi-embeddability in R3
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D'Ariano, Perinotti, PRA 90 062106 (2014)



Dirac QCA �

E
±
k

=

(

nA
±
k

imI

imI nA
±
k

†

)

n
2
+m

2
= 1

E
±

k CPT-connected!

Dirac in relativistic limit k ⌧ 1

!E

±(k) = cos

�1
[n(c

x

c
y

c
z

⌥ s
x

s
y

s
z

)]

D'Ariano, Perinotti, PRA 90 062106 (2014)

m≤1: mass 
n-1: refraction index

Local coupling:     coupled with its inverse 
with off-diagonal identity block matrix

Ak

k
x

ky

kz

k

2~nk
2

~vg(k)

Maxwell QCA ⌦
Bisio, D'Ariano, Perinotti, arXiv:1407.6928

Fµ(k) =

Z
dq

2⇡
f(q) ̃(k2 � q)�µ'(k2 + q)

Maxwell in relativistic limit k ⌧ 1
Boson: emergent from entangled Fermions  

(De Broglie neutrino-theory of photon)

k
2~nk

2

E

B

1.Vacuum birefringence  
2.Vacuum dispersion 
3.Fermionic saturation



The LTM standards of the theory

Dimensionless variables

Relativistic limit:

Measure     from mass-refraction-index

Measure     from light-refraction-index

c∓(k) = c

(
1± k√

3kmax

)

n(m[kg]) =

√
1−

(m[kg]

m

)

x =
x[m]

a
∈ Z, t =

t[sec]
t

∈ N, m =
m[kg]

m
∈ [0, 1]



The relativity principle



(sinωI − n(k) ·T)ψ(k,ω) = 0

Akψ(k,ω) = eiωψ(k,ω)
Dynamics: eigenvalue equation For each value of    there are 

at most    eigenvalues               
k

s {ωl(k)}

n(k) analytic in k + finite-dim irreps.

ωl(k) continuous

dispersion relations branches

Symmetries and Relativity Principle

Bisio, D'Ariano, Perinotti, arXiv:1503.01017

Looking for changes of reference-frames that leaves the dynamics invariant
Change of reference-frame = special change of representation

A =

Z �

B
dkAk

n(k) ·T :=
i

2
(Ak −A†

k)

Lin(Cs)Hermitian basis for

n(k) analytic in k

VA QWs “Hamiltonian”

(I,T) = (Tµ)



Symmetries and Relativity Principle

Change of reference-frame: (ω,k) → (ω′,k′) = Lβ(ω,k)

Lβ invertible (generally non continuous) over [−π,π]× B

group (including space-inversion, charge conjugation,…){Lβ}β∈G

GG0 ,
depend on 
the QW!

there exists a pair of invertible matrices         and        
such that the following identity holds:

Γ̃βΓβ

Symmetry of the dynamics:

 continuous functions ofΓ̃βΓβ and (ω,k)

(sinωI − n(k) ·T) = Γ̃−1
β (sinω′I − n(k′) ·T)Γβ

G0 G(id-component of      ) preserves the branches 

Bisio, D'Ariano, Perinotti, arXiv:1503.01017

G

       ,         can also contain 
LUs, gauge-transforms, …,
Γ̃β Γβ

change of reference-frame = reshuffling                   of 
irreps. holds for the whole class of VA QW

k → k′(k)

k → k′(k)
Lβ(ω,k) = (ω(k′),k′(k))change of reference-frame = k → k′(k)



(sinωI − n(k) · σ) = Λ̃†
β(sinω

′I − n(k′) · σ)Λβ

Λβ ∈ SL2(C) independent of (kµ)

Relativistic covariance of dynamics

Relativity Principle for Weyl QW

Bisio, D'Ariano, Perinotti, arXiv:1503.01017

L(f)
β := D(f)−1LβD(f)

Non-linear Lorentz group

[−π,π]× Bacting on
Disp(A)

D(f) : (ω,k) !→ p(f)(ω,k)

invariant Lβ Lorentz

p(f) := f(ω,k)(sinω,n(k)) pµp
µ = 0 Disp(A)on

p(f)µ σµψ(k,ω) = 0 “4-momentum”



Bisio, D'Ariano, Perinotti, arXiv:1503.01017
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The Brillouin zone 
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invariant regions 
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different particles.
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Includes the group of “translations” of the Cayley graph:         is the Poincaré groupG0
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Relativity Principle for Weyl QW



Dirac automaton: De Sitter covariance (non linear)

Covariance for Dirac QCA cannot leave     invariant

invariance of de Sitter norm:

for

invariance

m

Relativity Principle for Dirac QW

Disp(A):

Bisio, D'Ariano, Perinotti, arXiv:1503.01017
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