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Abstract. Quantum reading is the art of exploiting the quantum properties of light to retrieve
classical information stored in an optical memory with low energy and high accuracy. Focusing
on the ideal scenario where noise and loss are negligible, we review previous works on the
optimal strategies for minimal-error retrieving of information (ambiguous quantum reading)
and perfect but probabilistic retrieving of information (unambiguous quantum reading). The
optimal strategies largely overcome the optimal coherent protocols (reminiscent of common
CD readers), further allowing for perfect discrimination. Experimental proposals for optical
implementations of optimal quantum reading are provided.

1. Introduction
In the engineering of optical memories (such as CDs or DVDs) and readers, a tradeoff among
several parameters must be taken into account. High precision in the retrieving of information is
surely an indefeasible assumption, but also energy requirements, size and weight can play a very
relevant role for applications. Clearly, size and weight of the device increase with the energy,
and using a low energetic radiation to read information reduces the heating of the physical
bit, thus allowing for smaller implementation of the bit itself. Moreover, many physical media
(e.g., superconducting devices) dramatically change their optical properties if the energy flow
overcomes a critical threshold.

In the problem of quantum reading [1, 2, 3, 4, 5, 6, 7, 8, 9] of optical devices one’s task is
to exploit the quantum properties of light in order to retrieve some classical digital information
stored in the optical properties of a given media, making use of as few energy as possible. The
quantum reading of optical memories was first introduced in Ref. [1]. A realistic model of
digital memory was considered, where each cell is composed of a beamsplitter with two possible
reflectivities. A single optical port is available to probing the beam splitter, while the other
port introduces thermal noise in the reading process, so that the problem considered is the
discrimination of two lossy and thermal Gaussian channels. It was shown that, for fixed mean
number of photons irradiated over each memory cell, even in the presence of noise and loss, a
quantum source of light can retrieve more information than any classical source - in particular
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in the regime of few photons and high reflectivities. This provided the first evidence that the
use of quantum light can provide great improvements in applications in the technology of digital
memories such as CDs or DVDs.

In practical implementations noise can sometimes be noticeably reduced 1. On the other
hand, in general loss inherently affects quantum optical setups. Nevertheless, a theoretical
analysis of the ideal, i.e. lossless and noiseless, quantum reading provides a theoretical insight of
the problem and a meaningful benchmark for any experimental realization. In this hypothesis
quantum reading of optical devices can be recasted to a discrimination among optical devices
with low energy and high precision.

In the ideal reading of a classical bit of information from an optical memory, namely in
the discrimination of a quantum optical device from a set of two, different scenarios can
be distinguished. A possibility is the on-the-fly retrieving of information (e.g. multimedia
streaming), where the requirement is that the reading operation is performed fast - namely, only
once, but a modest amount of errors in the retrieved information is tolerable. This scenario
corresponds to the problem of minimum energy ambiguous discrimination of optical devices
[13, 14, 15], where one guesses the unknown device and the task is to minimize the probability
of making an error.

On the other hand, in a situation of criticality of errors and very reliable technology, the
perfect retrieving of information is an issue. Then, unambiguous discrimination of optical devices
[16], where one allows for an inconclusive outcome (while, in case of conclusive outcome, the
probability of error is zero) becomes interesting.

In Ref. [2] an optimal strategy for the first scenario - namely, the minimum energy ambiguous
discrimination of optical devices - has been provided for the ideal case. This strategy, that
exploits fundamental properties of the quantum theory such as entanglement, allows for the
ambiguous discrimination of beamsplitters with probability of error under any given threshold,
while minimizing the energy requirement. The proposed optimal strategy has been compared
with a coherent strategy, reminiscent of the one implemented in common CD readers, showing
that the former saves orders of magnitude of energy if compared with the latter, and moreover
allows for perfect discrimination with finite energy.

In Ref. [6] the results of Ref. [2] were extended to the case of unambiguous ideal quantum
reading - namely, the minimum energy unambiguous discrimination of optical devices. The
optimal strategy for unambiguous discrimination of beamsplitters with probability of failure
under a given threshold, while minimizing the energy requirement, was provided. It was shown
that the optimal strategy does not require any ancillary mode - while in the presence of noise
and loss ancillary states improve the performance of the quantum reading setup [17, 1]. Both
strategies for ambiguous and unambiguous quantum reading reduce to the same optimal strategy
for perfect discrimination if the probability of error (in the former case) or the probability of
failure (in the latter case) is set to zero. Then, some experimental setups implementing such
optimal strategies which are feasible with present day quantum optical technology, in terms of
preparations of single-photon input states, linear optics and photodetectors, were provided.

This paper comprehensively reviews the main results that we obtained in Refs. [2, 6]
reformulating them in a coherent and homogeneous presentation. The paper is structured as
follows. In Section 2 we formally introduce and discuss the ideal quantum reading of optical
memories. In Section 3 we consider the particular case where each memory cell is represented
by a beamsplitter. In Section 4 we compare the optimal quantum reading strategy with the
optimal coherent protocol, making use of coherent input states and homodyne detection. In
Section 5 we propose some experimental optical implementations of quantum reading. We
conclude summarizing our results in Section 6.

1 This fact is no longer true for example in the analogous context of quantum illumination [10, 11, 12], where
one’s task is to perform a low energy detection of the presence (or absence) of a far object in a noisy environment.

21st International Laser Physics Workshop IOP Publishing
Journal of Physics: Conference Series 414 (2013) 012038 doi:10.1088/1742-6596/414/1/012038

2



2. Ideal Quantum Reading of Optical Memories
A M -modes quantum optical device [18] is described by a unitary operator U relating M input
optical modes with annihilation operators ai on Hi, toM output optical modes with annihilation
operators a′i on Hi′ , where Hi denotes the Fock space of the optical mode i. We denote the total
Fock space as H =

⊗

iHi.
An optical device is called linear if the operators of the output modes are related to the

operators of the input modes by a linear transformation, namely

(

a′

a′†

)

= S

(

a

a†

)

, S :=

(

A B
B̄ Ā

)

(1)

where S is called scattering matrix, X̄ denotes the complex conjugate of X, a = (a1, . . . aN ) is
the vector of annihilation operators of the input mode, and analogously a′ for the output modes.
If B = 0 in Eq. (1) the device is called passive and conserves the total number of photons, that

is ⟨ψ|N |ψ⟩ = ⟨ψ|U †NU |ψ⟩ with N :=
∑

i a
†
iai the number operator on H. In the following,

for any pure state |ψ⟩, we denote with ψ := |ψ⟩ ⟨ψ| the corresponding projector. For any Fock
space H, we denote with |n⟩ a Fock basis in H (|0⟩ denotes the state of the vacuum).

Suppose we want to discriminate between two linear optical passive devices U1 and U2. If
a single use of the unknown device is available, the most general strategy consists of preparing
a bipartite input state ρ ∈ B(H ⊗ K) (K is an ancillary Fock space with mode operators bi),
applying locally the unknown device and performing a bipartite POVM Π on the output state
(Ux ⊗ IK)ρ = (Ux ⊗ IK)ρ(U

†
x ⊗ IK) (x can be either 1 or 2).

ρ
!"
#$

H
Ux

K Π
%&
'(
. (2)

The choice of Π in Eq. (2) depends on the figure of merit taken into account. For example,
for ambiguous discrimination Π = {Π1,Π2} and one’s task is to minimize the probability of
error

PE(ρ, U1, U2) := Tr[(U1 ⊗ IH)(ρ)Π2 + (U2 ⊗ IH)(ρ)Π1],

with 0 ≤ PE(ρ, U1, U2) ≤ 1/2. When p1 = p2 = 1/2 the minimal probability of error has been
proven to be given by the following function [19] of ρ,

PE(ρ
∗, U1, U2) =

1

2
(1− || [(U1 − U2)⊗ IK] ρ||1) , (3)

where ||X||1 = Tr[
√
X†X] denotes the trace norm.

For unambiguous discrimination Π = {Π1,Π2,ΠF }, Tr[(U1 ⊗ IH)(ρ)Π2] = Tr[(U2 ⊗
IH)(ρ)Π1] = 0 and one’s task is to minimize the probability of inconclusive outcome (failure)

PF (ρ, U1, U2) := Tr[(U1 ⊗ IH + U2 ⊗ IH)(ρ)ΠF ], (4)

with 0 ≤ PF (ρ, U1, U2) ≤ 1.
In the following, whenever the results we present hold for PE(ρ, U1, U2) (in an ambiguous

discrimination scenario) as well as for PF (ρ, U1, U2) (in an unambiguous discrimination scenario),
we will simply write P (ρ, U1, U2).

Upon denoting with ED(ρ) := Tr[ρ(N ⊗ IK)] the energy that flows through the unknown
device, the total energy of the input state is E(ρ) := ED +Tr[ρ(IH ⊗NK)].
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We can now introduce the ideal quantum reading problem [2, 6]. For any set of two optical
devices {U1, U2} and any threshold q in the probability of error (failure), find the minimum
energy input state ρ∗ that allows to ambiguously (unambiguously) discriminate between U1 and
U2 with probability of error (failure) not greater than q, namely

ρ∗ = arg min
ρ s.t. P (ρ,U1,U2)≤q

E(ρ). (5)

where P (ρ, U1, U2) = PE(ρ, U1, U2) for the ambiguous discrimination problem and P (ρ, U1, U2) =
PF (ρ, U1, U2) for the unambiguous discrimination problem.

First, notice that for any POVM Π we have P ((U1 ⊗ IK)ρ, I, U2U
†
1) = P (ρ, U1, U2) and

E((U1 ⊗ IK)ρ) = E(ρ), so we can restrict our analysis to the case in which U1 = I and U2 = U ,
and identify P (ρ, I, U) = P (ρ, U).

Then, notice that without loss of generality the constraint in Eq. (5) can be restated as
P (ρ, U) = q. Indeed, for any POVM Π we have that P (ρ, U) is a continuous function maximized
in |0⟩ ⟨0| [indeed PE(|0⟩ ⟨0| , U) = 1/2 and PF (|0⟩ ⟨0| , U) = 1]. So for any ρ with P (ρ, U) < q
there exists a 0 < α ≤ 1 such that P [(1−α)ρ+α|0⟩⟨0|, U ] = q. Since E[(1−α)ρ+α|0⟩⟨0|] < E(ρ),
the constraint in Eq. (5) becomes P (ρ, U) = q.

Proposition 1 (Optimal state is pure). For any optical device U and any threshold q in
the probability of error PE(ρ, U) [probability of failure PF (ρ, U)], there exists a state ρ∗ which
minimizes Eq. (5) such that ρ∗ is pure.

Proof. Notice that Eq. (5) is equivalent to C(ρ, U) := pP (ρ, U) + (1 − p)E(ρ), for any fixed
value of p. If ρ∗ is the state that minimizes C(ρ, U), for q := P (ρ∗, U) we have that E(ρ∗) gives
the minimum possible value for the energy. Since P (ρ, U) and E(ρ) are linear functions of ρ, it
follows that C(ρ, U) is a linear function of ρ and its minimum is attained on the boundary of
its domain, namely for a pure state |ψ∗⟩.

As a consequence of Proposition 1, Eq. (5) can be restated as

ψ∗ = arg min
ψ s.t. P (ψ,U)=q

E(ψ). (6)

For pure states, the probability of error in the ambiguous discrimination when p1 = p2 = 1/2
given by Eq. (3) becomes

PE =
1

2

(

1−
√

1− | ⟨ψ| (U ⊗ IK) |ψ⟩ |2
)

. (7)

For pure states, the probability of failure in the unambiguous discrimination when p1 = p2 = 1/2
given by Eq. (4) has been proved to be given by [16]

PF (ψ
∗, U) = | ⟨ψ|U ⊗ IK |ψ⟩ |. (8)

Proposition 2 (No ancillary modes are required). For any optical device U and any threshold q
in the probability of error PE(ρ, U) [probability of failure PF (ρ, U)], there exists a state ρ∗ which
minimizes Eq. (5) such that ρ∗ ∈ H.

Proof. We show that for any pure input state ψ there exists a pure state ψ′ that does not resort
to ancillary modes and that allows for quantum reading with the same probability of error
(failure) but with lower energy. Let us denote with |n⟩ = |n1, . . . , ndimH⟩ a Fock basis in H with
respect to which U is diagonal and with |m⟩ = |m1, . . . ,mdimK⟩ a Fock basis in K. Let us denote
with eiδi the eigenvalue of U corresponding to mode i-th, and let δ = (δ1, . . . , δdimH), namely
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U |n⟩ = eiδ·n |n⟩. Any pure input state can be written as |ψ⟩ =
∑

n,m cn,m |n,m⟩ for some cn,m,

then one has ⟨ψ|U ⊗ IK |ψ⟩ =
∑

n,m |cn,m|2eiδ·n and E(ψ) =
∑

n,m |cn,m|2(
∑

i ni +
∑

j mj).

For any |ψ⟩ let us define |ψ′⟩ :=
∑

n
c′n |n,0⟩ with c′n :=

√
∑

m
|cn,m|2, then one has

⟨ψ′|U ⊗ IK |ψ′⟩ = ⟨ψ|U ⊗ IK |ψ⟩ and E(ψ′) =
∑

n,m |cn,m|2(
∑

i ni). Since P (ψ′, U) = P (ψ, U)
and E(ψ′) ≤ E(ψ) - the former immediately following from Equations (7) and (8) - the statement
is proved.

Since no ancillary modes are required, the energy ED(ψ) that flows through the unknown
device is equal to the total energy of the input state E(ρ), so minimizing the former instead
than the latter - namely, replacing E(ψ) with ED(ψ) in Eq. (6) - does not change the optimal
state.

3. Ideal Quantum Reading of Beamsplitters
A beamsplitter is a two-mode linear passive quantum optical device such that A ∈ SU(2) in
Eq. (1). In the following we will use the basis {|n,m⟩} with respect to which A is diagonal
with eigenvalues e±iδ, 0 ≤ δ ≤ π. With this choice, for any |ψ⟩ =

∑∞
n,m=0 αn,m |n,m⟩, we

have U |n,m⟩ = eiδ(n−m) |n,m⟩, so that ⟨ψ|U |ψ⟩ =
∑∞

n,m=0 |αn,m|2eiδ(n−m) and ⟨ψ|N |ψ⟩ =
∑∞

n,m=0 |αn,m|2(n + m). We notice that both these expressions only depend on the squared
modulus of the coefficients αn,m, so we can assume αn,m to be real and positive.

Here ⌊x⌋ (⌈x⌉) denotes the maximum (minimum) integer number smaller (greater) than x.

Proposition 3 (Optimal quantum reading of beamsplitters). For any beamsplitter U and for
any threshold q in the probability of error (probability of failure), there exists a state ψ∗ which
minimizes Eq. (6) such that

|ψ∗⟩ = α
|0, n∗⟩+ |n∗, 0⟩√

2
+
√

1− α2 |00⟩ , (9)

where

|α| =

√

1−K(q)

1− cos(δn∗)
, K(q) =

{

2
√

q(1− q) for ambiguous reading
q for unambiguous reading

,

n∗ = arg min
⌊x∗⌋,⌈x∗⌉

E(ψ∗), x∗ = min(x > 0|δx = tan(δx/2)).

Proof. First we prove that the optimal state in Eq. (6) is a superposition of NOON states.
For any state |ψ⟩ =

∑

n,m αn,m |n,m⟩, the state |ψ′⟩ =
√

1/2
∑

l α
′
l(|l, 0⟩ + |0, l⟩) with |α′

l|
2 =

∑

|n−m|=l |αnm|2 is such that

〈

ψ′∣
∣N

∣

∣ψ′〉 =
∞
∑

n,m=0

α2
nm|n−m| ≤ ⟨ψ|N |ψ⟩ , (10)

|
〈

ψ′∣
∣U

∣

∣ψ′〉 | =

∣

∣

∣

∣

∣

∣

∞
∑

n,m=0

α2
nm cos(δ|n−m|)

∣

∣

∣

∣

∣

∣

≤ | ⟨ψ|U |ψ⟩ |.

So we have ⟨ψ|U |ψ⟩ ∈ R and the constraint in Eq. (6) becomes ⟨ψ|U |ψ⟩ = K(q).
Then we prove that the optimal state is the superposition of two NOON states. Let

|ψ∗⟩ =
√

1/2
∑

n α
∗
n(|n, 0⟩ + |0, n⟩) be the optimal state and let the set {α∗

n} have N ≥ 3 not-
null elements. Then there exist n1 and n2 such that αn1

,αn2
̸= 0 and cos(δn1) ≤ K(q) ≤
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cos(δn2). Define |χ⟩ := 1/
√
2
∑

i=1,2 βni
(|ni, 0⟩ + |0, ni⟩) such that ⟨χ|U |χ⟩ = K(q), and

|ξ⟩ := 1/
√
2(1− ϵ)−1/2∑

n γn(|n, 0⟩+ |0, n⟩), where

γn =

{

αn if n ̸= n1, n2
√

α2
n − ϵβ2n if n = n1, n2

,

and ϵ ≤ min(αn1
/βn1

,αn2
/βn2

). Notice that ⟨ξ|U |ξ⟩ = K(q), and ⟨ψ∗|N |ψ∗⟩ = ϵ ⟨χ|N |χ⟩ +
(1 − ϵ) ⟨ξ|N |ξ⟩. If ⟨χ|N |χ⟩ = ⟨ψ∗|N |ψ∗⟩ the statement follows with |ψ⟩ = |χ⟩. If ⟨χ|N |χ⟩ ̸=
⟨ψ∗|N |ψ∗⟩, either ⟨χ|N |χ⟩ < ⟨ψ∗|N |ψ∗⟩ or ⟨ξ|N |ξ⟩ < ⟨ψ∗|N |ψ∗⟩, that contradicts the
hypothesis that |ψ∗⟩ is the optimal state.

Finally we prove that the optimal state is the superposition of a NOON state and the vacuum.
Let |ψ∗⟩ = 1/

√
2
∑

i=1,2 αni
(|ni, 0⟩+ |0, ni⟩). Then

⟨ψ∗|N |ψ∗⟩ =
n2 cos(δn1)− n1 cos(δn2) +K(q)(n1 − n2)

cos(δn1)− cos(δn2)
.

It is lengthy but not difficult to verify (see Ref. [2] for an explicit proof) that it is not restrictive
to set n2 = 0, so one has ⟨ψ∗|N |ψ∗⟩ = [1 −K(q)][1 − cos(δn1)]−1n1. Then one can see that it
is not restrictive to choose π/2 ≤ δn1 ≤ π, where ⟨ψ∗|N |ψ∗⟩ can be proven [20] to be a convex
function that attains its minimum for n1 = ⌊x∗⌋ , ⌈x∗⌉, with x∗ = min(x ∈ R+|δx = tan(δx/2)).
The statement immediately follows.

Notice that from Proposition 3 it immediately follows that ambiguous (unambiguous)
discrimination between beamsplitters U and I can be achieved only if the threshold q in
the probability of error (failure) satisfies the inequality K(q) ≥ cos(δn∗) with K(q) as in the
statement of Proposition 3.

The optimal energy-error tradeoffs in the ambiguous and unambiguous quantum reading are
trivial consequences of Proposition 3, given respectively by

E(PE) =
1− 2

√

PE(1− PE)

1− cos(δn∗)
n∗, E(PF ) =

1− PF

1− cos(δn∗)
n∗, (11)

where n∗ is constant (for any fixed δ) and is given in the statement of Proposition 3. Figure 1
shows the optimal energy-error tradeoff for some values of δ.

4. Comparison with Coherent Strategy
Here we consider the minimum energy discrimination that makes use of coherent input states |αi⟩
and homodyne detections Xϕi

to ambiguously2 discriminate a single use of a n-modes passive
linear optical device randomly chosen in the set {I, U} with equal probabilities

)*+,α1

Ux

'%(&Xϕ1

)*+,α2 '%(&Xϕ2

)*+,α3 '%(&Xϕ3

. (12)

2 Notice that since the conditional probability distribution of the outcome of a homodyne measurement given a
coherent state is Gaussian, no outcome has zero probability to occur. For this reason, no coherent strategy exists
for the unambiguous discrimination of optical devices.
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Figure 1. (Color online) Optimal tradeoff between the energy E and the probability of error
PE (probability of failure PF ) in the ambiguous (a) and unambiguous (b) discrimination of I

and U = exp(i(δa†1a1 − δa†2a2)), for δ = π/6 (upper line), δ = π/4 (middle line), and δ = π/3
(lower line), as given by Eq. (11).

If we consider coherent input states |αi⟩ on mode i the global input state is |ξ⟩ =
⊗

i |αi⟩ which
corresponds to an energy value

E(ξ) := ⟨ξ|N |ξ⟩ =
∑

i

|αi|2. (13)

Since for any passive linear device V we have that V
⊗

i |αi⟩ =
⊗

i |βi⟩ where |βi⟩ are coherent

states, we can assume U to be diagonal, i.e. U =
∑

i e
iδia

†
i
ai . The evolution of |ξ⟩ under the

action of U is then given by

U |ξ⟩ =
⊗

i

∣

∣

∣
eiδiαi

〉

. (14)

A quantum homodyne detection Xϕ is described [21, 22, 23] by the POVM {|x,ϕ⟩⟨x,ϕ|},
where |x,ϕ⟩ are the eigenstates of the quadrature eiϕa+ e−iϕa†. The probability of outcome x
when the system is prepared in a coherent state |α⟩ with α = eiφα |α| is given by the Gaussian

pϕ(x|α) = |⟨α|x,ϕ⟩|2 =
√

2

π
e−2(x−|α| cos(ϕ+φα))2 . (15)

We notice that pϕ(x|α) depends on the phases ϕ and φα only through the sum ϕ+ φα. We can
then fix ϕ = 0 and vary only the αi. The conditional probabilities of outcome x = (xi) given I
or U are n-dimensional Gaussians, namely

p(x|I) = (2/π)n/2e2|x−v0|2 , p(x|U) = (2/π)n/2e2|x−v1|2 , (16)

with v0 = (Reαi) and v1 = (Re eiδiαi).
Any classical postprocessing of the outcome x can be described by a function q(X|x) that

evaluates to 1 if one guesses the unitary X from outcome x, and to 0 otherwise, with X = I, U .
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The probability of error is given by

PE(ξ) =
1

2

∫

dx p(x|I)q(U |x) + p(x|U)q(I|x), (17)

and thus the optimal postprocessing is

q(X|x) =
{

1 if p(x|X) ≥ p(x|Y )
0 if p(x|X) < p(x|Y )

. (18)

Inserting Eq. (18) and Eq. (16) into the expression (17), the probability of error becomes

PE(ξ) =
1

2

[

1 + (2/π)n/2
∫

A
dx

(

e−2|x−v0|2 − e−2|x−v1|2
)

]

, (19)

where we defined the set

A = {x s.t. |x− v0|2 ≥ |x− v1|2}. (20)

Within this framework it is more convenient to fix the amount of energy, that is the average
number of photons η, and find the input state |ξ∗⟩ that minimizes the probability of error in the
discrimination, i.e.

|ξ∗⟩ = arg min
⟨ξ|N |ξ⟩=η

PE(ξ). (21)

With a little machinery it is possible to prove that PE(ξ) is a non-increasing function of
|v0−v1|2 and then the minimization of PE(ξ) can be rephrased as a maximization of |v0−v1|2.
We have then

|v0 − v1|2 =
∑

i

[Re(αi)− Re(eiδαi)]
2 ≤

∑

i

[2 sin(δi/2)|αi|]2 ≤ 4 sin2(δ/2)η, (22)

where δ∗ := argmaxδi |δi|, and i∗ labels the corresponding mode. The bounds in Eq. (22) are
achieved for

|ξ∗⟩ =
⊗

i ̸=i∗

|0i⟩ ⊗ |α∗
i∗⟩ , (23)

where α∗
i∗ =

√
η exp(iπ−δ

∗

2 ). The corresponding optimal discrimination strategy is

#!$"α∗
i∗

Ux

-./0X0

12340 5678I

12340 5678I

, (24)

where 5678I means that the corresponding mode is discarded. With this choice of the input
state the probability of error becomes

PE =

√

2

π

∫ 0

−∞
dx e

−2
(

x−√
η sin |δ∗|

2

)2

=
1

2

[

1− erf

(

√

2η sin
|δ∗|
2

)]

. (25)

where erf(x) := 2√
π

∫ x
0 dt exp(−t2) denotes the error function.

From Eq. (25) one can obtain the tradeoff between the energy and the probability of error,
which is plotted in Fig. 2, for some choices of U1 and U2. If we consider the case in which we
want to discriminate a 50/50 beamsplitter from the identity, one can notice that, for PE = 0.1,
the coherent state - homodyne detection discrimination strategy requires a factor of ∼ 4 more
photons that the optimal strategy. Moreover, this factor increases as the two devices get closer,
i. e. for small values of δ. For example, when δ = π/12, the factor is ∼ 12. As expected, one
notice that this factor increases when the probability of error decreases.
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Figure 2. (Color online) Optimal tradeoff between the energy E and the probability of error PE

in the discrimination of I and U = exp(i(δa†1a1 − δa†2a2)) (δ = π/4 in (a) and δ = π/12 in (b)).
The upper line represents the discrimination with coherent states and homodyne detections,
while the lower line represents the optimal discrimination. Comparing (a) and (b), we notice
that the improvement provided by the optimal strategy increases as δ decreases.

5. Experimental setup for quantum reading
In this Section we provide experimental setups for ambiguous, unambiguous, and perfect
quantum reading, which are feasible with present quantum optical technology. The input is a
single-photon state, that can be realized e.g. through spontaneous parametric down conversion or
through the attenuation of a laser beam. The evolution is given by a circuit of beamsplitters, one
of which is the unknown one, and the final measurement is implemented through photodetectors.

In Proposition 2 we proved that, for the ambiguous (unambiguous) quantum reading of optical
devices, no ancillary modes are required. Nevertheless, the proposed setups for quantum reading
make use of three-modes input states - namely, an ancillary mode is employed. This choice is
due to the requirement to have an input state with fixed number of photons in order to be able
to experimentally take into account loss. For this reason, our setup minimizes the energy ED(ρ)
that flows through the unknown device, while the total energy of the input state is fixed.

In the following, for any beamsplitter X we denote with AX the A matrix of X in Eq. (1),
so we write

AX =

(

rX −tX
tX rX

)

, A†
X =

(

rX tX
−tX rX

)

.

We define the reflectivity RX and the transmittivity TX of X as RX := |rX |2 and TX := |tX |2,
respectively, with RX + TX = 1.

The general setup is given by a Mach-Zender interferometer with beamsplitters B and B†,
acting on modes 2 and 3. In one of the harms of the interferometer (corresponding to mode 2),
the following beamsplitters are inserted

12340
1

N D I,U D† N †

Π

%&

'(

12340
2

B B†
12341

3

,
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where N is a 50/50 beamsplitter, I, U is the unknown beamsplitter, and D is the beamsplitter
diagonalizing U . The POVM Π is different for ambiguous and unambiguous quantum reading.
It is easy to verify that the composition of beamsplitters DN reduces to a phase shifter on mode
2, namely

AD =
1√
2

(

1 1
i −i

)

, ADAN =

(

1 0
0 i

)

. (26)

It is easy to check that this phase shifter is irrelevant, so in the following we will disregard it.
Here we describe an experimental setup implementing the optimal strategy for ambiguous

quantum reading as given by Proposition 3, namely the ambiguous discrimination of a
beamsplitter randomly chosen from the set {I, U} with equal prior probabilities, with probability
of error PE(ρ, U) under a given threshold q and minimal energy flow through the unknown
device. In the following we set K(q) := 2

√

q(1− q). According to Proposition 3, in order to
have PE(ρ, U) ≤ q, we must have K(q) ≥

√
RU .

The experimental setup is then given by

12340
1

I, U M

5678I

12340
2

B B† N †

-./0ΠU

12341
3 -./0ΠI

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

,

where the reflectivities and transmittivities of beamsplitters B, M and N † are given by

RB =
K(q)− rU
1− rU

, RM =
[1−K(q)][K(q)− rU ]

(1− 2q)2
, RN =

√

1− q.

The optimal measurement for ambiguous discrimination [19] is implemented by the two
beamsplitters M and N † and by the two photocounters ΠU and ΠI surrounded by the dashed
line (no measurement is performed on output mode 1). The conditional probabilities pX|Y of
detecting a photon in photodetector ΠX given that the unknown device is Y are given by

pU |U = pI|I = 1− q, pI|U = pU |I = q.

Detecting a photon in ΠU or ΠI implies that the unknown beamsplitter is U or I, respectively,
with probability of error q.

Here we describe an experimental setup implementing the optimal strategy for unambiguous
quantum reading as given by Proposition 3, namely the unambiguous discrimination of a
beamsplitter randomly chosen from the set {I, U} with equal prior probabilities, with probability
of failure PF (ρ, U) under a given threshold q and minimal energy flow through the unknown
device. According to Proposition 3, in order to have PF (ρ, U) ≤ q, we must have q ≥

√
RU .

The experimental setup is given by

12340
1

I, U M

-./0ΠU

12340
2

B B† N

-./0ΠF

12341
3 -./0ΠI

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

,

21st International Laser Physics Workshop IOP Publishing
Journal of Physics: Conference Series 414 (2013) 012038 doi:10.1088/1742-6596/414/1/012038

10



where the reflectivities and transmittivities of beamsplitters B, M and N are given by

RB =
q − rU
1− rU

, RM =
[
√
1 + rU −

√

q(q − rU )]2

(1 + q)2
, RN =

√

1− q.

The optimal measurement for unambiguous discrimination [16] is implemented by the two
beamsplitters M and N and by the three photocounters ΠU , ΠI , and ΠF surrounded by the
dashed line. The conditional probabilities pX|Y of detecting a photon in photodetector ΠX given
that the unknown device is Y are given by

pU |U = pI|I = 1− q, pI|U = pU |I = 0, pF |U = pF |I = q.

Detecting a photon in ΠU or ΠI implies that the unknown beamsplitter is certainly U or I,
respectively, while detecting a photon in ΠF declares a failure with probability q.

6. Conclusion
In this paper we considered ambiguous and unambiguous quantum reading of optical memories,
on the assumption that noise and loss are negligible (Section 2). We provided the optimal
strategy for ambiguous and unambiguous quantum reading of beamsplitters (Section 3), showing
that the optimal input state is a superposition of a NOON state and the vacuum. In Section 4 we
showed that the optimal strategy for ambiguous quantum reading largely overcomes the optimal
coherent protocol (reminiscent of common CD readers), further allowing for perfect quantum
reading. Finally in Section 5 we proposed some experimental implementations of ambiguous and
unambiguous quantum reading, where the input state was fixed to be a single photon state. By
making use of an ancillary mode it was possible to tune the amount of energy flowing through
the device.

In addition to their relevance in the framework of quantum communication and information
theory, the presented results also have obvious connections with experimental quantum optical
applications. For these reasons we believe that they will have a relevant impact in the future
development of technology for storage and retrieval of digital information.
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