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Abstract

We propose a tomographic reconstruction scheme for spin states. The
experimental set-up, which is a modification of the Stern—Gerlach scheme,
can be easily performed with currently available technology. The method is
generalized to multiparticle states, analysing the spin-1/2 case for
indistinguishable particles. Some Monte Carlo numerical simulations are

given to illustrate the technique.
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1. Introduction

The main idea of tomography is to reconstruct the density
matrix o or, equivalently, the expectation value of any
observable of the system from repeated measurements on an
ensemble of identical states. In this paper a ‘spin tomography’
for reconstructing spin states is developed in the framework
of generalized tomography, starting from group theory [1].
There have been other proposals to infer the spin state [2].
Our method is both easy to carry out experimentally and, for
the first time, allows also a reconstruction of indistinguishable
multiparticle spin-1/2 states, which is quite general since it
encompasses a vast class of experimentally accessible systems.

The best known quantum tomographic procedure is optical
homodyne tomography [3], for the reconstruction of the
density matrix g, of the radiation field from the homodyne
probability p(x, ¢). It is based on the following formula [4]:

T q +00
o :/ —¢/ dx p(x, §)K (x — x¢), 1
0 T J-oo

where x, is the quadrature operator and K (x) is an appropriate
kernel function. We will not go into details about this formula,
as we only want to stress the analogy with the spin case. In
fact, consider the spin density operator o, which is defined on
a Hilbert space H; of dimension 2s + 1. We will prove the
following formula:

5 dﬁ . . )
@= Z /ﬁp("’m)ffs(m—s'n), 2)

m=—=s

where the integral is performed over all directions of the vector
n, p(i, m) is the probability of having outcome m measuring
the self-adjoint operator § - 72 (5 being the spin operator) and
K, (x) is a kernel function that will be defined later.

Itis possible to show that both equations (1) and (2) follow
from a single operator identity, derived using group theory.
In fact, define tomographic group G as an unimodular group
(i.e. left and right invariant measure are coincident) which has a
unitary irreducible square-integrable representation R(g)(g €
G) on the Hilbert space H of the physical system. (A square-
integrable representation is such thatfdgl(u|72(g)|v)|2 < 00,
where the integral is extended to all the elements g of the group
G, dg is an invariant measure for G, and where the integral is
not dependent on the choice of |u), |v) € H (as will be shown
later).) The operator identity we derive (1) and (2) from, and
which is valid for any tomographic group G, is the following:

o= /dgTr[QR(g)]W(g), 3)

valid for any trace class operator g acting on H. This formula,
derived from general considerations in [1, 5], is derived also
in the appendix using only group theory.

The outline of the paper is as follows. In section 2, the
tomography procedure to reconstruct the spin state of single-
particle systems is introduced and analysed. The experimental
set-up is described and some demonstrative numerical simula-
tions of the procedure are studied. In section 3 the extension
to the reconstruction of multiparticle spin states is studied. For
distinguishable particles, the general reconstruction procedure
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is given while, for indistinguishable particles, the cases of two
and three spin-1/2 particles is analysed in detail. In section 4
the orders of magnitude of possible experimental set-ups are
discussed, showing the feasibility of the proposed method. In
the appendix the group tomography is derived by proving the
tomographic reconstruction formula (3) in the framework of
group theory.

2. Single-particle spin tomography

Starting from the general operator identity (3), we now specify
the physical system as a single spin. In this case H = C>*!,
s being the spin of the particle. For such a system, we can
choose the group SU(2) of 2 x 2 unitary matrices with unit
determinant as the tomographic group G. In fact, SU(2) can
be parametrized through the ‘rotation parameters’ (7, ¥ )—
where 1 = (cosgsin®,singsin®, cost), ¢ € [0,7],
¢ € [0,27] and ¥ € [0,27]—and it induces a unitary
irreducible representation on C>*!. The operators constituting
this representation are given by

R, ¥) = eV, 4)

where § is the particle spin operator. Haar’s invariant
measure® for SU(2) is, with this parametrization and with
the normalization needed for the invariant measure (see the
appendix),

2s+1 ., ¢ .
sin® — sin ¢ dyr d9 de. 5)

> S
dg(n.¥) = —— >

As will be seen in the following, the choice of SU(2) as
tomographic group G is not unique for a spin system. Itis easy
to obtain the spin tomography (2) starting from equation (3),
which we now rewrite as

25+ 1) (" i
Q:M/ dwsnﬂf/ 49 sin ®
47'[2 0 2 0

2
X / de Tr[ee’ Ve 5V (6)
0

Evaluating the trace over the complete set of vectors |1, m)
(which are the eigenstates of s - 71, relative to the eigenvalue
m), we find equation (2), by defining

2
Koo = D / dy sin? Leiv %)
s 0 2

and by noticing that (n, m|o|i, m) = p(n, m).

It should be pointed out that formula (1) for optical
homodyne tomography can be proven from equation (3) with
a very similar argument.

How do we use formula (2)? In order to measure the
matrix elements p;; = (a;|o|a;) for all i, [ ({|a;)} being a basis
for H,), we only need to calculate (a;|Ks(m —5 - i1)|a;) and to
measure p (i, m).

The most convenient choice for the basis {|a;)} is the
set {|m)} of eigenvectors of s, (m = —s,...,s). Thus, the

3 Haar’s measure du (g) must be such that Jdu(g) = 1, and Vi € G,
du(g) =du(h-g) =du(g-h).
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Figure 1. Experimental apparatus for spin tomography. The Fizeau
filter (F) selects particles with the same velocity from an incoming
beam. These are then injected into a magnetic field By, which forms
an angle ¢ with the y axis and has intensity proportional to ©. For
the tomographic reconstruction the phases © and ¢ need to be varied
during the experiment. The remaining part of the apparatus is a
conventional Stern—Gerlach scheme (in the figure we show the case
of spin s = 1 as an example). A computer finally correlates the
experimental results with the parameters ¢ and ¢ in order to
reconstruct the density matrix, according to equation (6).

calculation of the matrix elements of the kernel operator, by
defining A;,, = (l|n, m), yields
.o 25+ 1) [
1K m —5 - )|y = M/ dy sin? 2
T 0 2

s
x 2 : el]p(m_m))\i,m/)\;im/

m'=—s
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Observing that
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b
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where the sum is performed over the values of v for which the
argument of the factorials is non-negative. In the last equality
we used Wigner’s formula [6].

2.1. Experimental set-up and state reconstruction procedure

We now describe the method to measure the state o of an
ensemble of non-charged particles, giving the details of the
experimental apparatus, depicted in figure 1. The beam of
particles impinges onto a Fizeau filter, which selects one
velocity (in the x direction) for the particles. This is needed
in order to ensure that each particle spends the same amount
of time 7 in the following region where a magnetic field B,
is present. The field By, which is parallel to the xy plane,
is chosen so that By = Bjii;, = Bj(—sing, cosg,0). In
this way, its effect on the spin state g results in the unitary
transformation U +QU , with

U = expliy B(sin ¢sy — cos @sy)t]. (10)
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Figure 2. Simulation of the reconstruction of the density matrix for a coherent spin state o.,,. The parameters for the state are « = 1 and
s = 5. The simulation is performed using 3000 spin measurements to generate the density matrix.

Equation (10) follows from the Hamiltonian H = —/i - E,
with i = yhs (i1 being the intrinsic magnetic moment of
the particle and y its gyromagnetic factor). Successively, the
particles cross a gradient of magnetic field B,, whose effect
is to split the beam, giving a measure of s, for the state
UToU, as in a Stern-Gerlach experiment. In this way we
obtain the probability (m|U U |m), whichis equal to p(i1, m)
by choosing By = —¥/(yt), and by using equation (8).
Therefore, by controlling the field El, we obtain p(n, m) for
all 7. In fact, the direction of él selects ¢, while its intensity
B selects . Now, in order to reconstruct the density matrix o,
only data analysis is needed, i.e. the insertion of the measured
p(i, m) into equation (2). One may object that an infinite
number of measures are required. However, the calculation
of the integral in (2) with Monte Carlo techniques guarantees
that the reconstructed matrix elements are affected by statistical
errors only, which can be made arbitrarily small by increasing
the number of measures. In practice, a rather small number of
data is required to obtain negligible errors, as we will show by
numerically simulating the experiment.

We first simulate the case of a coherent spin state [7], i.e.

an

where s+ = s, =is,. Notice the similarity with the customary
optical coherent state, defined as |o) = e°‘“ta*a|0), where a
is the annihilator operator for the optical mode and |0) is the
vacuum state. In figures 2 and 3 we show the reconstructed
density matrix g.,, = |&)ss(c| resulting from a Monte Carlo
simulated experiment.

As an additional example, in figures 4 and 5 we give the
simulated reconstruction of a thermal spin state, which is the
mixture defined by

sy —a¥s_ |

|a>sie _S>, aeC

—€s;

O = c e eR. (12)

o Trlee]’
The state o, describes a gas of non-interacting spins in
thermal equilibrium with a reservoir at a temperature 7 and
in the presence of a magnetic field B, parallel to the z axis,
i.e.€ = —yhB,/(kgT), kp being the Boltzmann constant.

2.2. Discrete spin tomography

Uptonow SU (2) has been used as the tomographic group G for
the reconstruction of the spin density matrix. This choice for
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Figure 3. Diagonal elements of the matrix given in figure 2. The
statistical error bars are obtained by dividing the measurements into
10 statistical blocks. The full line indicates the theoretical value.

G is not unique. For example, in the case of spins = 1/2, itis
possible to also use the group defined as G = {io, —io, I, —1},
where & is the vector of Pauli matrices ¢ = (0y, 0y, 0;). The
following irreducible unitary representation on C? exists:

R(iaa) = R(_iaa) = Oq,
R(U) = R(~1) = I.

o =X,y,2

(13)

Using this representation, from the tomographic reconstruction
formula (3) we obtain

172

0= Z Z p(ﬁa,m)maa+%.

m=—1/2a=x,y,z

(14)

Notice that, by using equation (14), it is sufficient to measure
the spin in only three directions. Analogously, for spins = 1 it
is possible to find a finite group as an alternative to SU(2). In
fact, consider the 12-element tetrahedric group composed of
the j:%n rotations around the vectors {7i; = %(1, 1,1, 1, =
FL =L =D iy = =(=1, 1, =1, iis = =(=1, =1, D)},
of the m rotations around {115 = (1,0, 0), ig = (0, 1,0), 17 =
(0,0, 1)} and of the identity. It induces a unitary irreducible
representation on the space C3, given by the 3 x 3 rotation
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Figure 4. Density matrix for a thermal spin state g,,. Here € = 0.75 and s = 2, and 60 000 simulated measurements have been used in the

reconstruction.
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Figure 5. Main diagonal of the matrix given in figure 4. The error
bars, which in this case are practically negligible, are obtained by
dividing the measurements into 10 statistical blocks. The full line
indicates the theoretical value.

matrices. Hence, equation (2) now becomes

1 7

o=1 > pli;mK;m—5-ip+il, (15
m=—1 j=1
with
2cos(2mx j=1,23,4
Ki(x) = 7m(3 ) , (16)
e Jj=15,6,7.

Notice that this procedure does not make use of a minimal
set of measurements, since 14 experimental parameters must
be determined in (15), whereas there are only 8 independent
real parameters in the 3 x 3 density matrix. In contrast,
the case of spin s = 1/2 outlined previously does use the
minimal set of measurements for such a system. In figure 6
a comparison between the two spin tomography procedures
given by equations (6) and (15) is shown through a Monte
Carlo simulation. Notice that there is no significant difference
in the results, showing that there is no substantial need for a
procedure which involves a minimal set of measurements.

For spins s > 1 an analogous procedure holds: one needs
to find a finite group such that it induces an irreducible unitary
representation on H = C>*!

80

3. Many-particle spin tomography

The mathematical extension of the method to the case of a
system composed of many spins is trivial, yet it predicts the
necessity of performing measurements on single components
and this may not always be possible when the system is
composed of indistinguishable particles. For this reason, we
need to develop the theory more.

3.1. Distinguishable spins.

As tomographic group for a system of N spins we can
simply use SU()®Y. Up to equivalences, its irreducible
representations are given by the direct product of N
operators (4) and the invariant measure is the product of
N measures (5). As a consequence of the tomography
reconstruction formula (3) applied to SU(2)®V, we readily
attain the following generalization of equation (6):

N

Qs+ 1)
o=]]
k=1

21 ) l[fk g
_— d in® — ddy sin ¥
o ; Yy sin 5 /0 & sin ¥y

2w
X / dox Tr[geﬁ*‘ﬁ“/’*]efﬁk‘;’“/’*, 17)

0
where k is the particle index. The trace term in (17) gives rise
to the probability p(ii;, my; ...; iy, my) of obtaining my as
a result for the measurement of the kth spin 5 in the direction
nx. This information is accessible only in the case of fully
distinguishable spins.

In figure 7 a simulated tomographic reconstruction of the
value of (S;) (S; being the total spin component in the z-
direction) is given for different multiparticle spin states. Notice
how the number of necessary experimental data increases
exponentially with the number of spins, since the statistical
error is exponential in the number of particles.

3.2. Indistinguishable spin-1/2 particles.

Suppose we were given a system of N particles with the same
spin. Such particles may be treated as identical by introducing
a new dynamical variable, as in the case of the isospin. The
spin density matrix (which is the partial trace over the orbital
degrees of freedom of the global density matrix) is completely
symmetrical, i.e.

PQPiI =0, (18)
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Figure 6. Monte Carlo comparison between continuous and discrete tomography. Continuous tomography uses SU (2) as the tomographic
group and is based on equation (6), while discrete tomography uses SU (2) finite subgroups and is based on the reconstruction procedures
given in equation (14) for s = 1/2 (utilizing, in this case, a minimal set of measurements) and equation (15) for s = 1. Left: convergence of
the mean value of (s,) for a coherent @ = 2 spin state for increasing numbers of experimental data (the theoretical value is given by the
horizontal lines). The circles refer to continuous, and the stars to discrete, tomography. The upper graph is for spin s = 1/2 and the lower is
for s = 1. Right: plots of the statistical error bars of the graphs on the left versus experimental data. The error bars are obtained by dividing
the experimental data into 20 statistical blocks. Notice that the two tomographic procedures are essentially equivalent: they converge in the

same way at the same result.
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Figure 7. Left: plot of (S.) for different numbers of spins in a completely symmetrical state. A total of 10° measurements for each mean
value was performed in this simulation. Right: semilog plot of the error bars versus the number of spins. Notice the exponential increase in

the statistical errors.

for any particle permutation P, because of the complete
symmetry of the global density matrix.

It is also possible to see that the spin density matrix is
block diagonal in the representation of vectors of definite
symmetry, with the subspace corresponding to each block
spanned by vectors belonging to the same symmetry. In fact,
given |¢) and |) vectors of different symmetry types [8], then

(¢|v) = 0. Hence, for any operator g, satisfying (18), one has
(plolyr) = 0, as o|y) belongs to the same symmetry type
as |¢).

Since the square of the total spin S? and its z component S,
both commute with all permutation operators P, the common
eigenvectors of S? and S. may be taken as a base for each of
the diagonal blocks of the spin matrix. Let us now restrict
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our attention to s = 1/2 spin particles. In this case, for each
symmetry type there corresponds only one value of S, where
S(S + 1) is the eigenvalue of S2. In fact, given [A;);] the
partition of N which defines the class of permutations P that
indicate a symmetry type, we find S = %(Al — A2) [9].

Let Hg » be the space of vectors with assigned S and
M (M being the eigenvalue of S,). The spin density
matrix restricted to Hg s, which is given by og , is again
completely symmetrical, hence [P, os.;] = 0. Moreover,
‘Hs.m is associated with an irreducible representation of the
permutations group [9]. By using Schur’s lemma, we can thus
conclude that o5 p o I, I being the identity in Hs p. In
‘Hs.m there may be vectors of different symmetry type i, yet
(i, S, M|os.mli, S, M) does not depend on the index i, so that
the probability for the measurement of S and S, does not
depend on the symmetry type. The same conclusion holds for
the measurement of S and S - m for any vector 7. Hence,
from the arbitrariness of 711, we conclude that blocks with the
same S (and different symmetry type) are coincident.

In conclusion, we have proved that in the ({S?}
representation o is block diagonal, that each block corresponds
to a value of S and that blocks with the same S are equal.
Remarkably, applying equation (2) to each block, we can
reconstruct o measuring only the global quantities S and S - 71.
Some examples will clarify both the theory and the needed
experimental set-up.

In the case of two spins 1/2, the spin density matrix will
be of the form

o o o 0
oy 0 o013 0.
= - =0 Da, 19
@ 031 03 o3 0 (19
0 0 0 «

where the o block corresponds to the subspace spanned by
the eigenstates of S = 1 (which are symmetrical with respect
to particle permutations), while the « block to the subspace
spanned by the only eigenvector of S = 0 (antisymmetrical
with respect to permutations). Applying (2) to each block one
finds

dii Z‘ 3 -
Q:/4_ p(SZlvs'n:M)Kszl
NM=_

x (M =S i) p(S =0). (20)

According to (20), in order to measure 0, we only need
the probability distributions p(S, S - 1), corresponding to the
operators § 2and S-n, forall 7, which can be suitably recovered
using the apparatus depicted in figure 8, which will be analysed
later.

Similarly, the spin density matrix of three spins 1/2 is

E&n & &3 & O 0O 0 O

&y &n &3 & 0 0 0 O

&1 & &3 & O 0 0 O

En & b3 k4 O 0O O O

¢e=10 0 O O =, x5, 0 0 21

0 0 0 0 m mm, 0 0
0 0 0 0 0 0 =f 7
0 0 0 0 0 0 7r22| 71222

The & block corresponds to S = 3/2, whereas the 7w blocks both
correspond to S = 1/2, and are distinguished by their different
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Figure 9. Experimental apparatus for the tomographic
reconstruction of the spin states of systems composed of three
spin-1/2 states.

symmetry properties.
proves that ni'j

The argument presented previously

for all i, j. Thus we can write
1

= j'[[.zj’
0= P, withm =7

to each block leads to

dn
§= e Z‘P<S=

_ [ Lo(s=L5a=m)k_m—5-7
= [ 2 Srls=5.50= =1 (M =S -),

M=—1

= 72, Again, applying (2)

| W

,S‘-ﬁ:M)K_

ol—

(23)
and the problem of determining o is again reconducted to the
simultaneous measurement of S% and S - 7i.

Both in the cases presented and in the general n-spins case,
the required experimental data are the distributions p(S, S 7).
The apparatus to produce such data is basically equivalent in
the two cases, as evidentin figures 8 and 9. Hence we shall limit
the analysis to the two-spins case. Here, the Fizeau filter and
the magnetic field El = Biii, = Bi(—sing, cos ¢, 0) have
the same purpose as in single-particle tomography (figure 1).

Consider a beam of n non-interacting systems composed
of two particles with spin-1/2. As the analysis can be
immediately extended to a mixed case, for simplicity let us
consider each system in the pure state

[Wo) =¥°10,0) + ¥4 11 =1) + 95 (1, 0) + 111, 1), (24)

with |a, b) standing for |S = a, M = b). The beam is split
into three parts by the gradient B, and the systems arrive
in detector B of the apparatus of figure 8 with a probability
p(S =1, M = 1) = |y{|* and in detector C with a probability
pS§=1,M=-1) = |y¢ |>. The remaining particles reach
position A with a probability

pa=1r"P+ v’ (25)
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and are left in the state

IR .,

[Wa) = —&(¥°10,0) + (1, 0)). (26)
Pa

As the subsequent gradient is directed along the y axis,

equation (26) is conveniently written using the eigenstates of
Sy, ie. |S, M),:

1
[Wa) = —I[y°10,0), + y§a_i|l, —1),
PA
+ygagll, 0)y + ygaill, 1)1, 27)

where o; = (1,i|1,0) (i = —1,0, 1). Hence, the probability
for a system to arrive at detector D is

| .
ps = —y° I + 1y 1P leol . (28)
PA

By measuring p4 and ps, the quantities |y*|* and |y{'|* are
obtained by inverting equations (25) and (28). The coefficients
|y0“|2, ly*]?, |y|“|2 and |y4, |? are the four probabilities p(S, M)
we need for the reconstruction given by equation (20).

A similar argument shows that the equipment of figure 9
supplies p(S, M), for all S, M, for a system constituted of
three spins 1/2.

4. Feasibility

The orders of magnitude of the experimental parameters are
such that the experiment is feasible with currently available
technology. Only as an example, consider the following cases
of spin measurements of electrons or nucleons. For the magnet
which is responsible for the field B; with length of the order
of 1 cm, we can measure the state of a beam of electrons with
speed ~10° cm s~!, by using a magnetic field B; = ©/yt
varying between 0 and ~30 G. On the other hand, in the
nucleon case, choosing a speed of ~107 cm s~!, we need B,
ranging between 0 and ~ 10°~10* G. Obviously, the parameters
B and ¢ can be adjusted over a wide range, according to the
experimental situation.

5. Conclusions

We have presented a tomographic experimental procedure for
the measurement of the spin density matrix. The experimental
scheme is a consequence of formula (2), which was proved
using group theory. Through some Monte Carlo simulations,
we have shown that the reconstruction can be achieved with
high precision using a limited number of measurements. The
extension of the procedure to the reconstruction of states of
multiple spin systems has been given, both for distinguishable
spins and for indistinguishable spin-1/2 particles. Finally, we
have shown that the orders of magnitude for the experimental
set-up are such that it can be implemented with currently
available technology.
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Appendix. Group derivation of quantum
tomography

The proof of equation (3) is obtained from the following
lemma.

Lemma. Let A be an arbitrary trace—class operator on the
Hilbert space H of the system and R an irreducible unitary
square integrable representation on H of the tomographic
group G. Then

TrA= / dgR($AR(g), (A1)
where dg is an invariant measure for the group G, normalized
as f dgl(u|R(g)|v)|? = 1 which is independent of the choice
of the vectors |u), |v) € H.

Proof. By using the unitarity of R and the properties of group
representations, we can write for any 4 € G

/ dg R(9)lu) (W|R (9YR(h) = / dg' R(hg)lu) IR (g)

= R(h) [ dg' R ) wIR' (), (A2)
which, through Schur’s lemma, guarantees that
/dg R(Q)|u) (VIR () = Tuw s (A.3)
I}, being the identity in H. Consider the quantity
[ delwR@IE = .. (Ad)

where |u) and |v) are arbitrary normalized vectors in . From
equation (A.3) it is trivial to see that , , is independent of |u).
One can check that it is also independent of |v) by noticing
that, given an arbitrary vector |a),

fo = /dgve(g>|v><v|7e*<g> =/th<h*‘>|v><v|R*<h*'>

= /dh R(h)|a)(a|R' (h) = T4, (AS)

where the group unimodularity has been used in dg = dh with
h = g~!. Notice that the hypothesis of square-integrability of
the representation guarantees the convergence of the integral
in (A.4). Thus, the natural choice for the normalization of
the group’s measure is to take 7, , = 1. The constant 7, ,
can be expressed in terms of 7, , by noticing that, upon taking
h = g~!, one has

l=1,= /dg(blR(g)la)(alRf(g)lb)

R R (h
_ /dh (@ R(W)u) vIR"(Wla) _ . (A6)
(v]u) (vlu)
The lemma’s thesis is now easily found by using the Schmidt
decomposition of A as A = Y, o;|u;) (v;]:

/dg’R(g)A’R%(g) = Z(xi/ng(g)lui)(vilR"'(g)

Tu,v

= > ai(vilu;) =Tr A (A7)

[}
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Group tomography theorem. Let A be an arbitrary trace—
class operator on the Hilbert space H of the system and R an
irreducible unitary square integrable representation on 'H of
the tomographic group G. Then

A= / dg Tr[AR(9)IR (g). (A8)

Proof. Let O be an invertible trace—class operator, it follows
that R(g) O is trace—class for any g € G. Hence it is possible
to obtain, by applying (A.1) twice,

/ dg Tr[AR(g)]10R(g) = / dg’ Tr[R7(g") OIR(g)A.

(A9)
Taking a basis {|k)} in H, one can obtain, using again
lemma (A.1),

/ dg Tr[R7(g) O1i|R(g) Al j)

= f dg > (kIR () Ok} (i IR($)AL))
k

Y (KO Tr[k)(i[1A]j) = (i|O AL ).
k

(A.10)

From equations (A.9) and (A.10) it follows immediately
that [dg Tr[AR(g)]JOR'(g) = OA, which yields the
thesis (A.8) by multiplying to the left both membersby O~!. O

Itis trivial to extend theorem (A.8) to the case of projective
representations, i.e. group representations for which, given g,
g2, 83 € G such that g; - go = g3, one has

R(g1)R(g2) = ¥R (g3), (A.11)

¢ € R being a phase factor depending on g; and g».
Notice, moreover, that the theorem here presented is valid
also for discrete and finite groups, with the sum on group
elements replacing the integral. From the result (A.8),
with an appropriate choice for the tomographic group and
the irreducible representation, it is possible to prove the
formula for spin tomography (2)—derived in the following
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section—and for optical homodyne tomography (1). Notice
that the unimodularity hypothesis given in the definition of
tomographic group G can be relaxed without losing most of
the results we give in this paper.
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