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[. INTRODUCTION

In guantum mechanics to any physical system there is associated a Hilberf&ptheestates
are described by positive trace-class trace-one operatorsH, the physical quantities by self-
adjoint operatorg\ on H, and the physical content of the theory is given by the expectation values
Tr (AT). The stateT is completely determined by T, T) for Q, running on a suitable s¢@Q,}
of observables and, for arbitrary operafgrTr (AT) can be computed in terms of TQ(T). In
order to implement this scheme one has to estimat€@JT] experimentally, facing the problems
arising from statistical errors and instrumental noise. Moreover, the number of experimental ob-
servations is clearly finite, whild& and T are operators on an infinite dimensional Hilbert space
and the se{Q,} is infinite.

The problem of determining the state of a quantum system entered the realm of experiments,
in the last decade, in the domain of quantum optics. Many authors, see e.g., Refs. 1-4, proposed
and used various techniques to reconstruct the density operator of a single mode of the electro-
magnetic field from the probability distributions of its quadratures. These methods were originally
based on the use of the Radon transform, as in medical tomographic imaging. Due to this analogy
the namequantum tomographys currently used to refer to these techniques. Their common
feature, for a review see Ref. 5, is the use of a set of observé@Qlem € X}, called quorum
parametrized by a spa¢eéendowed with a probability measuge The fundamental property of
the quorum is that any observalecan be expressed as antegral transformon the space,

A=f AN du(n),
X
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in such a way that, for alh e X, the operatoE[ A](n) is a function ofQ,, in the sense of the
functional calculus. Then, iT is the state, one has

Tr(AT)=j o(A)(N,N)o(n,N)du(n)dX, (1)
XXR
whereN—w(n,\) is the probability density 0@, in the stateT, i.e.,

Tr(TQn)=ﬁR)\w(n,>\)d)\,

and\—a(A)(n,\) is the function defined by[ A](n) using the functional calculus, i.e.,
Te(TeLAT)= [ o)A e(n )N
R

(in the above-mentioned formulas we assumed for simplicity that €acthas an absolutely
continuous spectrumSelecting randomly,, in the quorum according to the probability measure
w and measuring it, the probability of obtaining a value in the interkat fd\ ,\ + 3d\) is given
by w(n,\)du(n)d\. Then, by means of Eql), the expectation value TAT) can be recon-
structed, by averaging the functiom(A) over XXR endowed with the probability measure
o du d\. We notice that the functioor(A), called theestimatorof A, does not depend oh and
that the same set of data can be used to estimate all the expectation valddg.Tr (

In Refs. 6 ad 7 a general method has been proposed to realize a quorum and define estimators
in terms of suitable unitary representations of Lie gro(fps a self-contained concise exposition
see Refs. 8 and)9The present paper is concerned with laying the mathematical foundations of
this method based on the theory of square-integrable representations of unimodular Lie groups. In
Sec. Il we present the mathematical theory and in Sec. Ill we apply it to two examples: the
homodyne tomography related to the Weyl-Heisenberg group and the angular momentum tomog-
raphy associated with the rotation group.

II. GROUP-DYNAMICAL QUORUM

In this section we define a quorum associated with a square-integrable representation of a Lie
group.
Let G be a unimodular connected Lie gro@andK a central closed subgroup. The quotient
spaceH = G/K is a unimodular connected Lie group. We denoteiiys Lie algebra, byn+1 the
(rea) dimension of$) as a vector space, ljv a Lebesgue measure ¢ and bydh a Haar
measure orH, uniquely defined up to a positive constant, which will be fixed in the following.
Denote by exp the exponential map frafto H; we assume that there is an open subset
$ such that exp() is open inH, its complement has zero measure with respecthtoand exp is
a diffeomorphism fromV onto exp¥). This hypothesis implies that, givene L*(H,dh),

fo(h) dh=DJ;Jf(exp(v))Idet(d(exp)u)l)(v(v)dv. )

whered(exp), is the differential of the exponential map @t 9, i.e.,

d
d(exp)u(w)=(aexp(—v)exqwrtw) we$,
t=0

det(-) is the determinant anD is a positive constant, see, e.g., Theorem 1.14, Chapter | of Ref.
10. We normalize the Haar measwth of H in such a way thab=1.
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Remark 1:The density detd(exp),) can be easily computed observing that\ if, . . . A1
are the(possibly repeatedeigenvalues ofi(exp),, viewed as linear operator of, then

1-e ™ 1—e *mi1
N N

det(d(exp),) =

with

see, e.g., Theorem 1.7, Chap. | of Ref. 11.

Let U be an irreducible continuous unitary representatio®.0fVe denote byH the (complex
separableHilbert space where the representation acts ang by the scalar product oi, linear
in the second argument.

We assume that the representatldns square-integrable modulg, i.e., there is a nonzero
vectorv e H such that

fH|<UC(h)v,v>|2dh<w, ©)

wherec is a section fronH to G, i.e., a measurable mapH— G such that
c(eq) =eg,
m(c(h))=h, heH,

with 7 being the canonical projection frof to H. Notice that the value of the integral in E@)
is independent of the choice of the section and that E). implies that the function
h—(U U, W) is square integrable for all,w e H.*

We will discuss briefly the meaning and generality of the above-mentioned assumptions in
remark 3 in the following.

Remark 2:1n many example& is trivial, i.e.,K=eg, so thatH =G and Eq.(3) reduces to the
usual notion of square integrability. Nevertheless, there are cases, such as the Weyl-Heisenberg
group, that require the full theory. Moreover, in this framework one can easily consider projective
representations. Indeed, ltbe a projective representation of a Lie grdf:lp/vith multiplier m.
DefineG as the central extension of the tolidy H associated witim. ThenK is a central closed

subgroup ofG, H is canonically isomorphic witH, and there is a unitary representatidrof G
such that
U

U geG.

=(9)~ Yg°

Clearly, the fact thatU is square-integrable modull§ is equivalent to the fact thab is a

square-integrable projective representatiotHof
If Uis square-integrable modul6, one can prov¥ that there is a constad{,>0, calledthe
formal degreeof U, such that, for alu,u,,v,,v,€eH,

I 1
fH<Uc(h)01:U1> (Ugnyva,up) dh= E<U1,U2><Uz,vl>- (4)

Using the above-mentioned relation we can represent the Hilbert—Schmidt operafgrason
square integrable functions ¢h Indeed, letZ ?(#H) be the Hilbert space of the Hilbert—Schmidt
operators orf{ with the scalar product

Downloaded 19 Jan 2001 to 192.84.142.17. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.



J. Math. Phys., Vol. 41, No. 12, December 2000 Group theoretical quantum tomography 7943

(A,B)—Tr(A*B),

where Tr () denotes the trace am&l* is the adjoint operator oA. If u,v e H, letu®v* be the
operator inL?(H),

(uv*)(w)=(v,wyu, weH.
Given a sectiort, we defineX (u®v*) as the function fronH to C given by
E(u@v*)(h)=(Uc(h)v,u), heH.

From Eq.(4), it follows that> (u®v*) is square integrable with respectdd and

||2_

1 1
2 2
”2(U®U*)“L2(H,dh): d, ||U||2||v _dU ||U®U*||L2(H) )

Taking into account that the s¢u®v*:u,v e H} is total in £?(H), it follows that, is
defined uniquely by continuity o ?(H) and, if A,B e L2(H),

Tr(A* B):du<2(A),z(B)>L2(H’dh) . (5)
Moreover, ifA is of trace-class, then for almost &l H,
2(A)(h)=Tr(Ugp)-1A). (6)

Indeed, let
A:E )\iei@)fr
I

be the canonical decomposition&fwhere €;) and (f;) are orthonormal sequences?f) (\;) is
an/;-sequence, and the series converges in trace-norm and, hence, in the Hilbert—Schmidt norm.
SinceZ, is continuous, then

S(A)=2 \3(gaff),

where the series convergesliA(H,dh). On the other hand, fixele H, sinceA is of trace class,
so isU¢n-1A, hence

Tr(Uc(h)*lA):Z (fi Ueny-1AT)
:Ei N(Uemyfi.e)
=2 M2 (e@ff)(h),

where the series converges pointwise. The claim is now clear.

We are now ready to define a quorum associated with the square-integnaddiello K)
representatiot of G.

Let T be a state ofH, i.e., a positive trace-class operator of trace one, Aral Hilbert—
Schmidt operator oft{. Taking into account Eqg5) and (6),
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Tr(TA) =dy(Z(T),2(A))L2(H,dn)
=duJHm2<A><h>dh,
so that
Tr(AT)=deHE(A)(h)Tr(TUC(h)) dh,

By means of Eq(2), the above-mentioned equation becomes

Tr(AT)=duLE(A)(eva)Tr(TUc(expu))Xv(v)|det(d(exp)v)| do.

Let S™ be the sphere i). Then, for allne S™, the map
t'ﬁuc(exp(tn))

is a projective representation Bf Since all the multipliers oR are exact, there is a self-adjoint
unbounded operatd,, and a measurable complex functiay with modulo 1 such that, for all
teR,

Uc(exp(tn)):an(t)eith- (7)

Using polar coordinates in Eq7), one has that

Tr(AT)=d, cmf dQ(n)fwdttmE(A)(exp(tn))an(t)
sm 0

XTr (T€"n) xy(tn)|det(d(exp),)|, €)

whered() is the normalized surface measure on the spB&teC,, is the volume ofS™, anddt

is the Lebesgue measure on the real line. The set of self-adjoint opi@ipnse S™}, labeled by

the probability space§™,d(), is called thequorumdefined by the representatith We notice

that Eq.(7) definesQ, uniquely up to an additive constant, see, also, Remark 4 in the following.
Since Q, is self-adjoint, we can find by the spectral theorem a projection valued measure

E—P,(E) defined onR such that

Tr(TQ,) = fH)\d Tr(TPL(N)),

whered Tr (TP,(\)) is the positive bounded measure
E—=Tr(TP,(E))

on R. Using this equation, one obtains

Tr(AT)=d, Cmfsmdﬂ(n)f:dtfﬂd Tr(TP,(\))

X @M (A)(exp(tn)) an(t) xy(tn)|det(d(exp)[t™. ©)

In order to obtain a reconstruction formula for ), we would like to interchange the integrals
indtand ind Tr(TP,(\)).
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We consider first the case whé(A), which is only square integrable, is in fact integrable
with respect tadh, i.e.,

lez(A)(h)|dh<oo. (10

By means of Fubini theorem, this condition implies that, for almostred S, the map
t—2 (A)(exptn)) is integrable with respect to the measure

dty= yv(tn)|det(d(exp ) [t™ dt. (11)

Then the map fron8™XxR to C,
a(A)(n,\)=dy Cpy f "IN (A) (expltn) an(t) xy(tn)|det(d(exp) [t dt,  (12)
0

is well-defined and it is called thestimatorof the observabléd. We notice that the estimator does
not depend ol and, given the representatidh can be computed analytically.

Since the measurd Tr (TP,(\)) is bounded, by means of Fubini theorem, one can inter-
change the integrals in E¢Q) obtaining

Tr(AT)=JSmdQ(n)fRd Tr(TPL(N))o(A)(N,N). (13

The above-mentioned integral transform is the core ofgileentum tomographgnd is a concrete
realization of the scheme proposed in Sec. I; cf. Bj. Indeed,dQ(n)d Tr(TP,(\)) is the
probability of obtaining a value inN(— 3d\,\ + 2d\) when one measures the observaflg,
chosen randomly in the quorum accordingdt@. Moreover, by means of E¢13), the expecta-
tion value TrAT) can be reconstructed as average of the estimaf&) over many random
measures of the observabl@g in the quorum.

Remark 3:Equation(13) is the mathematical justification of quantum tomography and is
essentially based on formuld2) and (4). The assumptions on the existence of the \4ethe
unimodularity ofG, and the square integrability &f modulo a central subgroup are sufficient to
deduce in a simple way these formulas in a fairly general framework. In particular, they guarantee
the existence of the map that allows one to represent tkidilbert—Schmid} operators ori{ as
(square-integrab)dunctions on the spadd. In other wordsy, defines a family of coherent states
in the space of operators. We stress that the existence of a family of coherent states in the space
‘H is not sufficient to defin& . Indeed, the square integrability of the representation provddss
of families of coherent stated)v:ge G} parametrized by the analyzing vectorrunning on a
dense subset dfi.

Furthermore, the physical interpretation of E§j3) relies on the fact thad Tr (TP,(\)) is a
probability measure This holds since, in Eq4), the formal degree is a number. @ is not
unimodular and/oK is not central, then the formal degree is replaced by an operator and)Eq.
becomes

J'H<Uc(h)v1vu1><Uc(h)UZvu2> dh=(uy,u;)(Cv,,Cuy),

whereC is a positive, possibly unbounded, operatorionsee Refs. 13 and 14. The mapcan
be defined in this more general setting, however one deduces that

3(T)(exp(tn))= J e Tr(CTP,(N)).
R
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If T andC do not commuted Tr (CTP,(\)) is not a probability measure and EG.3) loses its
physical meaning.

Remark 4:There is a choice for the section that simplifies the expression of the estimator.
Indeed, denote b the Lie algebra of5; since the differentiatl = of 7 is a surjective linear map
from & onto 9, there is an injective linear mgpfrom $ to & such thatdw(j(v))=v for all v
e 9. Since exp is a diffeomorphism from onto expy), there is defined a smooth mapfrom
exp(V) to G such that

clexp(v))=expj(v)), veh.

Clearly ¢ is a section and the relatiod ¢exptn) =Uexpti(y) SOWs that one can always choose
an()=1 in Eq. (7). HenceU ey =€"".

One can easily prove that, if one changesj+1 in such a way thatd«(j(v)+I(v))=v,
then the quorum transforms accordingQg— Q.+ qg,!. However, in most of the cases, there is a
natural choice for the map, so that the quorum®, is, in fact, defined uniquely by the represen-
tation U.

Remark 5:0nce the quoruniQ,} is fixed, Eq.(12) is independent of the choice of the section
c. Indeed ifc’ is another section, then, for dlle H, ¢’ (h) =k(h)c(h) andk(h) e K. SinceK is
central inG and U is irreducible, thenU,,,)=g(h)I, where g(h) is a complex number of
modulus one. Hence, with obvious notations, for almoshalH and for allt e R,

(A (h)=B(MZ(A)(h),

an(t)=B(h)ay(t),

so thato(A) is invariant with respect to the change>c’.
Remark 6:f Ais of trace class and satisfies E0), then, using Eq(6), one obtains a more
explicit formula for the estimator oA,

a(A)(n,\)=dy cmf:e‘“Tr (Ae™Qn) v (tn)|det(d(exp),) [t™ dt.

Moreover, in most examples the 3éts sufficiently nice so that the map— x,,(tn) is continuous

for almost allt e R. In this case, if one chooses the sectmas in Remark 4, taking into account
that the functiorg—Tr (TUy,) is continuougsince the ultraweak operator topology is equivalent
to the weak operator topology on the unit ball £7)], it follows that the estimatorr(A) is
continuous orS™X R. This property is important in order to approximate the integral of (E§)

by a finite sum.

Remark 7:We notice that this procedure imbiasedsince the observable,, are chosen
randomly and the integral given by Ed13) can be approximated by a finite sum as
dQ(n)d Tr(TP,(\N)) is a probability measure. This means that this approach is not affected by
the systematic errors that were present in the first tomographic s¢fielme to the cutoff needed
in the inversion of the Radon transform; see Ref. 3.

Remark 8:If H is compact therdh is finite and any irreducible representation is square
integrable. Since the Hilbert spaée where the representation acts is finite dimensiofa( )
coincides with the space of all the operators. Moreover, sirf¢éd,dh)CLY(H,dh), Eq. (10)
holds for every operator.

Remark 9:If U is an integrable representatigmoduloK), there exists a dense s&tin H
such that, ifu,v € S, thenZ (u®v*) satisfies Eq(10).

If condition (10) does not hold, it may happen that, for a non-negligible setof™, the map
t—3 (A)(exp(tn)) is not integrable with respect to the measdtg defined by Eq(11) (it is only
square integrabje so that the estimatar(A) given by Eq.(12) is not well defined.
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In these cases, in order to define the estimator one has to use a suitable regularization proce-
dure. For example, for a fixed>0 and allne S™, A e R, let

L
oL (A)(n,\)=dy Cmf eMI(A)(exp(tn)) an(t) xv(tn)|det(d(exp),) [t dt. (14)
0
It may be the case that there exists a funcisdi\) such that

Iimf dQ(n)f dTr(TPn()\))aL(A)(n,)\)=f dQ(n)f dTr(TP,(\)a(A)(N,\).
sm R sm R

L—oo

Then, as an easy consequence of dominated convergence theorem, one has

Tr(AT)= fsmdQ(n)fRd Tr(TPu(N))o(A)(N,N).

Analogous regularization procedures could be used to extdrd to non-Hilbert—Schmidt op-
erators. Although this problem is physically relevam@any observables of interest are unbounded
it is beyond the scope of the present paper.

lll. EXAMPLES

A. The Weyl—-Heisenberg group
Let G be the Weyl—-Heisenberg group, i.&=R?* with the composition law

bia;—a;b,
(7711a11b1)(7721a21b2): 7]1+ 772+Taal+a21bl+b2 .

It is known thatG is a connected simply connected nilpotéiménce unimodularLie group.
The setkK={(#,0,0):7e R} is clearly a central closed subgroup®fand the quotient group
H=G/K can be identified with the vector grod}f. One has the following facts.

(1) The canonical projectionr is given byw(7,a,b)=(a,b).

(2) A smooth sectiort is given byc(a,b)=(0,a,b).

(3) A Haar measure ofl is the Lebesgue measuda db of R?.

(4) The Lie algebra) of H can be identified withi? so that the exponential map is the identity
and, for allv € $, det [d(exp),)=1.

(5) The constanD in Eqg. (2) is equal to 1.

It follows that the choicé/= $) satisfies the assumptions of Sec. Il.
Let U be the representation & acting in=L?(R,dx) as

b‘

J

(Utranw )=l 7+ Flexau(x+b),

wherexe R,ue L?(R,dx), and (y,a,b) e G. It is known thatU is a unitary continuous irreduc-
ible representation o6, called theSchralinger representationlt is in fact square-integrable
moduloK and its formal degree idy=1/2m, see for instance Ref. 15. According to Sec. I, it
defines a quorum.

In order to make it explicit, we observe that, with the notation of the Sec. Il,

S"={ng:=(cogd),sin®)):d [0,2r]},

m=1, C;=2m, anddQ = d®/27. Moreover, sinc&HUc(mq’) is a one parameter subgroup, we
have
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Uc(tnq,) =e'Ye,
whereYy, is a self-adjoint operatdiin this examplean(b(t)=1]. If uis a Schwartz function, we
have

Ygou=cogP)Qu+sin(d)Pu,

whereQ is the operator of multiplication by, i.e., the position operator, arRlis —i times the
weak derivative operator, i.e., the momentum operator. Hence the quorum defitkd lmyven
by the set of self-adjoint operators

{Yg :®e[0,27]}

labeled by the spade),2s] with the uniform measurd®/27r.
The above-mentioned quorum has the following property. For daelj0,27], there is a
unitary operatoWg such that

Yo=WeQWg . (15)
To prove it, given® €[0,27], let f from G to G,
fo(m,a,b)=(n,cogd)a—sin(®)b,sin(®)a+cogd)b).

One can easily check thats is a continuous automorphism of the grodp, so that
gneU;q)Z =U¢ (0 is a unitary irreducible continuous representatiorGoénd the restriction t&

is the character—e'”. From the unicity of the Schrbnger representation, it follows that there
exists a unitary operatdlg such that

Ufe=W,UwW,!.

Then

f

[+3]
U (0t,0)

u :W(I>U(O,t,O)W<£l ,

c(tng) =~

and Eq.(15) follows by Stone’s theorem.

Now letT be a state ot{. Recalling that the spectral meastiitg of Q is the one given by the
operators of multiplication by characteristic functions, then, by means of(Hj), for each
® [0,2] there is aL(R,d\) function A\ w(P,\) such that

Tr(TPq,(E))=Tr(ngTW(DPQ(E)): f w(P,N\)dN,
E

whereE— P4 (E) is the spectral measure associated wigh. The mapw can always be chosen
to be measurable as a function ph27] X R and then it is a probability density di®,27] X R
with respect to the measurd®/27) dA.

Finally, fix a Hilbert—Schmidt operatok in H such thats (A) is integrable with respect to
da db. According to Eq.(12), the estimator oA is

U(A)(CD’)\)ZJJtE(A)(tCOS{cb),tsin((I)))emdt
0
for ® €[0,2r] and\ € R, and the reconstruction formula E@.3) is explicitly given by

27 dad
Tr(AT)=fO fRU(A)(CI),)\)w(CD,)\)Ed)\.
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The representatiot) is actually integrable and, ifu,) is the basis of eigenvectors of the
number operator, theB (u,®u’, ) € L'(H,dh) and one has the explicit formula

(Uup®Uu*, ) (P A)z(_i)l\/ " e g iex —§+i)\t
TN EEn )T oz N(n+1° J, n| 2 4

whereLﬁq are the associated Laguerre polynomials. The statistical reliability oflBghas been
verified in Ref. 3.

This example is physically realized by homodyne tomograpfige quantum system is the
harmonic oscillator representing a single mode of the e.m. field with annihilation and creation

operatorsa anda’. In terms of such operators, one has the followitigtionary:

dt, (16)

a+af
\/E 1
a-a
P= —,
J2i
. "Tiﬁ
U(v),a,b) =¢ ne(aa aa),
a'e®+aei®

YqF\Ef:i\/zan,

where

[e(aéT—ZA) e —b+ia EC}

V2

is the so-calledlisplacement groupnd X4, is the quadrature with phasee[0,27].
The measuring apparatus is a homodyne detector with tunable phase with respect to the local
oscillator. The function/2w(®,/2\) is the probability densitywith respect tai\) to obtain the
value\ measuring the quadratukg, , chosen randomly according to the measidg2+. More-
over, the explicit form of the estimator &, A being of trace class, is

1= .
a(A)(P,\2\) = Zfo Tr(Ae e~ NM)t dt.

One could consulf for an example of an experimental realization of the above-mentioned tomog-
raphic method.

Remark 10:In this example one is able to obtain an estimator also for monomiadsaind
a’.1"8 For example, one has that

o(afa)(®,2n)=2\2— 1.

B. The group SU (2)

Let SU2) be the group of the unitary 22 complex matrices with determinant 1. It is a
unimodular connected simply connected compact Lie group. The corresponding Lie algebra is

i
su(2)= E(Xol-l—yo'z-i- z03):X,Y,ze R
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whereo; are the Pauli matrices

0 1 0 —i 1 0
91701 o)t 727\ o) P lo -1)

In the following we identify su(2) with R® using the basis i(fk/Z)ﬁ‘zl. Let V={(x,y,2)

e R®:J(xZ+yZ+ 22)<277}; it is known thatV is an open neighborhood of 0 such that the expo-
nential map restricted t¥ is a diffeomorphism fronV onto the open set exg] and the comple-
ment of expV) is negligible with respect to the Haar measure of @UMoreover one can check
that

VE+y?+22

2
x2+y?+27°

|

detd(exp) .y, =4

If we choose the Haar measure on(8JUn such a way that the constabtin Eq. (2) is 1 one has
that

fldh:f |d(exp) (x.y.|dx dy dz= 162 17
H \Y

(usually the Haar measure on compact groups is normalized to 1).

Given j such that 2eN, let D! be the irreducible representation of @V acting onH
=(2*1, Since the group is compad) is square integrable and the space of the Hilbert—Schmidt
operators coincides with the space of all operaie(€? 1).

Since the measure of $P) is normalized according to Eql7), it is well known that the
formal degree islp;= (2j +1)/1672, see, e.g., Ref. 12.

For allne S?, defineJ, as the hermitian matrix such that

Di(exp(tn))=€eYn teR.
Then, the quorum defined HY' is the set of spin operatofd,:ne S?} labeled by the spac®?
with the measur@n/4s, dn being the area element of the sphere. It is known thaisheple
eigenvalues of each, areAx=—j,...,j and there exists a unitary operai,, unique up to a
phase, such that
J =W, I,W,,
Where\]z:\](oyoyl).

Now letAe £(C3*1); then, according to Eq12) and taking into account th&@,= 41, the
corresponding estimator is

2j+1 (27 . t
o(A)(n,)\)zj—f e'“Tr(Ae'”n)sin2<—)dt,

a 0 2

wherene S? and\=—j,...,j. Equation(13) becomes
i d

n
Tr(TA)= 2 J’ U(A)(nv)\)KWne)\1TWne>\>|2_1
ooy ) 4

where @€,)} _

—_j Is a basis of eigenvectors df .
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This example is realized experimentally by a Stern—Gerlach machine. The quantum system is
the spin degree of freedom of an elementary particle with spirand the number
(W,e, ,TW,e,)|? is the probability to obtain the value measuring the spin along the axis
chosen randomly according to the measdinéd .
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