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Quantum Mechanics: foundations
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•
Quantum Measurements

paradigm shift: from uncontrollable disturbance of
measurement (Messiah) ⇒ control of coherence and measurement engineering
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•
Quantum Measurements

paradigm shift: from uncontrollable disturbance of
measurement (Messiah) ⇒ control of coherence and measurement engineering

• Breaching the Standard Quantum Limit

- Yuen, Contractive States and the Standard Quantum Limit

for Monitoring Free-Mass Positions, Phys. Rev. Lett. 51,

719 (1983).

- Ozawa, Measurement Breacking the Standard Quantum

Limit for Free-Mass Position, Phys. Rev. Lett. 51, 719

(1983).
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Our general research program

To construct a radically new generation of quantum devices for quantum
information technology
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Calibration of a scale
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know what and how much it measures?
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What does an apparatus measure?

If we have an apparatus which performs a quantum measurement, how can we
know what and how much it measures?

It is the theory which decides what we can observe!
—Einstein to Heisenberg
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Problem

Is it possible to calibrate a photo-detector, and
more generally any quantum measuring apparatus,
without using the theoretical statistical mechanics
description of its functioning?
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A measuring apparatus with possible ”outcomes” {n = 1, 2, . . .} is described by a
set of operators (called POVM)

P = {Pn},

which provide the probability p(n) of each n for all possible states ρ via

p(n) = Tr[Pnρ] Born rule

In order to have p(n) a probability the operators Pn must satisfy the constraints

Pn ≥ 0,
∑

n

Pn = I.

Quantum calibration-[November 27 2003] [start]-[end]-[back] 36



How can we calibrate a measuring apparatus

Quantum calibration-[November 27 2003] [start]-[end]-[back] 37



How can we calibrate a measuring apparatus

In principle, we can calibrate a quantum measur-
ing apparatus without knowing its functioning by
determining experimentally its POVM {Pn}.
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Quantum tomography

• Quantum tomography is a method to estimate the ensemble average 〈H〉 of
any arbitrary operator H by measuring a quorum of observables {Ol}.

[G. M. D’Ariano, Scuola “E. Fermi”, (IOS Press, Amsterdam 2002) pag. 385.] [start]-[end]-[back] 38
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Quantum tomography

• Quantum tomography is a method to estimate the ensemble average 〈H〉 of
any arbitrary operator H by measuring a quorum of observables {Ol}.

• The operator H is expanded on the quorum:

H =
∑

l

cl(H)Ol.

• The tomographic estimation of the ensemble average 〈H〉 is obtained by
averaging over both the ensemble and the quorum.

- The estimation of the density matrix element ρij corresponds to H = |i〉〈j|.

• There are general method for unbiasing instrumental noise, adaptive
techniques, maximum-likelihood strategies, etc.
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Homodyne tomography

• In quantum optics for each field mode a quorum ≡ {quadratures}

Xφ = 1
2

(
a†eiφ + ae−iφ

)
≡ Q cos φ + P sinφ.

〈H〉 =

∫ π

0

d φ

π
〈EH(Xφ; φ)〉 , EH(x; φ) = 1

4

∫ +∞

−∞
d k |k|Tr[He

ikXφ]e
−ikx
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Pauli tomography

Pauli matrices I , σx , σy , σz orthonormal basis for the qubit operator space:

H = 1
2[σ · Tr(σH) + I Tr(H)] .
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Pauli tomography

Pauli matrices I , σx , σy , σz orthonormal basis for the qubit operator space:

H = 1
2[σ · Tr(σH) + I Tr(H)] .

• In Quantum Optics the qubits are encoded on polarization of single photons:

σz = h†h− v†v,

| ↑〉 ≡ |1〉h|0〉v, | ↓〉 ≡ |0〉h|1〉v,

PBS

σz

PBS

σx,y

λ/4
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Faithful states

• A bipartite state R is faithful when acting with a device on R as in figure the
output RE carries a complete information about the operation E of the device

R R
E

E
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• R is faithful when its associated map
R(ρ) = Tr1[(ρᵀ ⊗ I)R]

is invertible.
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Faithful states

• A bipartite state R is faithful when acting with a device on R as in figure the
output RE carries a complete information about the operation E of the device

R R
E

E

correspondence RE ⇔ E one-to-one

• R is faithful when its associated map
R(ρ) = Tr1[(ρᵀ ⊗ I)R]

is invertible.

There are pure faithful states: the entangled states (quantum parallelism of
entanglement!)

[G. M. D’Ariano and P. Lo Presti, Phys. Rev. Lett. 91 047902-1 (2003)] [start]-[end]-[back] 41



Entangled states in quantum optics

• Nonlinear Quantum Optics: parametric downconversion of vacuum

c

b

a

KTP

Hamiltonian H ∝ ca†b† + h.c.

where ωc = ωa + ωb

- From input vacuum in a and b and classical pump c produces the
twin-beam

|Ψ〉〉 = (1− |ξ|2)1
2

∞∑
n=0

ξn|n〉 ⊗ |n〉
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Production of faithful states
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Faithful states

• Essentially any garbage state is faithful (invertibility is a dense condition).
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Faithful states

• Essentially any garbage state is faithful (invertibility is a dense condition).

• However, the knowledge of the map E from the measured output state RE will
be affected by increasingly large statistical errors for input state R approaching
a non-faithful one.

[G. M. D’Ariano and P. Lo Presti, Phys. Rev. Lett. 91 047902-1 (2003)] [start]-[end]-[back] 44



Quantum Calibration of a measuring apparatus
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Quantum Calibration of a measuring apparatus

n

R

ρ
n

• The calibration is achieved by determining experimentally the POVM using a
faithful state as in figure.

Pn = p(n)[R−1(ρn)]ᵀ].
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Quantum Calibration of a measuring apparatus

n

R

ρ
n

• The calibration is achieved by determining experimentally the POVM using a
faithful state as in figure.

Pn = p(n)[R−1(ρn)]ᵀ].

- p(n) probability of the outcome n,

- ρn conditioned state, to be determined by quantum tomography,

- R associated map of the faithful state R.
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Quantum Calibration of a measuring apparatus
• Precalibration

R R
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Quantum Calibration of a measuring apparatus
• Precalibration

R R

• Calibration

R

n

ρ
n
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Quantum Calibration of a measuring apparatus

In principle we need only two tomographers and
a single faithful state to calibrate any measuring
apparatus.
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Quantum Calibration of a measuring apparatus

R

n

ρ
n

• Using a ”calibrated observable” the measurement is ”unbiased” (at expense of some increasing

statistical error).

Quantum calibration-[November 27 2003] [start]-[end]-[back] 48



Quantum calibration of a photodetector

LO

NLC

R
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Tomography of a twin-beam

Measurement of the joint photon-number probability distribution of a twin-beam: schematic of the experimental setup.

NOPA, non-degenerate optical parametric amplifier; LOs, local oscillators; PBS, polarizing beam splitter; LPFs,

low-pass filters; BPF, band-pass filter; G, electronic amplifier. Electronics in the two channels are identical.

[M. Vasilyev, S.-K. Choi, P. Kumar, and G. M. D’Ariano, Phys. Rev. Lett. 84 2354 (2000)] [start]-[end]-[back] 50



Results
Left: Measured joint

photon-number probability distributions

for the twin-beam state. Right: Differ-

ence photon number distributions cor-

responding to the left graphs (filled

circles, experimental data; solid lines,

theoretical predictions; dashed lines, dif-

ference photon-number distributions for

two independent coherent states with

the same total mean number of pho-

tons and n = m.) (a) 400000 sam-

ples, n = m = 1.5, N = 10; (b)

240000 samples, n = 3.2, m = 3.0,

N = 18; (c) 640000 samples, n = 4.7,

m = 4.6, N = 16. The measured

distributions exhibit up to 1.9 dB of

quantum correlation between the signal

and idler photon numbers.

[M. Vasilyev, S.-K. Choi, P. Kumar, and G. M. D’Ariano, Phys. Rev. Lett. 84 2354 (2000)] [start]-[end]-[back] 51



Homodyne calibration of a photodetector

Figure 1: Homodyne tomography of an On/Off photo-detector with quantum
efficiency η = 0.4 and thermal noise photon number ν = 0.1. The reconstruction
is obtained by pattern-function averaging of 1.5 · 106 data, for homodyne quantum
efficiency η = 0.9 and twin beam thermal photon n̄ = 3.

[G. M. D’Ariano and P. Lo Presti, Springer, Lecture Notes, in press] [start]-[end]-[back] 52



Homodyne calibration of a photodetector

Figure 2: Homodyne tomography of an On/Off photodetector with quantum
efficiency η = 0.4 and thermal noise photon number ν = 0.1, with n̄ = 3 photons
in the twin-beam. The ML estimation of the diagonal of the only Off POVM
element are reported for different values of sample size N and homodyne quantum
efficiency ηH. Left: N = 105, ηH = 0.7; Middle: N = 104, ηH = 0.9; Right:
N = 106, ηH = 0.7 .

[G. M. D’Ariano and P. Lo Presti, Springer, Lecture Notes, in press] [start]-[end]-[back] 53



Quantum Mechanics: physical axioms?

FAITHFUL STATESC
A

L
IB

R
A

T
IO

N

INFO-COMPLETE POVMS

Informationally complete POVM’s = calibrators: ”the quantum
standards of the International Bureau of Weights and Measures à

Paris” — Chris Fuchs.

Quantum calibration-[November 27 2003] [start]-[end]-[back] 54



Quantum calibration-[November 27 2003] [start]-[end]-[back] 55



Quantum observables and measurement devices

Q

Q position
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Quantum observables and measurement devices

P

P momentum
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Quantum observables and measurement devices

Q P

P+Q? PQ?

[*]
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