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Entanglement as a resource to retrieve information on devices 1

Entanglement as a resource to retrieve information on devicesI

e Complete experimental characterization of quantum
devices.

e Discrimination between Quantum Operations.
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Why entanglement?

e Answer: the entangled state works effectively

as all possible input states in “quantum par-
allel”.
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Entangled states I

e Entangled states |V)) e H® H
U =D Vunln) © [m).

e Matrix notation (for fixed reference basis in the two
Hilbert spaces):

A® BIC)) = |AC B")),

A) = Apln) @ Im) = AQII) =T @ AT|I) ,

)= In)®n).

e [somorphism HS(H) ~ H® H between the Hilbert space
HS(H) of Hilbert-Schmidt operators on H and H ® H

(A|B)) = Tr[ATB].

e Measure of the entanglement for pure states: von
Neumann entropy S(p) = — Tr[pln p] of the local state

p =Tyl W) (T[] = T,
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Quantum operations I

e The most general state (conditioned) evolution in quan-
tum mechanics:

the “quantum operation” (Kraus)

- Elp)
" )]

- The quantum operation £ is a map on traceclass
operators that is
1. linear
2. trace-decreasing
3. completely positive

- The normalization Tr[E(p)|] < 1 is the probability that
the transformation occurs.



Quantum operations

Quantum operations: examples'

1. Unitary transformations:

E(p)=UpU.

2. Pure operations:
E(p) = ApAT,

A contraction, i. e. [A| < 1.

3. Mixing transformations:

E(p) =Y K.pK].

4. Deterministic transformations (channels):

TrE(p)] = Trlp] = > KiK. =1
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Problems I

e Suppose now that we have a quantum machine that
performs an unknown quantum operation &.

- Problems:

1. How to determine £ experimentally?

2. If we have a known set of operations &1, &, ..., how

to discriminate among them?

°)

Case 1 is the complete quantum characterization of a
device.

Case 2 corresponds to event detecting, measurement of
parameters, etc.



Howto characterize the operation of a device

Howto characterize the operation of a device'

e Any linear device (e.g. optical lens, amplifier) can be
completely described by a transfer matrix which
gives the vector output by matrix-multiplying the vector

iput.

- LMI: how to reconstruct the full transfer

matrix of a device?

- Answer (brute force):

by scanning a basis of

possible inputs, and measuring the corresponding

outputs.

Pin >

£

> pout

e In quantum mechanics the inputs and outputs are
density operators, and the role of the transfer matrix is
played by the quantum operation of the device (which
is linear a part from a normalization).

e We need to run a complete orthogonal basis of quantum
states [n) (n = 0,1,2,...), along with their linear
combinations %(m’) +1%n)), with k = 0,1,2,3 and 1

denoting the imaginary unit.

- However, the availability of a basis of states in
the lab is a very hard technological problem.
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Complete positivity: relevant theorems'

e One-to-one correspondence £ < Rg between quantum
operations on T(H) and positive operators Rg on H®Q H:

Re = EQIH(|INI]) ,
E(p) = Tra|(I ® p")Re] ,

where

1) = Z In) ® |n), {|n)} orthonormal basis

e The most general form for £ is (Kraus)
E(p) = Z KHIOKJL 7

where the operators K, satisty the bound
Y KK, <1.
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The entangled input'
. Quantum parallelism of entanglement I A sin

gle entangled input state |V)) is equivalent to
scanning all states in parallel.

LS TN
(W) (V] Rout
AN S

e We need to put the entangled state at the input of the
device with two identical quantum systems prepared in
an entangled state |V)), and only one of the two systems
undergoing the quantum operation £, whereas the other
is left untouched.

e In tensor-product notation this setup is expressed as the
quantum operation

Rout =& ®I<|\Ij>><<qj‘>

where the entangled state |W)) is given by

) = Wnln) @ [m).

e For fixed faithful state |V)) (¥ full-rank) the output

state Ryt = Reg(WV) is in one-to-one correspondence
with the quantum operation of the device &.
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Availability of the entangled input'

e Full-rank entangled states can be easily generated in
Quantum Optics from parametric downconver-

sion of vacuum
C

KTP

N

e Hamiltonian |H o ca'b’ 4+ h.c.| where w, = w, + w.

- From input vacuum in a and b and classical pump c
produces the “twin-beam”

e Faithful entangled states of qubits can be generated by
means of networks of controlled-NOT gates.
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Quantum tomography I

e Howto determine the output state?

Answer: using quantum tomography:.

e Quantum tomography is a method to estimate the
ensemble average (H) of any arbitrary operator H on
H by using only measurement outcomes of a quorum of

observables {O; }.

- The density matrix corresponds to estimating the en-
semble averages of |)(j|.

e This means that any operator H can be expanded as

H=> (Q,H)O,
z

for suitable scalar product (, ) and dual set {Q;}.

e Hence, the tomographic estimation of the ensemble
average (H) is obtained as double averaging over both
the ensemble and the quorum.

e Very powerful experimental method.  General ap-
proach for unbiasing the instrumental noise. Im-
provements based on adaptive techniques, maximum-
likelihood strategies, etc.

e For multipartite quantum systems, simply a quorum is
the tensor product of single-system quorums: this means
that, in our case, we just need to make two local quorum
measurements jointly on the two systems.
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Homodyne tomography I

e In quantum optics a quorum for each mode of the field
is given by the set of quadratures

Xop = % (aTew) + ae_w) :

e One has
i) = [ SEEa(X0)

1 +00 ' '
Ey(x:6) = | / Ak [k TY[He¥o)e ik |

@)

e Balanced homodyne detection

Iy =cle = Ip=1—-1I
=a'b+bla
I I =dld ~ 201X
c
a d a
J
| b (LO) |2)
1 1
c=—(a+b), d=—(a—0b) .

V2 V2

e [n the strong LO limit (2 — o0) a balanced homodyne
detector measures the quadrature X, of the field at any
desired phase ¢ with respect to the local oscillator (LO).
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Homodyne tomography I

i) = [ Bu(xs0).
1

400
En(x:6) = | / Ak [k TY[He¥o)eike |

e Analogy with the Radon transform for imaging

@)

o A tomography of a two dimensional image W (a, &)

is a collection of one dimensional projections p(x; @) at
different values of the observation angle ¢.

+00 d T d +00
W(a,@):/_oo T4|T| /0 ?gb /_oo dz p(x; @) exp [ir(z — agy)] .
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Pauli Tomography I

Pauli matrices with identity I ,o04 ,0y ,0%:
orthonormal basis for the qubit operator space:

H = i{o Tr[cH] + I Ty[H]} .

e Tomographic estimation:
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Pauli Tomography I

e (Qubit realized by polarization of single photon
states.

0, = hTh—UTU,
[T = D0, [ 1) = |0)a[1)v,

g
Uy — 6240-330-26 7,40'3;

I

. 1 .
e al0)e = S [110al0)0 = #10)x[1)] = [1)4J0).-,
4T I
or =€ "1%0g,e"1%
. 1
[0} = S[1n[0)0 = [0)al1)e] = [1) A0} -

PBS

Figure 1: Pauli-matrix detectors for photon-polarization qubits.
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Some experimental results'

e [First measurement of the joint photon-number probabil-
ity distribution for a two-mode quantum state created
by a nondegenerate optical parametric amplifier.

M. Vasilyev, S.-K. Choi, P. Kumar, and G. M.
D’Ariano, Tomographic Measurement of Joint Pho-
ton Statistics of the Twin-Beam Quantum State,
Phys. Rev. Lett. 84 2354 (2000)]

To scope /1\ To boxcar
| iy
LPF LPF|i Ch2

KTP  PBS % r'\;_/ e -[}—%
Pump 40 MHz
532 nm NOPA

Filter signal LO

40 MHz
idler LO
\
Identical \ 4 Ch1
_ to Ch2 —>
To scope \l’ To boxcar

Figure 2: A schematic of the experimental setup. NOPA, non-degenerate optical parametric
amplifier; LOs, local oscillators; PBS, polarizing beam splitter; LPFs, low-pass filters; BPF,
band-pass filter; G, electronic amplifier. Electronics in the two channels are identical. The
measured distributions exhibit up to 1.9 dB of quantum correlation between the signal and idler
photon numbers, whereas the marginal distributions are thermal as expected for parametric
fluorescence.
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Some experimental results'
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Figure 3: Marginal distributions for the signal and idler beams. Theoretical distributions for the

same mean photon numbers are also shown.
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Some experimental results'
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Figure 4: Left: Measured joint photon-number probability distributions for the twin-beam state.
Right: Difference photon number distributions corresponding to the left graphs (filled circles,
experimental data; solid lines, theoretical predictions; dashed lines, difference photon-number
distributions for two independent coherent states with the same total mean number of photons
and 7 = m. (a) 400000 samples, 7 =m = 1.5, N = 10; (b) 240000 samples, 7 = 3.2, m = 3.0,
N = 18; (¢) 640000 samples, 7 = 4.7, m = 4.6, N = 16.
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Tomography of quantum operationsl

COMPUTER

e General method: Two identical quantum systems
are prepared in an entangled state |U)). One of
the two systems undergoes the quantum operation &,
whereas the other is left untouched. At the output one
makes a quantum tomographic estimation, photocurrent
by measuring jointly two random observables from a
quorum {X)}.

e The output state is the joint density matrix

(U] = R(¥) = €@ Z(|T) (¥)).

e The quantum operation &£ is in correspondence with
Re = R(V) for ¥ = I, and for invertible ¥ the two
matrices R(I) and R(V) are connected as follows

RI)=(IxV "RW)(I U ).

Hence, the quantum operation (four-index) matrix Rg¢
can be obtained by estimating via quantum tomography
the following output ensemble averages

(i, 3| RN k) = (1Dl @ v k) (5o~ ).
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Tomography of quantum operationsl
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Figure 5: Homodyne tomography of the quantum operation A corresponding to the unitary
displacement of one mode of the radiation field. Diagonal elements A,,, (shown by thin solid
line on an extended abscissa range,) with their respective error bars in gray shade, compared to
the theoretical probability (thick solid line). Similar results are obtained for all upper and lower
diagonals of the quantum operation matrix A. The reconstruction has been achieved using an
entangled state |1)) at the input corresponding to parametric downconversion of vacuum with
mean thermal photon 7 and quantum efficiency at homodyne detectors n. Top: z =1, n = 5,
n = 0.9, and 150 blocks of 10* data have been used. Bottom: z = 1, n = 3, n = 0.7, and 300
blocks of 2 - 10° data have been used. The bottom plot corresponds to the same parameters of
the experiment in Ref. M. Vasilyev, S.-K. Choi, P. Kumar, and G. M. D’Ariano, Phys. Rev.
Lett. 84 2354 (2000).

e The method exploits the quantum parallelism of en-
tanglement, with a single entangled state playing
the role of a varying input state, thus overcom-
ing the practically unsolvable problem of availability of
all possible input states for the tomographic analysis of
the quantum operation.
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Tomography of a single qubit quantum deviceI
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Figure 6: Experiment in progress in Roma La Sapienza, F. De Martini lab.

i



Tomography of a single qubit quantum device (F. De Martini, G. M. D’Ariano, A. Mazzei, and M. Ricci, quant-ph/0207143)4

Tomography of a single qubit quantum device
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Faithful states I

e [s it possible to characterize a quantum operation using
mixed entangled states, or even separable ones?

e Answer: yes, as long as the state is faithful.

e We call a bipartite state faithful when acting with a
channel on one of the two quantum systems, the output
state carries a complete information about the channel.

‘¢ )
SR,

R

Re =EQRI(R).

Namely: the input state R is called fasthful when
the correspondence between the output state Rg =
£ ® I(R) and the quantum channel £ is one-to-one.

e The concept of faithfulness can also be extended to sets
of states, when the output states patched together carry
a complete imprinting of the channel.
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Faithful states I
Onr
R R 1)) R
o

R= Z\Al (Al =T @ RIIN{I)), ZApA;.

o A state R is faithful when the map R is invertible,
in order to guarantee the one-to-one correspondence
between Re and £.

- The information about the channel € can be extracted
from Rg as follows

E(p) = Tro[(I ® p)T @ R (Re)).

e A pure state R = |A)) ((A| is faithful iff it has maximal
Schmidt’s number.

e The set of faithful states R is dense within the set of all
bipartite states.

e However, the knowledge of the map £ from a measured
Re will be affected by increasingly large statistical errors
for R approaching a non-invertible map.

e [t follows that there are faithful states among mixed
separable states.



Faithful states

Examples of faithful states'

e Werner’s states:

Ry =

Tl h+ @ =8

E swap operator, d = dim(H), (-1 < f <1)
- faithful for all f # %, separable for f > 0.

e [sotropic states for dimension d
Ry = SN (I + 251 = SN (1)),
- faithful for f # %, separable for f < %.
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Faithful states for “continuous variables” I

e The inverse map R~ is unbounded.

- As a result we will recover the channel £€ from the mea-
sured R¢ with unbounded amplification of statistical er-
rors, (depending on the chosen representation).

e Eixample: twin beam from parametric down-conversion
of vacuum

U) = II), W=(1-¢E  |¢ <1

e The state is faithful, but the operator ¥~! is unbounded,
whence the inverse map R ™! is also unbounded.

e For example, in a photon number representation B =
{In)(m]|}, the effect will be an amplification of errors
for increasing numbers n, m of photons.

[ ! [ ! [ ! [

1
T
1
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Faithful states for “continuous variables” I

e Consider now the quantum channel describing the
Gaussian displacement noise

d af?
Nlp) = [ “e ¥ Dla)pDi(a)

- analogous of the depolarizing channel for infinite dimen-
S101.

e Multiplication rule

NVNM — ./\/‘y—{—luj
whence the inverse map is formally given by
NP =N,

e As a faithful state consider now the mixed state given by
the twin-beam, with one beam spoiled by the Gaussian
noise, namely

R =T N,([¥){¥]).

One has
R = %(\If ® I)exp [—(a_bT)V(aLb)] (V1)
and its partial transposed
R (e )0 D (V _ 1) Y(a—b)T(a—b) W
v+1 ’

e Since our state is Gaussian, the PPT criterion guaran-
tees separability,' and for ¥ > 1 our state is separable,
still it is formally faithful, since the operator W and the
map N, are both invertible.

'R. Simon, Phys. Rev. Lett. 84, 2726 (2000)
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Faithful states for “continuous variables” I

e Unboundedness of the inverse map can wash out com-
pletely the information on the channel in some particular
chosen representation.

e Example: (overcomplete) representation B = {|a) (3|},
with |a) and |3) coherent states.

- From the identity

Noflaa)) = (@) (2 )ammax

v+ 1 v+ 1

one obtains

N (o a]) = —

1 —v

—CLJ[CL

D(a) (1—v71) """ DY(«),

e which has convergence radius v < %, which is the
well known bound for Gaussian noise for the quantum
tomographic reconstruction for coherent-state and Fock

representations.”

e Therefore, we say that the state is formally taithful,
however, we are constrained to representations which
are analytical for the inverse map R~

:G. M. D’Ariano, and N. Sterpi, J. Mod. Optics 44 2227 (1997)
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Tomography of POVM’SI

’pn

The conditioned state is given by
Pr = (P, ® )R’




Tomography of POVM’s (G. M. D’Ariano and P. Lo Presti)

Absolute characterization of a photodetector

:
computer
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Discrimination among quantum operations'

e General measurement problem: optimal estimation
of parameters of a quantum operation.

e Optimization over:

1. the detection scheme
2. the input state

e The use of an entangled input state R is considered, with

the unknown transformation &y acting locally only on
one side of the entangled state: R — Ry =& @ Z(R).

p——m & — P

S TN
AN

e Result: the entangled configuration is always
better, for either precision or stability of the measure-
ment. This is due to the fact that the input entangled
state is equivalent to many input states in “quantum
parallel”.
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Precision increases with the dimension of the input space'

e Instructive example: discrimination among the four
Pauli matrices

op=1,01=0,,00=0,,03=0,.

e With a state |¢p) € C? we always obtain four linearly
dependent states o|¢) (we can discriminate exactly at
most between two of them).

e On the contrary, if we apply the four matrices to the
maximally entangled input state %H ) we obtain the
four Bell orthogonal states

(0; @ 1) J5|I) = los).

namely we obtain perfect discrimination.
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Precision increases with the dimension of the input space'

e A less trivial example: estimating the displacement of a harmonic oscillator
in the phase space, i. e. the parameter a € C of the transformation

p— pa = D(a)pD'(a),

where D(«) is the displacement operator for annihilation and creation
operators a and a'
D(a) = exp(aa’ — @a).

e For unentangled p, an estimation of a isotropic on C is equivalent to a
optimal joint measurement of position and momentum, which, as
well known, is affected by a unavoidable minimum noise of 3dB.

e The optimal state (for fixed minimum energy) is the vacuum, and the
corresponding conditional probability of measuring z given « is

p(zla) = 7 exp[—|z — af?].

e Consider the same estimation with D(«a) acting on the entangled state
U) = V1LY _€"n) @ n)
n=0

measuring the current Z =a® I — I ® al.

e We obtain
p(zla) = (A% exp[-ATz — af?],
- with variance A? = ;—EI that, in principle, can be decreased at will (the

state |U)) approaches an eigenstate |[D(2)) of Z =a® I — I ®al.
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Precision increases with the dimension of the input space'

e The measurement of the current 7 = a ® [ — I ® a' is achieved by a
heterodyne detector

cos(wrrt)

A

o———+ Vr

as(wo + wrr) Eour

Y

_/

di(wo —w]F) N
Y oO—» V1

~ ] oA

bi(wo —wrr) 111 bs(wo +wrr) sin(wypt)

bl (WO)

Figure 7: Scheme of the heterodyne detector and the relevant field modes involved in the measurement. Dashed
lines denote vacuum states.

e Measured photocurrent:

Tovr(wip) = / dw Egyp(w + wrp) Eyp(w) .

e Reduced complex current Y in the limit of transparent beam splitter and
strong LO

t

7

loyr < as+ a

e The heterodyne achieves the ideal measurement of the complex field a (here
the signal mode a)

e Measuring a is equivalent to the joint measurement of P and Q

e The image-band mode a; is vacuum, and its fluctuations are responsible for
an additional 3dB of noise (minimum noise for joint measurement).
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Precision increases with the dimension of the input space

e Optimal scheme for estimating a displacement using heterodyne and
downconversion of vacuum in the signal and image bands.

D(2)

Figure 8: Conventional scheme with 3dB added noise

D(2)

Figure 9: Unconventional scheme with vanishingly small noise
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Precision increases with the dimension of the input space'

e More generally, consider the discrimination among a group of unitaries
{U,}, g € G that form a (projective) representation of the group G, i. e.
U,Uy, = w(g, h)Uyp,, where w(g, h) is a suitable phase [for simplicity let us
consider an irreducible representation].

e Trace identity (from the Schur’s lemma)
[U,0Ul]c = Tr[O]1,

where [f(g)] denotes the group averaging

d
[f(9)la = @Zf(g)-

geG

e For a general input state |E) € H® H, the Hilbert space H,,; spanned by
the output states is the support of the operator

O = [[¥){(Yylle = (E'E) ©1,
with W, = U,E. Therefore, dim(H,,) = dxrank(E) = Schmidt number of
[E)-

e Holevo bound x = S([|¥,)) (Y,lla) — [S(|¥,) (Vy])]e for the information
accessible from the measurement, S denoting the von Neumann entropy
S(p) = —Tr[plnp]. One has

x=d 'lnd + S[ETE],

i. e. the bound is increased exactly of the amount of entanglement S[ETE]
of the input state.
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Measurements in the presence of noise'

e What happens if the estimation is performed in the presence of noise?

e Instructive example: estimating the displacement of a harmonic oscillator
in the phase space in the presence of Gaussian displacement noise with v
mean thermal photon number

. [ APy e
p—Tu(p)= | =Le 7 D(y)pD! (7).

c TV
- Noise particularly simple, since one has
LTy =Ty
[ [D(a)pD'(@)] = D(@)T, (o) D' (a).

e If the measurement is made on the entangled state |¥) = (1 —
£]2)z Yoo 0 &"n) ® |n) one can easily derive a Gaussian conditional proba-
bility distribution with variance

(52 = AZ + 2I/T,

where A% = L_F—EI, vr is the total Gaussian displacement noise before and
after the displacement D(a), and the noise is doubled since it is supposed

equal on the two entangled Hilbert spaces.

- For unentangled input (vacuum), one has

52:1+VT.

e Conclusion: the entangled input is convenient below one thermal photon
vr = 1 of noise. This is exactly the threshold of noise above which the
quantum capacity of the noisy channel vanishes.
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Discrimination between two unitaries'

e Optimal probability of error in the discrimination of the two output states
Uy |y) and Us|y) for any (also entangled) input state [i)

1
Pe=j 1= V1= tmeltviciviivr].
p1 and py being the a priori probability of the two transformations (for
simplicity, set p; = ps = %)
e Optimum input states [¢)) minimize the overlap |(4|UJU[4)].
e Minimum overlap is given by

mgKM@mWH=H@M%

- (W) denoting the distance between the origin of the complex plane and
the poligon whose vertices are the eigenvalues of the unitary operator W.

A
N

N\
Y

<

e Discrimination is perfect iff the poligon of the eigenvalues of W = U2T Uy
encircles the origin.
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Discrimination between two unitaries'

e Since W and W ® I have the same spectrum, an entangled input is useless.

e The situation changes dramatically if one has N copies of the unitary
transformation U = U} » to be determined.

- Use a N-partite entangled state as follows

-
|

e Now the spectrum of W®V has angular spread A(W) that increases as
A(WEN) = min(NA(W), 27)

e Conclusion: therefore, the discrimination is always exact for sufficiently
many uses N! (compared with the case of state discrimination) [see also

Acin].

e The above arguments could be extended to the case of multiple testing.
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Improving the stability of the measurement'

e When the discrimination is already optimized by a unentangled input, an
entangled state can still be better in achieving a more stable
sensitivity.

e A unentangled input is optimal in the covariant measurement for abelian
group G.

e Example: problem of distinguishing among displacements on a fixed
direction of the phase space, say D(x), with = € R.

e In this case one could use a squeezed input state

S

|zg)s = exp [—

S((@')? = )| D)oy, s >0,

squeezed in the direction of the “quadrature” X = L(al + a).

e A conditional Gaussian probability is obtained, with variance
1
<AX2> — 16_28

which can be narrowed at will by increasing the number ng = sinh®s of
squeezing photons.

e However, if the phase of the quadrature is slightly mismatched, and
Xy = L(a’e” + ae™'?) is measured instead, the variance becomes

1
(AX]) = 1(628 sin? ¢ + e % cos® ¢),

e The sensitivity is unstable.

e Using the entangled input

[U) = (1—[¢) Zgnin ® |n)

1—|z|
14|
n = 2|x|?/(1 — |x|?) downconverted photons!

one obtains the Gaussian noise A? = independently on ¢ by using



CONCLUSIONS 1

CONCLUSIONS I

e An entangled input state can be used for:

1. determining experimentally the quantum operation
of a device or a media via quantum tomography:;

2. improving the precision of the measurement of a
parameter of a transformation;

3. improving the precision in the presence of noise;

4. achieving perfect discrimination between unitaries,
when multiple copies are available;

5. achieving a more stable precision for the measure-
ment;
e The underlying mechanisms are:
1. the entangled state works effectively as all possible
input states in “quantum parallel”:
2. entanglement enlarges the dimension of H;

3. increasing the dimension of the Hilbert space can be
used to transform set of linearly dependent states {p}
into states that are linearly independent {p®V}.



