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When we measure the spin component along a magnetic
field with a Stern-Gerlach apparatus, for spin-1=2 particles
we have only two possible outcomes: spin up and spin
down. This measurement is perfectly repeatable and can
perfectly discriminate between the two orthogonal states
j "i and j #i. It is possible, however, to design an experiment
with more than two outcomes, which discriminates opti-
mally—though not perfectly—among three or more non-
orthogonal states. Indeed, a four-outcome measurement on
a two-level system is needed in the eavesdropping of a
Bennett-Brassard 1984 protocol for cryptographic commu-
nication [1] or in the lab to perform an informationally
complete measurement [2], which determines the quantum
state from the measurement statistics.

What about performing a measurement with a continu-
ous set of outcomes? This is the case of a measurement
designed to optimally determine the ‘‘direction’’ of a spin
[3], similarly to what we do in classical mechanics. Such a
measurement produces a probability p"n#dn of the spin
direction falling within the solid angle dn around the
direction n $ "sin! cos"; sin! sin"; cos!#. Indeed, the
measurement of direction must be feasible [4]—though,
in principle, inaccurate—otherwise, quantum mechanics
would fail in describing what we normally observe in the
macroscopic world. Actually, this is not the only interest-
ing example of continuous-outcome measurement on a
finite-level system: In fact, measurements of this kind
have an endless number of applications, e.g., optimal state
estimation [5], optimal alignment of directions [6] and
reference frames [7], optimal phase estimation [8], and
optimal design of atomic clocks [9].

In this Letter, we establish a fundamental property of
quantum measurements with a continuous set of outcomes,
namely, that for finite-level systems any such measurement
is equivalent to a continuous random choice of measure-
ments with a finite number of outcomes. This means that
any physical quantity measured on a finite dimensional
system is intrinsically discrete, while the continuum is
pure classical randomness. For a spin-1=2 particle, this
fact is well illustrated by the simple observation that the
optimal measurement of direction can be realized by a

customary Stern-Gerlach experiment where the magnetic
field is randomly oriented. We emphasize that, in general,
the discretization of physical quantities does not involve
just von Neumann observables but, more generally, finite
measurements with a number of outcomes larger than the
Hilbert space dimension. Using the main result, we will
show that any continuous measurement that optimizes
some convex figure of merit (e.g., maximizing the mutual
information or the Fisher information or, alternatively,
minimizing a Bayes cost [8,10]) can be always replaced
by a single measurement with finite outcomes, without
affecting optimality.

Let us start by briefly reviewing the general theoretical
description of measurements in quantum mechanics.
Consider a quantum system [with Hilbert space H of
dimension dim"H # $ d <1], which undergoes a mea-
surement with random outcome !, distributed in the out-
come space !. The probability distribution of the
outcomes depends on the specific measuring apparatus
via a positive operator-valued measure (POVM), namely,
a function P that associates any subset B % ! with a non-
negative operator P"B#, with normalization condition
P"!# $ I [11]. For a quantum system prepared in the state
#, the probability of an outcome falling in the subset B %
! is given by the Born rule p"B# $ Tr&#P"B#'. In the
special case in which the measurement is finite, a random
result i from a set of possible outcomes fi $ 1; 2; . . . ; Ng
is returned with probability pi $ Tr&#Pi', Pi ( 0 being
non-negative operators with normalization conditionPN

i$1 Pi $ I.
Before presenting the main result, in order to help

intuition, we briefly analyze two simple prototypes of
continuous-outcome measurement: the optimal measure-
ment of the spin direction for a spin-1=2 particle and the
optimal measurement of a phase shift.

The measurement of direction for a spin-1=2 particle has
POVM P given by [3]

 P"B# $
Z
B

dn
2$

jnihnj; (1)

where jni is the eigenvector of n ) J with eigenvalue
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*1=2, J being the spin operator. It is simple to see that this
measurement is equivalent to the randomization

 P"B# $
Z
S2

dn
4$

E"n#"B#; (2)

where dn="4$# is the uniform probability distribution on
the unit sphere S2, and E"n# is the POVM

 E"n#"B# $ %B"n#jnihnj * %B"!n#j ! nih!nj: (3)

[%B"n# is the characteristic function of the set B: %B"n# $
1 for n 2 B; %B"n# $ 0 otherwise.] The POVM E"n# rep-
resents a measurement of direction based on a Stern-
Gerlach setup with the magnetic field oriented along n:
If the apparatus outputs ‘‘up,’’ one assigns to the spin the
direction n; if ‘‘down,’’ one assigns !n. With this data
processing, the probability of observing the spin within the
region B is nonzero only if B contains at least one of the
directions +n. Hence, the continuous-outcome POVM (1)
can be realized as a Stern-Gerlach measurement with
random direction n of the magnetic field.

Another example of continuous-outcome measurement
is that of phase estimation, where one wants to measure the
phase shift " 2 &0; 2$# experienced by a quantum state
under the action of the unitary evolution U" $ exp"iN"#,
with N $ Pd!1

n$0 jnihnj, fjnig orthonormal basis for H . The
optimal POVM is given by [8]

 P"B# $
Z
B

d"
2$

j"ih"j; j"i $
Xd!1

n$0

ein"jni (4)

and is equivalent to the randomization P"B# $R
2$
0

d"
2$ E""#"B#, where E""# is the POVM E""#"B# $ 1

d ,Pd!1
n$0 %B""n * "#j"n * "ih"n * "j, "n $ 2$n

d .
We will now show that a continuous-outcome measure-

ment in finite dimensions can always be realized in an
analogous way, namely, as a continuous random choice
of measurements with a finite number of outcomes. More
precisely, we will prove the following

Theorem 1.—For any POVM P, the following decom-
position holds:

 P"B# $
Z
X
dxp"x#E"x#"B# 8 B % !; (5)

where x 2 X is a suitable random variable, p"x# a proba-
bility density, and, for every value of x, E"x# denotes a
POVM with finite support, i.e., of the form

 E"B# $
Xd2

i$1

%B"!i#Pi; (6)

f!i 2 !g being a set of points, and fPig being a finite
POVM with at most d2 outcomes [12].

A POVM E as in Eq. (6) is nothing but the continuous
data processing of the finite POVM fPig, with a function of
the outcomes f"i# $ !i: If the apparatus outputs i, then

one assigns to the measurement the outcome !i. The
decomposition (5) shows that the continuous-outcome
POVM P is achieved by randomly choosing a clas-
sical parameter x 2 X and then performing the finitely
supported POVM E"x#, depending on x through the finite
POVM fP"x#

i g and through the points f!"x#
i g. Operationally,

this corresponds to the following recipe: (i) Randomly
draw a value of x according to p"x#; (ii) depending on x,
measure the finite POVM fP"x#

i g, thus getting the outcome i;
(iii) for outcome i, assign to the continuous-outcome mea-
surement the outcome !"x#

i . As a first consequence, this
simple recipe shows that, contrarily to a rather common
belief (see, e.g., Ref. [13]), continuous-outcome quantum
measurements in finite dimensions are as feasible as the
finite ones.

The realization of the measurement of the ‘‘spin direc-
tion’’ given by Eq. (2) provides a concrete example of
decomposition (5). In particular, the finitely supported
POVM E"n# in Eq. (3) is illustrated in Fig. 1 for n $ k.
Notice that, in general, there may be different random-
ization schemes yielding the same continuous-outcome
POVM: As an example, Fig. 1 illustrates another finitely
supported POVM that allows one to reproduce the mea-
surement of direction by simply randomizing the orienta-
tion of the Cartesian axes.

We now derive the main result. We fix both the quantum
system and the outcome space ! and consider the set P of
all possible POVMs for these. This is a convex set, since,

 

FIG. 1 (color online). Left: Illustration of the POVM E"n# in
Eq. (3) as an example of finitely supported POVM E"x# in Eq. (6).
In this specific example, the outcome space ! is the unit sphere
! - S2, the dimension of the Hilbert space is d $ 2, and only
two out of the four terms in Eq. (6) are nonvanishing: P1 $
jkihkj, P2 $ j ! kih!kj, P3 $ P4 $ 0. The probability of find-
ing the spin direction in a region R % ! is zero for R missing the
two poles, as B in the figure, and is possibly nonzero for R as A.
Right: Another example of a finitely supported POVM for d $ 2,
corresponding to a symmetric informationally complete POVM
[20]. The POVM is made of four elements Pi corresponding to
!i at the vertices of a tetrahedron. The probability can be
nonvanishing only if the region R contains at least one of these
four points, such as in A, whereas it is always zero in situations
as in B.
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given any two POVMsP0 and P00, their convex combination
P"&# $ &P0 * "1! &#P00 for & 2 &0; 1' is still a POVM;
namely, the whole segment joining P0 and P00 is contained
in P . The extremal points of the convex set P are those
POVMs that cannot be written as a convex combination of
two different POVMs. Stated differently, a POVM P 2 P
is not extremal if and only if it is the midpoint of a segment
completely contained in P , i.e., if and only if there exist
two distinct points P0, P00 2 P , P0 $ P00 such that P $
1
2 "P0 * P00#. This is equivalent to the existence of a direc-
tion Q ! 0 and a positive number ' > 0 such that P*
tQ 2 P for any t 2 &!'; ''. The standard name for the
direction Q in convex analysis is perturbation. Here the
perturbation Q is a function that associates to any subset
B % ! an operator Q"B#, fulfilling the three requirements:
(i) Q"B# is Hermitian for any subset B % !;
(ii) Q"!# $ 0; (iii) P"B# * tQ"B# ( 0 for any B 2 !
and for any t 2 &!'; ''.

If there exists a nonzero perturbation Q for P, then P is
nonextremal: Using this criterion, we now establish that
the extremal POVMs must necessarily have finite support;
namely, they must be of the form of Eq. (6).

The proof takes advantage of the following.
Lemma 1.—Every POVM P 2 P admits a density with

unit trace; namely, for any POVM P, there exists a finite
measure ("d!# over ! such that

 P"B# $
Z
B

("d!#M"!#; (7)

with M"!# ( 0 and Tr&M"!#' $ 1 (-almost everywhere.
Proof.—Consider the finite measure ("d!# defined

by ("B# $ Tr&P"B#' 8 B % !. Since P"B# ( 0, one has
P"B# . Tr&P"B#'I $ ("B#I; namely, P"B# is dominated
by the measure ("B#. This implies that P admits a
density M"!# with respect to ("d!# (see, e.g., p. 167 of
Ref. [8]). Clearly, the density M"!# has to be non-negative
(-almost everywhere. Moreover, for any B % !, one
has

R
B("d!# -("B# $ Tr&P"B#' $ R

B("d!#Tr&M"!#',
whence Tr&M"!#' $ 1 (-almost everywhere. !

Thanks to this lemma, we can represent any POVM P 2
P using its density. Now, to prove that an extremal POVM
must be of the form (6), it is enough to show that for
extremal POVMs the measure ("d!# is concentrated on
a finite set of outcomes f!1; . . . ; !d2g, i.e., ("B# $ 0 for
any set B % ! not containing any one of the points f!ig.
We recall the definition of support of a measure ("d!# as
the set of all points ! 2 ! such that ("B#> 0 for any
open set B containing !.

Lemma 2.—Let P 2 P be a POVM and ("d!# the
measure defined by ("B# $ Tr&P"B#'. If P is extremal,
then the support of ("d!# is finite and contains no more
than d2 points.

Proof.—Suppose that the support contains more than d2

points. In this case, one can take d2 * 1 points !i 2 ! in
the support and d2 * 1 disjoint open sets Ui / !, i $

1; . . . ; d2 * 1, such that !i 2 Ui for any i [14]. As a
consequence, the space L1"!; (# of integrable functions
f"!# that are bounded (-almost everywhere has a dimen-
sion of at least d2 * 1 [indeed, the characteristic functions
%Ui

"!# are a set of d2 * 1 bounded and linearly indepen-
dent functions]. Then consider the matrix elements
fij"!# $ hijM"!#jji, where M"!# is the POVM density
of Eq. (7), and jii, jji are elements of an orthonormal basis.
Since the operators M"!# are non-negative with unit
trace almost everywhere, the functions fij"!# are bounded
almost everywhere, namely, fij 2 L1"!; (# 8 i; j. More-
over, since the space L1"!; (# has a dimension larger than
d2, it must contain at least one function g"!# ! 0 that is
linearly independent from the set ffijg. Using the Gram-
Schmidt orthogonalization procedure, such a function g
can always be chosen to be orthogonal to all fij, namely,R
! ("d!#g0"!#fij"!# $ 0 8 i; j. Finally, since f0ij"!# $

fji"!# 8 i; j, such a g can be also chosen to be real. Now
we claim that the Hermitian operators

 Q"B# $
Z
B

("d!#g"!#M"!# (8)

provide a perturbation for the POVM P. Indeed, we have
Q"!# $ 0 since hijQ"!#jji $ 0 8 i; j:

 hijQ"!#jji $
Z
!

("d!#g"!#hijM"!#jji (9)

 

$
Z
!

("d!#g"!#fij"!# $ 0: (10)

Moreover, since g 2 L1"!; (#, there exists a positive
number c such that jg"!#j . c <1 almost everywhere,
thus implying that the operators M"!#&1* tg"!#' are al-
most everywhere non-negative for any t 2 &!'; '', with
' $ 1="2c#. Hence, integrating over any subset B, we
obtain that the operators P"B# * tQ"B# are non-negative;
namely, Q is a perturbation. Finally, Q is nonzero; other-
wise, taking the trace of Eq. (8) and using that Tr&M"!#' $
1 almost everywhere, we would get 0 $ Tr&Q"B#' $R
B ("d!#g"!# 8 B, thus implying g $ 0, which is not

possible by the definition of g. In conclusion, if the support
of ("d!# contains more than d2 points, then the POVM P
has a nonzero perturbation, whence it is not extremal. !

Lemma 2 establishes that an extremal POVM has nec-
essarily the form of Eq. (6); namely, it can be realized by
measuring a finite POVM fPig and conditionally declaring
the measurement outcomes f!ig. Using this fact, we read-
ily obtain the proof of the main theorem.

Proof of Theorem 1.—Because of the Krein-Milman
theorem of convex analysis, any point of a compact convex
set is a continuous convex combination of points that are
either extremal or limit of extremals. On the other hand, it
is simple to prove that the POVMs form a compact set [15]
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and that any limit of extremal POVMs is a POVM of the
form (6) [16,17]. !

We now want to explore some consequences of decom-
position (5) for optimization of POVMs and for quantum
tomography. Optimizing a quantum measurement consists
in finding the POVM P that maximizes the value of a figure
of merit F &P'—e.g., mutual or Fisher information, aver-
age fidelity, or any Bayes gain. In all of these cases, F &P'
is convex, i.e., F &&P0 * "1! &#P00' . &F &P0' * "1!
&#F &P00' for any & 2 &0; 1'. Suppose now that a
continuous-outcome POVM P is optimal for F .
Combining convexity of F with Eq. (5), one has

 F max $ F &P' .
Z
X
dxp"x#F &E"x#' . Fmax; (11)

which implies F &E"x#' $ Fmax for any x except at most a
set of zero measure. This means that all of the finite
POVMs E"x# are equally optimal: In particular, for any
optimal continuous-outcome measurement, there is always
an optimal measurement with a finite (no more than d2)
number of outcomes. In special situations, some explicit
algorithms to find optimal finite measurements are known
[13,18,19]. In particular, Ref. [18] shows that in many
cases the minimal number of outcomes is larger than d $
dim"H #. Combined with the above result, this fact defi-
nitely proves that the quantum discretization cannot rely
solely on von Neumann measurements.

Regarding quantum tomography, using the present
analysis, one can make mathematically precise the com-
mon intuition that a continuous-outcome informationally
complete measurement is equivalent to a tomography scan
made of a random choice of observables—more generally,
POVMs. Indeed, one can estimate the ensemble average of
any operator A by using the two data processing fA"!# and
fA"!"x#

i # for continuous-outcome POVM and tomography,
respectively, as follows:

 A $
Z
!
d!fA"!#M"!# $

Z
X
dxp"x#

Xd2

i$1

fA"!"x#
i #P"x#

i :

In conclusion, in this Letter we showed that continuous-
outcome quantum measurements can always be realized by
performing finite measurements depending on a random
classical parameter. Physical properties measured on finite-
level quantum systems, such as spatial orientation of mi-
croscopic gyroscopes and time of atomic clocks, are then
intrinsically discrete.
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