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A universal programmable detector is a device that can be tuned to perform any desired measurement
on a given quantum system, by changing the state of an ancilla. With a finite dimension d for the ancilla
only approximate universal programmability is possible, with size d � f�"�1� increasing the function of
the ‘‘accuracy’’ "�1. In this Letter we show that, much better than the exponential size known in the
literature, one can achieve polynomial size. An explicit example with linear size is also presented. Finally,
we show that for covariant measurements exact programmability is feasible.
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A concrete problem in quantum information processing
[1] is to experimentally achieve any theoretically designed
quantum measurement, and possibly be able to change the
measured observable dynamically on the fly, as it would be
needed, e.g., when trying to eavesdrop quantum-encrypted
information. For such a purpose, a programmable mea-
surement apparatus, which could be tuned to perform any
desired measurement, would be an invaluable resource.
However, as first noticed in Refs. [2,3], with a finite-
dimensional ancilla, exact universal programmability of
measurement is impossible, as a consequence of the no-
go theorem for programmability of unitary transformations
[4]. One can still achieve measurement programmability
probabilistically, or even deterministically, though within
some accuracy. Since different measurements within some
classes can be mapped to each other via quantum channels
(e.g., all observables are connected to each other by a
unitary transformation), then the problem of measurement
programmability clearly carries relations with that of chan-
nels programming [5]. Because of the correspondence
between channels and bipartite states [6,7], quantum chan-
nels can be easily programmed probabilistically by using a
teleportation scheme with the channel stored in the state of
the shared bipartite resource [1]. This and other methods
can then be used to program channels and measurements
probabilistically [8,9], and recently optical implementa-
tions for polarization-encoded qubits have been proposed
[10]. However, one should emphasize that, different from
the case of programmability of quantum channels or op-
erations—where a series of many of them in sequence
amplifies errors—in the case of a quantum measurement,
being the last quantum processing stage it is certainly more
efficient to consider deterministic programmability at the
expense of small bounded systematic errors, rather than
achieving the exact measurement probabilistically. In
Ref. [3] a measurement for qubits that can be approxi-
mately programmed to achieve any observable has been
presented, which needs an ancilla with dimension growing
exponentially versus the accuracy "�1. In this Letter we
show that actually it is possible to design the program-
mable measurement much more efficiently, with dimen-
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sion d of the ancilla growing only polynomially versus the
accuracy "�1. We also provide a specific example for such
efficient programmability for qubits, with dimension d
linear in "�1. We also show that in some cases, e.g.,
when the programmability is restricted to covariant mea-
surements, even exact deterministic programmability is
possible.

In quantum mechanics the statistics of a generic mea-
surement apparatus is described by a positive operator-
valued measure (POVM). For simplicity in this Letter we
consider the case of discrete sampling space X of possible
outcomes for the measurement, in which case a POVM P is
just a set of positive operators Pi � 0 on the Hilbert space
H of the system, each corresponding to an elementary
outcome i 2 X, and satisfying the normalization condi-
tion

P
i2XPi � I. In the following to simplify notation, we

write simply
P
i for

P
i2X, and do not specify the sampling

space X anymore.
The POVM of a measuring apparatus gives the proba-

bility distribution of the outcomes for each input state � via
the Born rule

p�ij�� �
:
Tr��Pi	: (1)

The usual case of the customary observable corresponds to
fPig being the orthogonal projectors on the eigenspaces of
a self-adjoint operator.

We now want to build up a detector which is ‘‘program-
mable,’’ namely, such that we can tune its POVM by
changing the state of an ancillary unit in the detector.
Clearly, the most general programmable detector would
have its ancilla interacting with the measured system via a
unitary transformation U, which is then followed by an
observable fEig jointly measured on the system and ancilla,
U and fEig being fixed constituents of the apparatus (due to
the Naimark theorem, considering a POVM in place of the
observable fEig would simply be equivalent to having a
higher dimensional ancilla and another fixed operator U).
If such a detector could be programmed to achieve a given
POVM P � fPig ideally, this means that there would exist
a ‘‘program state’’ �P of the ancilla such that the following
identity holds:
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p�ij�� � Tr��Pi	 � Tr�U�� � �P�UyEi	; 8 i; 8 �:

(2)

Clearly, the unitary interaction can be included in the
definition itself of the joint observable fEig by defining
Fi �

:
UyEiU for all i 2 X. By taking the partial trace in

Eq. (2) over the ancilla and using the polarization identity
[Eq. (2) holds for all states], one obtains

Pi � TrA��I � �P�Fi	: (3)

Therefore, a programmable detector is completely speci-
fied by the joint POVM F � fFig on the system plus
ancilla; therefore in the following the detector is identified
with F. Notice that from Eq. (3) it follows that the convex
set of states A of the ancilla is in correspondence via the
map MF��� �

:
��I � ��F	 with a convex subset P F of the

convex set P n of the system POVM’s with the same
number n � 1 of outcomes of F (P F is the convex set
of POVM’s that can be achieved with the fixed program-
mable detector F). Therefore, if the POVM P is extremal
(e.g., it is an observable [11]), and if there exists a state of
the ancilla �P that satisfies identity (2), then there also
exists a pure state �P satisfying the same identity: we use
this observation in the following.

The problem of measurement programmability can be
restated in mathematical terms by asking whether P F �

:

MF�A� � P n for some F. In words: there exists a POVM
F such that by varying the state � 2 A in Eq. (3) one
obtains the full convex set of POVM’s P n on H ? We will
show now that this is impossible, and we will use for this
purpose a generalization of the argument of Ref. [3].

Let us consider a two level system H ’ C2, and sup-
pose that we want to program at least all possible observ-
ables by means of a single programmable detector with
finite-dimensional ancilla. Each observable on H ’ C2 is
simply a two-outcome orthogonal POVM fP; I � Pg, with
P � j ih j and I � P � j ?ih ?j, j i being a unit vector
in H . In other words, the observables on H ’ C2 are in
correspondence with the pure states of the system. As
previously noticed, without loss of generality we can take
the program state � as pure, and we denote it as � �

j�� �ih�� �j. The POVM F of the programmable detector
would then be a two-value POVM—so-called effect—
fF; I � Fg, and exact programmability for all observables
would imply

j ih j � TrAf�I � j�� �ih�� �j	Fg; (4)

namely,

�h j � h�� �j	F�j i � j�� �i	 � 1;

�h j � h�� �j	F�j ?i � j�� �i	

� �h ?j � h�� �j	F�j ?i � j�� �i	 � 0:

(5)

Equations (5) imply that for all  2 H one has
09040
Fj ij�� �i � j ij�� �i; Fj ?ij�� �i � 0; (6)

namely, for all  �  0 2 H one has

h ?jh�� �jFj 0ij�� 0�i � h ?j 0ih�� �j�� 0�i � 0;

(7)

which implies that h�� �j�� 0�i � 0. This means that the
ancillary system must have a continuum of orthonormal
states, which cannot happen in a separable Hilbert space.
Suppose now that a perfect programmable detector can be
devised for observables of higher dimensional systems.
Then one could single out a bidimensional subspace in
which observables can be perfectly programmed, which is
absurd as we just proved. This implies that exact determi-
nistic universal programmability of observables is
impossible.

One can then ask if it is possible to approximate all
possible observables P within some accuracy "�1 using a
single finite-dimensional ancilla: here we answer this ques-
tion with a general lower bound for the optimal accuracy
"�1 achievable by a programmable detector versus the
dimension of its ancilla.

The first step is to give a precise definition of the
accuracy of the approximation. For this purpose, we con-
sider the usual distance between two probability distribu-
tions fpig and fqig

��p;q� �
X
i

jpi � qij; (8)

and define accordingly the distance between two POVM’s
as the distance between their respective probabilities,
maximized over all possible states, namely,

��P;Q� � max
�

X
i

jTr���Pi �Qi�	j: (9)

Then, we say that the POVM P approximates within " the
POVM Q if their distance is less than ", namely,

��P;Q� � ": (10)

We then rate the performance of a programmable detector
F saying that it achieves accuracy "�1—shortly, it is "
programmable—when

max
P2P n

min
Q2P F

��P;Q� � ": (11)

We now derive an upper bound for the function d � f�"�
that gives the minimal needed dimension of the ancilla to
achieve accuracy "�1. We can restrict attention to pro-
grammability of observables only, namely, with n �
dim�H � and P n is substituted with the set of observables
On in Eq. (11). In fact, the generalization to nonorthogonal
POVM’s is just equivalent to program observables in the
larger dimension n2. Clearly the function d � f�"�1� must
be increasing, since the higher the accuracy "�1 is, the
larger the minimal dimension d needed for the ancilla,
namely, the ‘‘size’’ of the programmable detector.
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The distance defined in Eq. (11) is hard to handle
analytically; hence we bound it as follows:

��P;Q� �
X
i

jjPi �Qijj �
X
i

jjPi �Qijj2; (12)

where jjAjj is the usual operator norm of A, and jjAjj2 �
:

������������������
Tr�AyA	

p
is the Frobenius norm. Consider now a

d-dimensional ancilla and a system-ancilla interaction U
of the following controlled-unitary form:

U �
Xd
k�1

Wk � j�kih�kj; (13)

where f�kg is an orthonormal complete set of vectors for
the ancilla and Wk are generic unitary operators on H .
Consider then a POVM E � UFUy of the form

Ei � j iih ij � IA; (14)

where IA denotes the identity operator on the ancilla space,
and f kg is a complete orthonormal set for the system. The
observable to be approximated is then written as follows:

Pi � Wyj iih ijW; (15)

W being a unitary operator on H , and we scan all possible
observables by varying W. For the program state of the
ancilla we use one of the states�k, which give the POVM’s

Qi � Wy
k j iih ijWk: (16)

This special form simplifies the calculation of the bound in
Eq. (12), which becomes

��P;Q� �
X
i

�������������������������������������������������
2�1� jh ijW

yWkj iij
2�

q

�
���
2

p X
i

������������������������������������������������������������
2� h ij�W

yWk �Wy
k W�j ii

q
; (17)

and using the Jensen’s inequality for the square root func-
tion we have

��P;Q� �
������
2n

p
jjW �Wkjj2: (18)

Now we can always take d sufficiently large such that we
can choose the d operators fWkg in the unitary transforma-
tionU in Eq. (13) in such a way that for each givenW there
is always a unitary operator Wk in the set for which������
2n

p
jjW �Wkjj2 is bounded by ". This guarantees that

for the given observable P corresponding to W there is a
program state for the ancilla such that the POVM Q
achieved by the programmable detector is close to the
desired P less than ". The set of all possible unitary
operatorsW is a compact manifold of dimension h � n2 �
n. We now consider a covering of the manifold with balls
of radius r � "����

2n
p centered at the operators Wk. This guar-

antees that any W would be within a distance "����
2n

p from an

operatorWk, which in turns implies that the accuracy of the
09040
programmable device is bounded by " via Eq. (18). Using
the volume V � �h=2rh


�12h�1�
of the h-dimensional sphere of

radius r, we obtain the number of balls needed for the
covering (for sufficiently small ") corresponding to the
upper bound for the minimal dimension of the ancilla

d � ��n�
�
1

"

�
n�n�1�

; (19)

where ��n� is a constant that depends on n. Equation (19)
gives an upper bound for the dimension d which is poly-
nomial versus the accuracy "�1.

For qubits, the observable has only two elements, P0 �
j ih j and P1 � j ?ih ?j � I � P0, and the distance in
Eq. (9) can be evaluated analytically as follows:

��P;Q� � max
�

2jTr���P0 �Q0�	j: (20)

The best device known [3] for programming qubit observ-
ables has a dimension of the ancilla which grows exponen-
tially versus "�1. The programmable detector uses N
qubits in the state j i�N , and the POVM F � fF0; I �
F0g is given by

F0 � Z�N�1�
� ; (21)

with Z�N�1�
� denoting the orthogonal projector over the

totally symmetric Hilbert space �H �N�1��, where H ’
C2. With this choice one can easily evaluate the POVM
programmed in the detector in Eq. (3), obtaining

Q0 � TrA��I � j ih j�N�ZN�1
� 	

� j ih j � 1
N�1�I � j ih j�: (22)

Then, upon substituting Q0 � P0 �
1

N�1�I � j ih j� in
Eq. (20) one obtains " �

:
��P;Q� � 2

N�1 , corresponding to

d � 1
24
"�1
; (23)

which must be compared with the polynomial growth in
Eq. (19).

As regards now the programmability of all POVM’s (i.e.,
including the nonorthogonal ones), notice that one just
needs to be able to program only the extremal POVM’s
in P n, since their convex combinations correspond to
mixing the program state or to randomly choosing among
different detectors. Then, since their maximum number of
outcomes is n2, the extremal POVM’s have Naimark’s
extension to observables in dimension n2, when we are
reduced to the case of programmability of observables in
dimension n2.

We now give a programmable detector for qubits that
achieves an accuracy that is linear in d. For the ancilla we
use a generic d-dimensional quantum system, and relabel
the dimension in the angular momentum fashion d �

:
2j�

1. The idea is now to design a programmable detector in
which the unitary transformation corresponding to the
observable fPig in Eq. (17) is programmed by covariantly
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changing the program state of the ancilla. By labeling
unitary transformations by a group element g 2 SU�2�,
we write the observable to be programmed as P0 �

:

Vgj
1
2ih

1
2 jV

y
g where fVgg � �12� is a unitary irreducible rep-

resentation of SU�2� with angular momentum 1
2, whereas

the program state is written as Wg�W
y
g , with fWgg � �j� a

unitary irreducible representation of SU�2� on the ancilla
space with angular momentum j. As already noticed, with-
out loss of generality we can always choose the state � as
pure. We now show that a good choice for the program
state is � � jj; jihj; jj, fjj;mig denoting an orthonormal
basis of eigenstates of Jz in the irreducible representation
with angular momentum j. The tensor representation fVg �
Wgg �

1
2 � j can be decomposed into the direct sum of two

irreducible representations 1
2 � j � j� � j�, where j� �

j� 1
2. For the POVM F of the programmable detector we

use F0 � Z� and F1 � Z�, Z� denoting the orthogonal
projector on the invariant space for angular momentum j�

F0 �
Xj�

m��j�

jj�; mihj�; mj: (24)

Using the invariance �Vg �Wg�F0�V
y
g �Wy

g � � F0, we
can write the programmed POVM as follows:

Q0 � TrA��I �W
y
g jj; jihj; jjWg�F0	

� Vy
gTrA��I � jj; jihj; jj�F0	Vg

� Vg�j
1
2;

1
2ih

1
2;

1
2j �

1
2j�1j

1
2;�

1
2ih

1
2;�

1
2j�V

y
g ; (25)

where we used the only nonvanishing Clebsch-
Gordan coefficients jhj�; j�j

1
2;

1
2ijj; jij

2 � 1 and
jhj�; j�j

1
2;�

1
2ijj; jij

2 � 1
2j�1 . Clearly, Q0 � P0 �

1
2j�1Vgj

1
2 ;�

1
2ih

1
2 ;�

1
2 jV

y
g , where according to Eq. (20)

the accuracy is given by ��P;Q� � 2=d. The scaling of
the dimension with the accuracy is then linear

d � 2"�1; (26)

whereas the bound (19) is quadratic d / "�2. Sublinear
growth of d versus "�1 is not excluded in general, but is not
possible for the present model.

We emphasize that the no-go theorem holds only for
universal programmability. Indeed, if, for example, we
restrict programmability to covariant POVM’s, then exact
deterministic programmability is possible. In fact, accord-
ing to the Holevo theorem [12] a general group-covariant
POVM density has the form P�dg� � Vg%V

y
g &�dg�, with a

& invariant measure on the group (for simplicity we restrict
to a compact group and a trivial stability group: a more
general analysis can be found in Refs. [13,14]). Then, it is
easy to see that a necessary and sufficient condition in
order to have P�dg� positive and normalized is that the
operator % is positive and unit trace, namely, a state. The
POVM can then be programmed exactly using an ancilla
09040
with the same dimension as the system and with program
state %', and using for the POVM F the covariant Bell
POVM fjVgiihhVgjg as one can easily check that Vg%V

y
g �

TrA��I � %'�jVgiihhVgj	 [we used the notation jVgii �
:

P
mn�hmjVgjni�jmi � jni 2 H �2, and %' as the transposed

of % with respect to the same basis used to define jVgii].
In conclusion, we have shown how it is possible to

achieve deterministically a programmable measurement
with size polynomial versus the accuracy. For qubits one
can program observables with size linear versus the accu-
racy, and for this we have provided an explicit example.
Finally, we have noticed that for covariant measurements
exact programmability is feasible. The actual minimal size
of the programmable detector for a given accuracy is still
an open problem.
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