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We define and study a fidelity criterion for quantum channels, which we term the
minimax fidelity through a noncommutative generalization of maximal Hellinger
distance between two positive kernels in classical probability theory. Like other
known fidelities for quantum channels, the minimax fidelity is well defined for
channels between finite-dimensional algebras, but it also applies to a certain class
of channels between infinite-dimensional algebi@splicitly, those channels that
possess an operator-valued Radon-Nikodym density with respect to the trace in the
sense of Belavkin-Staszewskind induces a metric on the set of quantum channels
that is topologically equivalent to the CB-norm distance between channels, pre-
cisely in the same way as the Bures metric on the density operators associated with
statistical states of quantum-mechanical systems, derived from the well-known fi-
delity (“generalized transition probability’of Uhlmann, is topologically equivalent

to the trace-norm distance. 8005 American Institute of Physics.

[DOI: 10.1063/1.1904510

I. INTRODUCTION

Many problems in quantum information scierfcehoth in theory and in experiment, involve
finding a set of quantum-mechanical states or channels that solve some sort of an optimization
problem, typically formulated in terms of a numerical criterion that measures how close a given
pair of states or operations are to each otfidany such criteria have been proposed to date, each
defined with specific theoretical or experimental considerations in mind; see Ref. 3 for a recent
comprehensive survey.

Let us first consider the case of quantum states, i.e., density operatofg.bleed complex
separable Hilbert space associated to a quantum-mechanical system. Given a pair of density
operatorsp, g, i.e., positive trace-class operators with unit trace, one can use eithidelig’

F(p,0) := Tr{(p*%0p")*?] (1)
or thetrace-norm (half-) distance
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D(p,0) := 3llp - ol 2

wherel|p|l+:=Tr|p| and|p|:=(p'p)2%° Loosely speaking, two statgsand o are close to each other
if F(p,o) is large, or ifD(p, o) is small. In fact, as follows from the key inequaﬁﬁ?

1-F(p,0) <D(p,0) < V1-F*p,0), (3

the fidelity and the trace-norm distance are equivalent in the sense that any two density operators
that are close to one another in the sensélpfire also close in the sense (@, and vice versa.

As for quantum channels.e., normal completely positive unital mappings from an operator
algebraB=5(h) into another algebrad=B(g), whereg and  are complex separable Hilbert
spaces, things get somewhat complicated. Consider, for instance, the casgyvidhdimite-
dimensional, and lem:=dim g. Fix an orthonormal basifj)}[; of g, and Iet|¢/>==m‘1’22j:l|j>
®|j) be the normalized maximally entangled vector in the product spacg Given two quan-
tum channelsp,¥:5— A, one can measure their closeness in terms of the fidelity of the states on
B® A, obtained from the maximally entangled state |¢){y| by applying the predual channels
®; andW+ (cf. Sec. Il for precise definitiongo the first factor in the tensor product:

1 @ id(m) = %21 S ek @ 4 =,
Wy ® id(m) = %21 S (i) @ i = o

The fidelity F(p, o), taken as thehannel fidelity

F(D, W) := F(Pr @ id(m), VYt id(m), (4)

by Raginsky in Ref. 11, enjoys many properties parallel to those of the fid&)itior quantum
states. Alternatively, one can adopt tffelf-) distancé!?*3

D(P,¥) := 5| - V|, (5)

where||-||cg denotes the so-calleabrm of complete boundedne&s CB-norm for short; cf. Sec.
[l C for detailg. We note that the CB-norm half-distan¢® can be given in terms of the trace-
norm distanc€?2) between density operators by means of the variational expré§§ib°‘n

D(d, W) = supD(P7 @ id(m), W1 id(m), (6)

where the supremum is taken over all density operatoos the tensor product spages g. By
analogy with density operators of the states, we are tempted to say that two quantum cldannels,
andW, are close either ifF(®,WV) is large or if D(®, V) is small. However, in addition to the
finite-dimension restriction ding << [the only case under which the definiti¢f) of the channel
fidelity makes sengewe encounter the following difficulty. It turns ditthat, as a criterion of
closeness, the CB-norm distan@ is strictly stronger than the fidelity measu#® in the sense

that even wherD(®, V) is large, (P, ¥) may be quite large as well, and may even become
equal to one in the limit ding — . Consider, for instance, the ca¥e=id. Then one can shaW

that

1-D(d,id) < F(D,id) < V1 - (1/4DA(D,id), 7)

and we immediately see that whénis such thaD(d,id) attains its maximum value of unity, the
fidelity F(d,id) is still bounded between 0 an®/2. To make matters worse, the only bound on
(5) in terms of(4) known so far is

Downloaded 13 Jun 2005 to 193.206.68.167. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



062106-3 Fidelity for quantum channels J. Math. Phys. 46, 062106 (2005)

1=D(P, V) =1-FD,V¥), (8)

as follows readily from Eqs(3) and(6). Furthermore, one can easily find sequengks}, {¥ .}
of channelsd,,V,: B(C™) — B(CM), such thatD(®,,, V) # 0 for all m, while

lim F(®,, W) =1.

m—oe

Indeed, consider the unitarily implemented channels

®,(B)=U!BU,, W(B)=VIBVpy
with the unitariedJ,,, V,, chosen in such a way that,+ V,, but

lim e Tr(U] V) = 1.
m—oe M
Thus, the channel fidelit{4), apart from being applicable only in finite-dimensional settings, has
the distinct disadvantage of not being equivalent to the CB-norm distance, in contrast to the case
of the Uhlmann fidelity(1) and the trace-norm distand@) on the state space of a quantum-
mechanical system.

The goal of this paper is to define and study a new fidelity criterion for quantum channels,
which we term theminimax fidelityand which is a nhoncommutative generalization of maximal
Hellinger distance between two positive kernels in classical probability theory. Unlike the channel
fidelity (4) of Ref. 11, the minimax fidelity is not only well defined for channels between finite-
dimensional algebras, but also applies to a certain class of channels between infinite-dimensional
algebragqexplicitly, those channels that possess an operator-valued Radon-Nikodym density with
respect to the trace in the sense of Belavkin-Staszéﬂyskhd is equivalent to the CB-norm
distance, echoing the way the Uhlmann fideli) for density operators is equivalent to the
trace-norm distancé?).

Apart from these technical features, the minimax fideligp, V) between two quantum
channelsb, ¥ has a direcbperationalmeaning: intuitively, it is defined as the minimum overlap
of output stateg(density operatojsof the predual channel®;,V;, when the operator-sum
decomposition?sof the latter are chosen to be maximally overlapping; this is spelled out in precise
terms in Sec. IV E. Our central resulTheorem 1 demonstrates that the minimax fidelity is
independent of the order of these two optimizations. Furthermore, the equivalence of our minimax
fidelity to the CB-norm distance, which is stated precisely in Sec. V in terndinoénsion-free
bounds, is a promising avenue for the study and characterization of dimension-free beheds
ever they exigton other operationally meaningful distance measures for quantum ope?an'ons
terms of the CB-norm distance. As pointed out in Ref. 15, such bounds are crucial for a successful
generalization of the usual quantum capacity of a charingle., with respect to the identity
channel to the case of comparing quantum channels to an arbitrary reference channel. We plan to
pursue these matters further in a future publication.

The paper is organized as follows. In Sec. Il we fix the definitions and notation used through-
out the paper. The minimax fidelity is then introduced in Sec. lll. Section IV is devoted to the
evaluation of the minimax fidelities in the various mathematical settings that arise in quantum
information theory. Next, in Sec. V, we list key properties of the minimax fidelity. Finally, in Sec.

VI we sketch some example applications of the minimax fidelity to several problems of quantum
information theory.

Il. PRELIMINARIES, DEFINITIONS, NOTATION
A. Pairings, states, operations

Let h be a complex separable Hilbert space; fetlenote the Banach algebi#h) of all
bounded linear operators dnwith the usual operator norfit||; and letB; denote the Banach
spaceB+(h) of trace-class operators @nwith the trace nornf-|t. The set of normal states d#
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i.e., ultraweakly continuous positive unital linear functionals&nwill be denoted byS(B) or,
whenever we need to exhibit the underlying Hilbert space explicithsty. Generic elements of
S(B) will be denoted by the stylized Greek lettats ¢,s. Note that the operator norm dhcan
be written ag|B||=sude(|B|): e € S(B)}.

We equiph (and shall equip all Hilbert spaces introduced in the sequéh an isometric
involution J=J, Jzzlh, having the properties of complex conjugation,

] i
We can thus define theansposeof anyB e B asB:=JB'J, as well as introduce the trace pairffig

(B,p):=Tr(Bp)=Tr(Bp), OBeB, peBr 9)

of B and By. Under this pairing, which differs from the usual one in tBat B is paired with the
transpose op e By rather than directly wittp, normal linear functionals off are in a one-to-one
correspondence with the elements ®f. Thus to each normal staig we associate a unique
positive trace-class operator with unit trace, denoted by the standard Greek latigreferred to
as thedensity operatorcorresponding tog, via ¢(B)=(B,p) for all B e B. Similarly, density
operators corresponding to states denotedsbgnds will be denoted byr and o, respectively.

Apart from natural arguments from standard representation theory of operator algebras, one
reason why we chose to parwith the transposed operatpeJp'J, rather than withp, is to be
able to keep all notations conveniently parallel to the clasgicainmutative case, as will be
amply demonstrated throughout the paper. Note also that we can fix a complete orthonormal basis
{li>} of b and express the pairin@) in terms of the matrix elements & andp as

(B.p) = 2;4 (i1Blk) - (jlplk) = 2;4 By,
Js Js

where we have used the covariant indices for the matrix elements of bounded oper#tasdn
the contravariant indices for the matrix elements of trace-class operatBss when the latter are
identified via the pairindg9) with normal linear functionals oB8. Yet another reason to opt for the
pairing of B with the transposed operatpr further elaborated upon in Sec. Il B, is that then the
density operatop of a normal stat@ will coincide with the operational density @, understood
as a quantum operation frofs into the Abelian algebra.

Introducing another Hilbert spagg the algebrad:=B(g), and the trace clasd :=B+(g), let
us considelquantum operations.e., the completely positive normal linear mappings5 — A
such that®(ly) <1, if ®(1,)=1,, then® is referred to as a@uantum channelAny quantum
operation® possesses a uniqpeedual ®: A+ — By, defined as the transpose dfwith respect
to the trace pairing9), i.e.,

(CD(B)J)) = (qu)T(P))r OBe B, pE AT' (10)

Conversely, given a normal completely positive linear mbhpA;— By such that Tyd(p)
<Trgp for all pe Ay, we define itsdual with respect to the trace pairin@®) as the unique
mapping®d': 83— A for which

(B,®(p)) =(®'(B), p), UBe B,pe Ar. 11

Using these definitions, one readily obtains tiidt=® for any normal completely positive map
®:5— A. Alternatively, one may define the predual of a normal completely positive dnap
— A as the unique normal completely positive map: A1 — By such thatCIﬂ:d).

If @ is given in the Kraus forrtf <1>(B)=EF]TBFJ-, or more generally as an integral
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®(B) = f F(2'BF(2du(2), 12
z

with respect to a positive measuge on a measurable spad¢g,B;), where the integration is
understood in the sense of Bochh&then the predual magp; has the transposed integral form

Dr(p) = f Fr(2pF(2du(2),
Z

where g 5 &—(£F1(2) are Hilbert-transposed to the operatdys n— (7|F(2), that is F1(2)

=F(z) for all ze Z.

Any normal stateg e S(B) is automatically a quantum channel froBhinto the Abelian
algebraC, and it is readily seen that the density operataf o, understood as acting one C on
the right,C > N— \p, is precisely the preduay:C— Br. Indeed, giverB € B and\ € C, we have

(Q(B)a)\) = (Ba)\p) = (B!QT()\))a
which proves our claim thgi=g+. Thus we also have tha= Q¥=pT.

B. Operational densities

In order to avoid technicalities involving unbounded operators, we shall henceforth assume
that all quantum operations we deal with ammpletely majorizetly the trace, considered as the
map7(o)=1,Tr o of By into A=B(g), in the sens¥ that there exists a constant>0 such that the
differencex7—® is a completely positive ma; — A. For example, this condition is satisfied by
all quantum operations between finite-dimensional alge]ﬁrAs. was proven in Ref. 14, in this
case there exists a unique positive operdtoon the Hilbert spacé{:=g® b, called thedensity
of & with respect to the trace, such that

®(B) = Try[ (1, ® B)®.], (13)
where Ty Y, Y € B(H), denotes the partial trace ¥fwith respect td,

(TrthP) = (YaP ® lh)v 0 pE BT(g) .

Moreover,® . as a linear operator o is bounded and majorized by:0<®, <\1,, and the
operation is unital(1,) =1, [contractive P (1,) <1,] if and only if Tr, ®, =1, (Tr, ®,<1,). This
is equivalent to saying that the predual mbp: A — By, which, using Eqs(10) and(13), can be
written as

q)T(P) = Trg[(b’r(ﬁ &® L))]! (14)

is trace preservingtrace decreasing

As an example, consider a normal st@eon B, which, being a quantum channel intg
satisfies the complete majorization condition witk | p||, wherep is the density operator af.
Furthermore, it is easy to see that=p. Indeed, we can write

0(B) = (B,p) = Tr(Bp) = Tr(Bp) = Tr,[(1. ® B)p],

and the desired result follows upon comparing this with @®). This provides additional justi-
fication for our definition of the trace pairing in E@), since we then have that=p=p . for any
normal statep.

If the operationd: B— A is given in the generalized Kraus for(h2), we can write down its
operational densityp,. explicitly. To this end, suppose that all operatéig) are determined by
generalized bra-vectois(z) =(F(2)|, densely defined as the linear functionals
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I'(2)|¢® 7 =(E{F@|n = (F@|[¢ )

on the linear span of the ket-vectdés® 7)=£® 7 in H=g® b, whereé e g is also treated as a

bra-vector such thal¢é=(¢ and |§):~§. Then the operational density,. of ® is given by the
corresponding decomposition

d_= f I'2'T(2du(2 =TT, (15)
where the integral is, again, understood in the sense of Bochner.

C. Completely bounded maps

Completely positive linear maps between operator algebras are a special casepbétely
boundedmaps=° Consider, as before, the algebids B(h) and.A=B(g). For eachn e N define
the nth matrix level M, (B)=B® M,, where M,, denotes the algebra afx n matrices with
complex entries. That isM(B) is the space ofiX n matrices withB-valued entries,

Mn(B) = {[B”]B” e B,1< I,J = n}.

Analogous construction can also be applied4tdo yield the matrix levelsM ,(A). Each matrix
level M, (B) inherits a *-algebra structure frof through

n

[B;][Cij] = |:k24 Bikckj]v (Bl := [Bﬁ]-
=1

In fact, by identifying M,(B) via a natural *-isomorphism with the algeb&{h™) of bounded
linear operators o™, the direct sum oh copies offj, one can make\,(B) into a C-algebra.
Thus, each matrix level B possesses a uniqué-Gorm.

Now, for anyne N a linear mapA : B— A induces the map\"" := A ®id,, from M(B) into
M,(A), defined byA™:[B;]—[A(B;)]. Let us define thenorm of complete boundedne&s
CB-norm by ||A]|cg:=sug]|[A™|:n e N}, where

IA®] = sup  [AT(B)]
BeM,(B)|[B|<1

is the usual operator norm of™. A linear mapA:B— A is called completely boundedf
[Allcg<<c. Every completely positive magp: 53— A is automatically completely bounded, with
[®|lce=|P(1y)]. For a general completely bounded mapone has, by definitior|A (1,)[|<||A|
<[Allce-

Passing to the predual mapt:A;— By, we can similarly define induced maps
ALY M (A7) — M, (Br), ne N, and the predual CB-norm

IAIEs = SugiA "l

where

1Ay = = sup 1A )
peMp(A7):pllr=<1

Itis easy to see thgt\™|=||A'"”|; for all n e N, so that|A|cs=[A1|ls. It is also straightforward
to see that the “unstabilized” nornjls|| and|-||; are tensor supermultiplicativé.e., |[A;® A
=|A{||A4])), whereas the corresponding CB-norms are tensor multiplicdtiee |A;® Ajllcg
=[AdllcellAdlcs)-

There is also a useful nonvariational formula for the CB-norm of a maf— .A. Namely, let
€2 denote the Hilbert space of square-summable infinite sequences of complex numbers, and let
KC(€?) denote the space of compact operators¢dnThen |[Allcg=[A ®idy (2. Since we have
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assumed thaB=15() with h a complex separable Hilbert space, and since all complex separable
Hilbert spaces are canonically isomorphictfo we may also writd/Alcg=|[A ®idc)|.

D. Miscellany

Any positive operatoB e B(h) has a unique positive square root, denote®by and defined
as the positive operatot e B(h) such thatB=X2. This definition can be extended to any operator
A that is similar to a positive operatdk e 5(h), in the sense that there exists an oper&or
e B(h) such thatA=SAS', whereS' is the pseudoinverse & equal toS™ on ranSand to 0 on
ker S. In that case, we maylefine VA:= SAY2SF. From now on, in order to distinguish this
extended definition of the square root from the usual one, we shall always use the square root
symbol - for this extended definition, and reserve the exponent notatidfor the usual defini-
tion.

Consider now two positive operatoss,B € B(h). It is easy to see that their produédB
is similar to AY2BAY2 with S=AY2. Note that the operatokB is positive when restricted to the
closure of ran A, when the latter is equipped with the weighted inner product
(v War= (A2 A12y);

(UABV)A = (A Y2 A Y2ABY = (1iB1) =0, Owe ranA.

Thus we may define AB:= S(AY2BAY2)S with S=AY2

This notation, again, allows for a convenient parallelism between the clagsicamutative
formalism and the quanturthoncommutative one. Indeed, consider two mutually commuting
positive trace-class operatoss o, let {|x)} denote the set of their common eigenvectors, and let
px=(X|p|x), o= (x|o|x) denote the corresponding eigenvalues. Theo is also trace-class, and

Trpo = > Vpeoy.
X
If Tr p=1=Tro, thenP:={p,} andQ:={o,} are probability distributions, and Tpo then gives
the classical fidelityalso known as th®hattacharyya coefficieff F(P,Q) betweenP and Q.
Our main technical tool in this paper is given by the following:
Lemma 1: LetH be a complex separable Hilbert space, and letSX B(H) be positive
operators such that ®ESR/? is trace class. Then the supremum

sup {Tr(XY + Y™X): XX =R Y'Y = S} =2 Tr/RS (16)
X,YeB(H)

is achieved on any ¥ B(H) satisfying the condition =R, say X=R'?, and Y=Y, satisfying
the equation
Y X' = (XSX)¥2= XY, (17)

Proof: To prove the lemma one can use either the polar decomposition or the method of
Lagrange multipliers. We shall use the latter. Fixingarsatisfying X'X=R, we can write the
Lagrange function as

L=Tr(X'Y +Y'™X-YTYD),

whereL=L"e B(H) is the operator-valued Lagrange multiplier corresponding to the hermiticity
conditionS=Y'Y=S'. At the stationary point

SL=Tr(XT-LYNsY +(X-YL)sY =0,

so Y=Y, must satisfy the equatio¥iL=X (the other equatiorl,Y'=X", corresponding tor=Y!,
is obtained by taking the Hermitian adjoinThusY,=XL™*, whereL"* should be determined from
L™IXTXL™1=S. Multiplying this on the left byX and on the right by" yields (XL™*X")2=XSX, or
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XL™IXT=(XSX)Y2 Thus, we indeed have thatX"=(XSX)¥2=XY!, and therefore that

Tr(Y X"+ XY]) = 2 Tr(XSX) 3. (18)

This extremal value is precisely the maximal value due to convexity of the function being maxi-
mized in Eq.(16). Note that, sincéUT™XSXU)Y2=UT(XSX)Y2U for any unitaryU, the value of

the supremum in Eq(16), which coincides with Eq(18), does not depend on the choice Xf
satisfyingX"™X=R. Indeed, by virtue of the polar decompositi¥iF URY?,

2 Tr(XSX)¥2 =2 THUT(XSX)Y2U) = 2 Tr((RY?SR/?)17?),

Rewriting this trace in the equivalent form 2(Xf'Y,) with

XY, = RVARY2S R/ V2R-112 = VRS

corresponding tX=R'2, we obtain the extremal value in E(L6). O

We shall also need the following simple, but useful, result:

Lemma 2: Let S be a compact subset of a complex Banach spatelthat X S implies
Axe S for all X e C with |\|=1. Let f:V—C be a continuous function which is homogeneous of
order 1, i.e., f(Ax)=\f(x) for all A e C and all xe V. Then

sudf(x)| = supRef(x). (19
XeS XxeS

Proof: Let X' €S be such that/f(x") gagf) et x*

= e @9f()y* By the homogeneity of,

=supdf()], with f(x)=|f(x)

F(X™) = e A 0F () = [£(X)

=f(x")=Ref(x™). Since Re\<|\| for all \ € C, the lemma is proved. O

But then|f(x™)

IIl. OPERATIONAL FIDELITIES AND DISTANCES

A. Classical kernel fidelity

The fidelity distinguishing different quantum operations without the restriction on the Hilbert
space dimensionality was suggested by Belavkin in Ref. 21 on the basis of a honcommutative
generalization of the maximal Hellinger distance between two positive kernels. Namely, given a
locally compact spacX and a measure spac¥, By, u), whereu is a positive measure, let us
denote byA the algebra’(X) of bounded continuous functions & and byB;=C(Y) the space
of absolutelyu-integrable complex functions ovi. A positive kerneP is then given in terms of
a functionp(+|-): Y X X—R*, such thatP,:=p(:|x) € By for all x e X, while P:= [yp(y| -)du(y)

e A. Given two positive kernel® andQ, the squared pointwise Hellinger distance

1( — — 1 _—
di(P, Q) = 5 f (Vp(y|x) = Va(y|x)2du(y) = J [E(D(VIXHq(yIX))—\’p(yIX)q(yIX) dudy)

(20
is well defined and finite for eacke X, so that we can define
1 — [
di(P,Q) = 5 Sup J (Vp(YI¥) = Va(y[x)?du(y) = [d3 (P, QI (21)
Xe

the last expression indicating the fact thﬁ;(P,Q) is given by the supremum of the squared
pointwise Hellinger distance0) over allx e X. Note that the squared Hellinger distart?gP, Q)
between two positive distributioB=p(-) andQ=q(-) is the minimal mean quadratic distance
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BP.Q=5 inf { | IX(y)—w(Y)Izdu(Y)le(-)|2=P(-),ldf(-)IZZQ(-)}

x.eC(Y)
=(13(P+Q)~ sup | Vp(y) Reyty)duy), (22)
Pilu)P=a()

where(f,P)=[f(y)p(y)du(y) denotes the integral pairing 6 C(Y) with P € C1(Y). Therelative

fidelity

(1,/PQ)

f(P,Q) = ——— J Jo(y) Re giy)du(y) = ————— 23
(P.Q NETTeNe) ¢:|¢(S_)l|’22q(,) Vp(y) Reydy)du(y) NS (23

of the distributionsP andQ is obviously related to the distan¢22) by

d3(P,Q) +V(1,P)(1,Qf(P,Q) = (1,3(P+Q)). (24)

If P:=p(:|x) and Q,:=q(-|x) are conditional distributions with constant integrals,P,) and
(1,Qy), e.g., normalized to unity, this relation also remains valid for the minimal fidelity

f(P,Q) = inf f(P,,Qy,
xeX
which can alternatively be defined by the minimax formula

. (1,/P,Rey([x)
f(P,Q) =inf sup —F————,
xeX gy o2=q)  V(1,P0(1,Qy)

where the supremum is achieved #|x) = ¢.(-|x) satisfyingy(y|x)=1q(y|x). In particular, ifP
andQ are probability kernels(1,P,)=1=(1,Q,) for all xe X, then

(25

d4(P,Q)=1- inf Vp(y¥)a(yduly) = 1-(P,Q),

where

f(P,Q) = inf( f Vp(yX)alyx)du(y) = in1>‘< (1VPQY (26)
Xe Xe
is the minimax fidelity of the classical channels described by these kernels.

B. Quantum operational fidelity

Generalizing Eq(21), one can define the squared Hellinger distance between quantum opera-
tions ® and¥ with the respective operational densitibs, V. e B(H), H=g®¥, as

d3(@,¥)=% inf {|Tr,C-VIT-Y)|I'T=0,YY=v}. (27)
T.YeB(H)
The operatord™,Y € B(H), such thatl''T=®_ and Y'Y=V, are naturally thought of as the
purificationsof ®, and ¥, respectively. This means that we can fix an orthonormal Hgs}sof

H, say the product basig)=|i)® |k)=|i,k), where{|i)} and{|k)} are some fixed orthonormal
bases ofy andh, respectively, and represent any sdtlandY as strongly convergent sums

=2 ir=2HEL Y=2 G =2 v, (28)
J J J J

where the generalized bra-vectcﬁF§| define the bounded operatdfg, V;:g— b through
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kIRl = (Fi[ iy @ [k) =Tl k), <KVl = (Vil(i) @ [K) = ¢ IIY]i, k).
As seen directly from this definition, the mappifig|— F is linear: (aF+bG|— aF+bG. Using
Eq. (28), we may write
@, =X [F)F|=TT, ¥,=XV)vj=YTY, (29
j ]

where the sums converge in the strong operator topology. This determines the Kraus
decompositions & (B)=3;F/BF;, ¥(B)=3,V/BV, of the mapsb,¥: 58— A. Analogously, upon
defining the mappingE,V:g—h®H by

Fv::EFjU®|j>r VU5=EVjU®|j>,
i i

we can write the map®,¥ in the Stinespring forAf as ®(B)=F'(B®1,)F and ¥(B)=V'(B
®1,)V.
Taking into account the fact thHA'A|=sup, . s, @(ATA) and defining the positive function

c(-; - ):B(H) X Br(g) = R,

c(Aip) = 3Tr(A(p ® 1y)AD),

we can rewrite the fidelity distand@7) in the following minimax form:

d2(d, W)= inf { sup C(F—Y;p):FTF:CDT,YTY:\I’T}. (30)
IYeB(H)|eeS(g)

On the other hand, generalizing EQ0) to quantum operations, we can define the squared
pointwise distance

d3(@,¥)(@) = inf {cT-Y;p)TT=d,YY=0} (31)
I,YeB(H)

between® and ¥ on the setS(g) of all normal states otd=B(g). Just as with the probability
kernels in the commutative setting described in the preceding sedﬁ(rh,,‘lf) coincides with the
supremum oﬁﬁ(d),\lf)(g) over all normal stateg € S(g) wheneverd andW¥ are (proportional
to) quantum channels:

Theorem 1:Let®,V¥:B— A be quantum operations with the respective operational densities
d_, V. e B(H). Suppose that for alp € S(g) the pairings

(@,p® 1) =o[®(1)], (V,p®L)=e[¥(,)] (32)
are constant. Then
di(®, W) = sup d3(®,¥)(0). (33
0eS(g)
Furthermore, then we have that
d3 (@, %) + V| D [W]f(D,¥) = 3(| D] + [¥]), (34)
where
Re TI®OYY(p ® 1
f(d, W)= inf sup (b Yipe 1y (35)

0eS@) Y eBH):Y Y=, \"/Q[Cb(lh)] \'/Q[‘I’(L))]

is the minimax fidelity betweend and V.
Proof: Fix an arbitraryg e S(g). From Eq.(32) it follows that
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[®= sup o[®(1,)]=e[P(1y)],
0eS(g)

and the same goes fob. Therefore, given any paif,Y e B(H) such thatl''T=®_and Y'Y
=¥ _, we can write

cC-Y;p)=3Tr(C-Y)'(T-Y)(p® 1)) = 5Tr(®,+ ¥ )(p® 1) - TTY +TYN(p ® 1y))
= 5(I]| + 1| = TLITTY + Y D(p © 1,)]),
whence it follows that

rrir=o, rrir=e,

di(@,W)(@)= inf c'-Y;p)= %(H‘DH +wl - sup THIY +TYD(p ® L,)])
Y YTy=w, Y:yTy= \If

Taking the supremum of both sides over @l& S(g), we obtain

0eSl(g) 9 rrir=o_

sup dA(®,¥)(0) = (||q>||+||q»|| S() sup Tr[(r*Y+rY*)(p®ﬂh)]> (36)
Y:yty= «p

On the other hand,

di(@, W)= inf sup c(I'-Y;p)=3 inf sup (] + W] = TLTTY +TYN(p @ 1,)]),
rrir=eo_ 2<50) rrir=e_ 2eS)
Y:yTy= «p Y:yTy= \If
which yields
da(@, W) =3 ([®] + W[~ sup inf THETY+IYD(p e 1)]). (37)
rrir=eo_ 2<5)
Y:yTy= w

Note that the right-hand sides of Eq86) and(37) differ only in the order of the extrema. Thus,
establishing the validity of Eq.33) amounts to justifying the interchange of the extrema.

According to Lemma 1, the supremum oMerandY in Eq. (36) can be evaluated by fixing
r= fD”Z first and then varying only over al € B(H) such thatY"Y =¥ . By the polar decom-
posmon any suchY has the forrrlJ\Ifl’2 for some partial isometry. Thus we have

sup T +TYN(p®1)]=2 sup Re TIOY?Y(p ® 1;)]
rrir=o, Y yTy=w,_
Y:YTy= \I'

=2 supRe T{®YUV(p 2 1,)], (39
U

where the supremum in E38) is taken over all partial isometridd such that
wrytypl2=y .

Since the expression being minimized is lineatlrand the isometries are the extreme points of
the unit ballBy(H):={X e B(H):||X|<1} of all bounded operatofS,we may instead take the
supremum over the entire unit ball:

sup ReT{OY*Y(p®1,)]= sup Re T{OYXWY%p®1))]. (39)
Y YTy=w, XeB1(H)
Since the expression being maximized in the right-hand side of3®yis affine in bothX andp,
and sinceB,(H) andS(g) are closed convex subsets 8{H) and B+(g), respectively, it follows

from standard minimax argumeftsthat we can indeed interchange the extrema to obtain
f_(D,¥)=f.(D,V), where
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f(®,¥):= inf sup ReT{PYXTpal)]
0e8(g) XeBy(H)

f.(®,%):= sup inf Re T{®YX¥Ipw®1y)],
XeBy(H) 0eS(g)
which proves the claim of Eq33). The rest is straightforward. O
As seen immediately from Theorem 1, whénand ¥ are quantum channels, then
d3(D, ) + f(D,¥) =1,

with the minimax fidelity given by

f(®,¥)= inf sup ReT[®Y*Y(pa 1] (40)
0eS@ yiyty=w_

IV. EVALUATING THE FIDELITY DISTANCES
A. Fidelities for quantum states and quantum effects

Consider two normal states,s on B=5(h) as quantum channels froffi into the Abelian
algebraA=B(g) with g=C. In this case, the operational densitgss, of ¢,s coincide with the
corresponding density operatgiso: 0,=p ands,=o. The predual mapgt,st: A1=C—B; can
then be thought of as thetate creation operation®(\)=\p andst(\)=Ao for A € C.

In order to compute the minimax fidelifyo,s), we have to consider a{, ¢ € BB that give the
decompositionsp=x"y and o=y'. Note that we can always write these decompositions as
purifications

PZE |Xj><Xj|a g= E |‘/’j><¢j|'
j J

where|x;):= x|i).|#) == ¢j) with respect to a fixed orthonormal ba$jp} of h. We then have the
minimum quadratic distance

di(e,)=3 inf sup)m[(x—mx—w)]zé inf Tl (x—»'(x- w1,

xeBixy=p weSl xeBixx=p
peByly=a peByly=o
where the last equality is due to the fact that giml. Expanding the product under the trace, we
can write
di(e.s) = %[Tr(p +a) - sup(Re T )X x=p Y= U}] (41)
X,ye
=1- sup ReTrx'y) (42)
xeBixx=p
peByly=c
=1-1(g,s). (43

According to Lemma 1, the supremum in E42) is attained at any e B satisfying the condition
x'x=p, sayx=p'2, and =, satisfying the equatioms.x"=(yox" 2=y

flo,)= sup ReTHx')= sup {ReTip2p): ¢ty = 0o} =Tr po.
xeBx'x=p ye B(h)
peByly=c

Observe that the standard Uhlmann fidelityﬁatween the density opepadoicdo, F(p, o) in Eq.
(1), can be written a&(p, o) =||p?03=Tr Vpo. Thus the minimax fidelity between two normal
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statesg ands on 5, or, equivalently, between the state creation operateps:C— B(h),
agrees with the Uhlmann fidelity between the respective density opegatord o of ¢ ands.

Next we turn to the other extreme case, namely that othge annihilation operation$, ¥
with the predualsb(p)=(P,,p), V1(p)=(V¥,,p), corresponding to dih=1. They are completely
specified by theeffectsi.e., the positive operators,, ¥, e B(g) satisfying O<®,, ¥, <1, which
can be purified as i29), wherel';=(j|I",Y;=(j|Y are the bra-vectors corresponding to an ortho-
normal basig|j)} in g. The squared pointwise minimax distance between the state annihilation
operationsd, W, or, equivalently between the effects,, V,, on the setS(g) of normal statep
=p' on B(g) is given by the minimum

dA(@,W)(e)=3 inf {T(T-Y)(T-Y)plTT=0,YY=W]}
I'YeB(g)

of the quadratic distance between their purificatibh¥ e B(g). The solution of this problem is
likewise given by Lemma 1 wittlR=® _ and S=pW¥ p. Thus the optimum
di(@,W)(@) = 3TH{(®,+ W )p] = TN (pW.p)

is attained at any’ e B satisfying the conditiod " T=®, sayI“:CIJi’Z, and the correspondiny
=Y, satisfying the equatio®Y.pI''=\I'p¥ pI''=T'pY. The maximum of this distance over all
states,

d(@, W) = sup di(®,W)(e)
0eS(g)
= sup (3 Tr(®,+¥,)p] - TN® (p¥ p))
0eS(g)

= sup inf {TrC-Y)T-Y)p]I'T=d_YY=U]},
0eS(g) I'YeB(g)

is given by the minimax quadratic distance
di(®, W) =2 inf {C-YAI'T=d,YY=v},
Y eB(g)

interchange of the extrema following from standard minimax argunfértsd the fact that all’,
Y satisfying, respectivelyy'TT'=®_and Y'Y =% _are contained in the unit ball d(g).
B. Semiclassical fidelity

It is straightforward to extend the formalism of Sec. Ill A involving the commutative Hell-
inger distance between two positive kernels to the case of mappings fromXairstet positive
trace-class operators on the Hilbert spdgei.e., p:xe X—p(x) € By(h) and o:x e X— o(x)

e Br(h) with p(x),a(x) =0 for all xe X. We thus have the pointwise Hellinger distance

di(p(x),a(x)) = (1,3[p(x) + o)1) = V(1,p()) (1, 5(X))f (p(x), (X))
in terms of the trace pairingB,p)=Tr(Bp) of Be B=B(h) andp € Br+=B+(h), where
(I, Vp(X)a(x)) __Tnp(o(x)
V(ILp())(1,a(x)  NTrp(X)Tr a(x)”

The semi-classical operational distance betwgep(:) and o=0(-) can then be defined as

f(p(x),0(x)) =

di(p, o) = Xsufdﬁ(mx),o(x)) = |[d&(p(-),0())]]- (44)

When Trp(x)=1=Tra(x) for all xe X, i.e., whenp and o are classical-to-quantumc-q (or
semiclassicagl channels, Eq(44) can be written aslﬁ(p,o):l—f(p,a), where
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f(p, o) = inf Trp(X) Y20 (x) p(x)Y?]¥2 = inf TrVp(X)a(x) = inf F(p(x),o(x))
xeX xeX xeX
is the minimax fidelity ofo relative top.

C. Semiquantum fidelity

Next we consider the opposite of semiclassical operations—namelgethiguantum opera-
tions which correspond to quantum measurements as quantum-to-claggipathannels. Such
operations are given as

P(b) = f b(y)®@,(y)du(y) = (b,®,)
Y

on the algebra@3=C(Y) of continuous bounded functios Y — C, where(Y, By, u) is a measure
space, by specifying the positive operator-valued Bochuméntegrable functionsd Y — A
=B(g). If

®(1)=(1,9,) =14,
the predual mapsl s p— ®1(p)() e C1(Y),

Dr(p)(y) = (P(y).p) = e[PAY)],

define for each input quantum state= S(g) a classical probability density ofY, By, w), that is,
they describe quantum measurements by the positive operator-valued me€tR0ONésls)
M(dy) = (y)du(y).

In order to avoid technicalities in defining the semi-quantum fidelity distance between two g-c
channelsb,¥:B— A, we shall assume thak (y), ¥ (y) are weakly continuous bounded func-
tions onY. Then the squared distandé(d),\lf) can be written as

d2 (D, V) = inf
rYI'r=0_YTy=v |

: (45)

f (T(y) = YY) '(T(y) = Y(y))duly)

where the decompositiods T=®_and Y'Y =¥ _are understood in the pointwise sense as

d(y)=TYTWY), Y=Yy, OyeY.
The infimum in Eq.(45) is achieved at any’ € A® C1(Y) satisfying the conditiodT=®, say
I'(y)=®,(y)*?, and the corresponding=Y, satisfying the equation

Yo(Y)pL ()" = [T (y)p¥ (Y)pl (112 =T(y)pYo(y)".
The maximum of this minimal distance over all states,

1 —————
d2(d, W) = JSup f (ETF[(CDT(V) +W.(y)p] - Tf\’q)T(Y)(p‘I’T(Y)p))dM(y),

is equal todﬁ(d),\lf):l—f(CD,‘If) in the measurement operation caBel)=1,=V¥(1), where
W)= inf f T () (pW () duy). (46)
eeS(g

D. Operational fidelity formula

Now we can easily evaluate the minimax form(88) for the fidelity of two general quantum
operationsb,V:B— A, B=B(h), A=B(g). The solution of this problem is also given by Lemma
1 with R=®, andS=(p®1,)¥ (p® 1;). For a giveng € S(g), the supremum in
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A3 (P, W)(0) = Z(Tr{(®,+ ¥ )(p & 1)] - 2 sup {Re T (p® 1) I T=d, YY =¥}

is equal to TK/Q)T[(p®}1b)\If Ap®1y)], and is achieved at any € B(H) satisfying the condition
I'r=&,, sayl'= <I>l’2 and the corresponding =Y, satisfying the equation
Yolp @ 1)IT=[T(p @ 1) ¥ (p @ L)I'"*2=T(p & 1) Y],

When®,¥ are quantum channels, or, equivalently, when the predbal&'; are trace preserv-
ing, Theorem 1 says that the maximum of this distance over all states,

d2 (D, \P)—qup Tr(2(@,+ W) (p® 1) — VO [(p ® 1)V (p ® 1,)]), (47)
€S(g)

can be written asiﬁ((b,‘l’)zl—f((b,\lf), where

f(®, W)= inf Tr®[(pe )P (p® 1] (48)
0eS(g)

is the minimax fidelity betweed andW¥.

E. Operational fidelity in terms of Kraus and Stinespring decompositions

Consider, as before, two quantum channk|sl : B— A, whereB=B(h) and.A=B(g). Given
the minimax fidelity

f(®, W)= inf sup ReTiI"Y(p®1)]= inf sup [T(I'Y(p® 1]
€S ririr=e, 0eS(e) 1rir=0,
Y:yTy= qf YYTY \l'

betweend andWV, where the second equality follows from Lemma 2, the supremum ovét all
andY satisfying, respectively;TT=®_and Y'Y=V _can be replaced with the supremum over all
Kraus decompositions ob and ¥, i.e., over all collectiondF}, {V;} of bounded operatorg

— b, determined fromb_, V' via Eqs.(29) and(28):

f(d,¥)= inf sup
eeS(g) {Fih{vy)

> o(Flv))

i

(49)

Just as in the proof of Theorem 1, we may restrict ourselves only to thosehat can be written
asI'=U®dY2 Y =v¥2 for some isometriet, V. Thus, if we writed'? and ¥*2 in the form of
Eq. (28) as

= [H(Fl, w=X iV,
i j
then it follows that, given isometridd, we can write

r=uoe?=3 |j>(2 Uje'A:e
¢

]

=2 )F),
J
and similarly forY =V¥¥2 Thus

f(d, V)= inf sup
0eS(g) UV

EQ[F (U)TV(V)]‘ |nf sup

Turning now to the infimum over all normal stateson AEB(g), we may equivalently consider
all pairs{¢,K}, whereg is a normal+-representation afd on a Hilbert spacéC:
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f(P, V) := inf sup
{o.Chvek =1 U

> (WelFi W)V ][0

i

Since all normalk-representations of the full operator algelig) are unitarily equivalent to an
amplificationB—B® 1, for some Hilbert spacé, we can write

f(®,¥):= inf sup
veg®td=1 U

> <v“2j(U)T\A/j ® lgv)

]

. (50)

Introducing the vectorty, ®),|v, V) € g® E® H, defined by

@)= 2 (F @ L)va i), |[u¥) =2 (V@ l)va|j),

j i
we obtain yet another form of the minimax fidelity:
f(®, W)= inf suh(v, @l ® Ulv,P)|. (50
veg®t U

For a fixedve g ® ¢, taking the supremum ovéf is tantamount to taking the supremum|Qf| &)|
over all pairs of unit vectory,é e g®t® H such that

T = 2 (F) @ [oCf(F @ 1) = 07 @ id(|u),
J

T 64 = 2 (V; © 1) (V; ® 19T = w1 @ id(|[u)(d]),

]

which, in conjunction with the standard results on the Uhimann fidéli)ybetween density
operator$’ finally yields

f(®,¥)= inf F(@rid(jo)d),Prid(vd)) = inf F(®r®id(p), ¥ ® id(p)).
veget|ul=1 0eS(get)
Note that we may always takeisomorphic tog:
f(O, V)= inf F(®r®id(|v)d), ¥ @ id(v)d])). (52
vegog[=1

Given some Kraus decompositiofs}, {V;} of ® and ¥, respectively, we may define the
operators

Fé= 2 Fiéal), VE=2XViEal))
I J

from g into h®H and expressb and ¥ in the Stinespring form®(B)=F'(B®1,)F, ¥(B)
=V(B®1;)V (cf. Sec. Il B). Then we may rewrite Eq49) as

f(®, W)= inf sudTr(FpV"),
eeS(g) FV

where the supremum is over &I, V:g—h® H giving the Stinespring decompositions &fand
v, respectively. We may, as before, fix and V, say, by considering the “canonical” Kraus

decompositions{lej}, {Vj}, and instead take the supremum over all unitadesU(H):
f(®, W)= inf sugTr[(1, ® U)FpV']|= inf sugTr[U Try(FpVH]|,
0eS(g) U 0eS(g) U

which yields another useful formula
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f(®, W)= inf [Try(FpV)|r (53)
0eS(g)

for the minimax fidelity between the channels, . It is, in fact, not hard to show that the
right-hand side of Eq(53) does not depend on the particular choice of the Stinespring operators
F,V, as long as we agree to dilate the input Hilbert spiady the “canonical” auxiliary Hilbert
spaceH=g®h.

We note that the constructions of this section are valid more generally for channels given in
terms of the continual Kraus decompositions

®(B) = J F(2'BF(2du(z), W¥(B)= f V(2)'BV(2)du(2),
Z zZ

provided that the measurgsandv are equivalent, i.e., absolutely continuous with respect to each
other. Then Eq(49) is a special instance of the more general expression

f(d,¥)= inf sup
0eS(g) {F@LV(2)}

Y] ( f Vdv/duF(2) TV(Z)d,u,(Z))
z

where d//du is the Radon-Nikodym derivative of with respect tou, for the case when both
and v are counting measuresugdrv=1, on a finite or countably infinite set.

V. PROPERTIES OF THE OPERATIONAL FIDELITY

In this section we establish several key properties of the minimax fidelity between quantum
operations. These properties follow almost immediately from the corresponding properties en-
joyed by the fidelity(1) on density operators:

(F.1) F is symmetric,F(p,o)=F(o,p), bounded between 0 and 1, aRtp,o)=1 if and only
if p=o.

(F.2) F is jointly concave over all pairs of density operators.

(F.3) F is unitarily invariant, i.e.F(p,o)=F(UpUT,UagUT) for any unitaryU.

(F.4) F is monotone with respect to quantum chann€lsb+(p),®(0)) =F(p, o) for every
quantum channeb.

(F.5 The Bures distance gl-, -):=y1-F(-, -) is topologically equivalent to the trace-norm
half-distanceD(-, -):

27YD(p,0) = dg(p,0) < \D(p,0)
[cf. Eq.(3)]. Property(F.2), in fact, follows fromstrong concavityof F,? i.e.,

F(Z piPiaz Qi0'i> =3 pgF(p,0) (54

for all 0=<p;,q; <1 such thatt;p;=1=3,q;.

Using Eq.(52), we can immediately obtain for the minimax fidelitft, -) on pairs of quantum
channels the following analogs of propertigsl)—(F.4) of the fidelity F(-, -) on pairs of density
operators:

(f.1) f is symmetric, bounded between 0 and 1, &(H,¥)=1 if and only if ®="V.

(f.2) f is jointly concave over all pairs of channels.

(f.3) f is invariant under both left and right composition with unitarily implemented channels,
ie.,

f(Oye®,0yo¥)="1(D,¥)

and
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f(do Oy, o0,) =f(P,F)

for any two channelsb,V:B(h)— B(g) and any two unitariedJ € U(g), Ve U(h), where
Oy(B):=U'BU, andO, is defined analogously.

(f.4) f is monotone with respect to both left and right composition with quantum channels, i.e.,
f(Pod,, Vod))=f(D,V) andf(Pyod, Do W)= f(d, V) for any two channeld , ¥:B— A, all
channelsb, into B, and all channel®, on A. Just as in the case of the fidelity between density
operators, the minimax fidelit§ possesses the strong concavity property

f(E pi(biaz Qi‘I’i> = \"ﬁf(‘bi,‘l’i)- (55

On the other hand, deriving for the minimax fidelftyan analog of propert¢F.5) of the Uhlmann
fidelity F requires a bit more work. To this end, let us consider two chanbel®:5— A,B
=B(h), A=B(g). Suppose first thaj is infinite dimensional and separable. Thes €2, and we
can rewrite Eq(55) as

f(@W)=  inf  F(@r @ id(ud), Vs ® id(|u)(e)).
vego =1

The spacef? contains, as a dense subset, the pre-Hilbert sﬁécm‘ all infinite sequences of
complex numbers with all but finitely many components equal to zero. Using this fact and the
continuity property(F.5) of the fidelity F, we obtain

f(@, W)= inf  F(@rid(u(d), Uy @ id(ud).

2,01, 4=
veg®{G=1

Using this expression in conjunction with E@), we get the bounds

f(@,¥)=1- sup D(Pr®id(|v)(e]), ¥r @ id(lv)d), (56)
ve g al=1
f2(d,¥)<1- sup DAD;®id(jv)d])-Vr@id(uv)). (57)
veg®(2]d=1

Now, for any completely bounded map:B(h)— B(g), the image of the sef|lvu:veg
®€3,]d/=1} under the predual map;®id: Br(g®€3) — Br(h® €2) is contained in the trace-
norm closure of the linear span {&)é: & e h®€3,]|d|=1}, which is dual to the tensor product
B(h) ® K(£?), whereK(¢?) is the space of compact operators &n Thus, by duality we have

sup  D(®r @ id(|v)e), Wy @ id([u)e]) = 3[(@ = W) ® idg(e2| = D(@,P),
ve g ea=1

whereD(®, V) denotes the CB-norm haIf-distanéH';fb—\If||CB, and the last equality follows from
the formulal|Alcg=||A ® idy 2 for any completely bounded map.
On the other hand, when diggm<, we can use the fact that, for any completely
bounded map\ into B(g),
[Allc=lIA @ idy || =[[Ar @ iday ir,

where M, denotes the algebra ofi X m complex matrices, it follows that
Sum 1 D(®Pr @ 1(|v)(h), ¥1 ® 1(|v}d])) = D(P, V).
vegRg:||y=

In either case, we immediately derive the inequality
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1-D(®,¥) < f(P, V) < \1-DD, V), (58)
which, when expressed in terms of the Hellinger distagige, -):=+1-f(:,-) as

2712D(®, W) < dy(P, V) < \D(D, V), (59

yields the desired property

(f.5) the Hellinger distancel(-, -):=+1-f(:, -) is topologically equivalent to the CB-norm
distance cf. Eq. (59)].

This completes our survey of the basic properties of the minimax fidelity

VI. SOME EXAMPLES AND APPLICATIONS

The expressions for the minimax fidelity, derived in Sec. IV for different kinds of quantum
operations encountered in quantum information theory, share the common feature of being set up
as variational problems, namely, as minimizations of a concave functional over a convex set. This
feature of the minimax fidelity renders the problem of computing it amenable to robust numerical
methods(see Ref. 3 for detailed discussion of numerical optimization methods for the calculation
of fidelitylike measures in quantum information theprylowever, there are instances in which the
minimax fidelity between two quantum channels can be written down in a more explicit form. In
this section we sketch some examples of such instances.

Before we proceed, we would like to remind the reader of the assumption we made in Sec.
II B, namely that all the channels we deal with are completely majorized by the trace in the sense
of Ref. 14. This assumption, while allowing us to circumvent certain technicalities involving
unbounded operators, is somewhat restrictive, as one can easily find examples of quantum chan-
nels between infinite-dimensional algebfasy., unitarily or isometrically implemented channels;
see Ref. 21 for detailsthat do not satisfy this condition of complete majorization. However,
owing to the CB-continuity of the minimax fidelitycf. Sec. \J, we may always regard such
channels as CB-limits of sequences of channels with finite-dimensional output algebras. Thus,
given a channetb: B— A,B=8(h), A=B(g) with dimg=«, we consider a sequend®,} of
finite-dimensional projections such tha{— 1,4 strongly, and the corresponding sequefibg} of
guantum operation®,(B) :=P,®(B)P,, so that®,(B)— ®(B) uniformly asn— o for eachB
e B, and eachb, is a channel fron3 into P, AP,, with lim,_.|[®-®,|cg=0.

With this in mind, in the examples below we shall not worry about the issue of bounded
versus unbounded operational densities.

A. Unitary maps

In the case of channel®,,0, implemented by the unitaried),V:h—b, i.e., Oy(B)
=U'BU and©,(B)=V'BYV, the minimax fidelityf(®, V) is easily evaluated using E9):

f(Oy,0y) = inf le(W)],
0eS(o)

where we have defined/:= U'V. Let SgW) denote the spectrum ¥, which is a closed compact
subset of the unit circl@ in the complex plane, and I1&"(dz) denote the corresponding spectral
measure ofV. Then we can write

f(Oy,0y) = Inf f zM™€(dz)
ees@ | Jspw

whereMW:€¢(dz) is the probability measurg[E"(dz)]= (E"(dz),p). Thus
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f(Oy,0y) = disf0,coSgW)), (60)

where co SHW) denotes the closed convex hull of (8y), and distz,S) :=inf{|z-2'|:z’ € S} for
any ze C and SCC. Clearly, f(0,0y)=1 if and only if co SpWCT, i.e., if and only if W
=\l with [\|=1, which is equivalent t®,=6\.

When dimh <, SPW) is a finite subset of', so thatco SgW) is a polygon in the complex
plane, and Eq(60) shows thatf(O,0) is simply the distance from this polygon to the origin.
On the other hand, recalling the formfﬁé)(eu,ev):y’rdz, we see that the upper bound in Eq.
(58) is saturated by the unitarily implemented channels.

B. Random unitary channels

Continuing with the setup from the preceding example, let us consider channels of the form
®(B)=3 pOy,(B), ¥(B)=2 gOy(B), (61)
| I

whereOy, are unitarily implemented channels ame- {p;}, g ={q;} are probability distributions. It
then follows immediately from the strong concavity propdf$) of the minimax fidelity that

f(®,%) = > Vpig = F(p,q). (62)

When dimh <, the inequality in(62) becomes equality when the unitaridsare orthogonal
in the Hilbert-Schmidt sense, UiTUk:dim b - 8- On the other hand, whel is infinite dimen-
sional, this orthogonality condition does not make sense unless we consider channels given in
terms of continual Kraus decompositions, so that the sums irf{@2jjare replaced with integrals
with respect to some positive measyweand agree to understand orthogonality in the sense of
operator-valued Schwartz distributions. As an example, consider the following.

Let h=7F, the boson Fock space, latanda' be the field annihilation and creation operators,
and letD(2) := exp(za'-za), ze C, be the unitary displacement operators obeying the Weyl rela-
tion D(z)D(z')=€ '™ ZiD(z+z’). Given a functionf e L%C,dz), where d&:=d(Rez)d(Im z), we
define itsWeyl-Fourier transformas D(f) := 7 Y[ .f(z2)D(2)dz. Sincef is square integrabld)(f)
is a Hilbert-Schmidt operator, and it can be easily shown that

T[D(f)'D(g)] = J f(29(2dz= (f,g)12¢), Of,geL¥C)
G

so that TID(2)'D(z)]=78?(z-2),z,Z e C, where §?(\):=8(Re\)S(Im\) is the Dirac
S-function in the complex plane.

With this in mind, consider the family of channdl§”: B(F) — B(F), u € R*, with the predu-
als given by

1
I¥(p) == — J D(2)pD(2)" expl- |2/ p)dz
TR
(in quantum optics these channels model the so-c&ladssian displacement nofe Then the
minimax fidelity betweed"® andI'" is given by

1/2
f(F(“),F(V)) - 1('“;) (63)

§(M+ v)

Owing to the inequality between the geometric and the arithmetic means, the right-hand side of
Eq. (63) is always bounded between 0 and 1, and the maximum value of 1 is attained if and only
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if w=v,i.e.,[®W=I" This, of course, agrees with the properties of the minimax fidétitySec.
V).
C. Master equation
Consider a strongly continuous semigroup of chandd¥):B(h) — B(h)}.r+ With the
predualsd!!’ satisfying the Lindblad master equatfén
do(p)
dt

for someX e B(b). Introducing the dilating Hilbert spadé=h ® i with the basig|0),|1), ...}, we
can, for an infinitesimal timé=¢, write the predual of the channé®) in the Stinespring form

1
=XpX' - E(XTXp + pXTX) (64)

D (p) = Try ApAl, (65)
where the map@\,:h—h® H is given by

Avi= (th - %SXTX)U® |0) + VeXv® |1) + O(?), (66)

O(£?) indicating terms with norm bounded from aboveMy? for some constari! =0. Note that
Agv=v®|0), so thatT®=id. We can then evaluate the partial trace

Tro[ApAS = (1 = 26(X™X),)|0)0] + \&(X),|1)(0] + O(&?), (67)
where(B),:=Tr(Bp) for B e B(h). Then, again up to an additive term of operator na@e?),

Tr [ ApANT Tr[ApALl = [ (1 - 38(X™X),)% + £[(X),|2]|0X0], (68)

which allows us to compute, up ©(&?), the minimax fidelity between the chanrigp after an
infinitesimal timee and the identity map. Using E¢53), we obtain

H(Tid) = inf [Tr[ApAllr ~ V1 -&C, (69)
0eS(g)

where

C= inf (XX, [(X),). (70)
0eS(g)

D. Impossibility of quantum bit commitment

The statement of topological equivalence of the noncommutative Hellinger distance and the
CB-norm distance between a pair of quantum channels, i.e(5H).is essentially the “continuity
argument” at the heart of a proof of “impossibility of quantum bit commitm(@sC).”%’ Quan-
tum bit commitment is a cryptographic objective in which one party, Alice, commits a bit to
another party, Bob, in such a way that the corresponding protoamnsealing(i.e., Bob is not
able to retrieve the bit before the openiramdbinding (i.e., Alice cannot change the bit after the
commitment. The impossibility proof asserts that if the protocol is perfectly concealing, then it is
necessarily not binding, and invokes a continuity argument for “asymptotically” concealing pro-
tocols, stating that Alice’s probability of successful cheating approaches unity, while Bob’s cheat-
ing probability becomes close to the vaI%uépure guessing (The reader should be aware that the
impossibility proof in Ref. 27 is valid for a restricted class of protocols, i.e., those that are
nonaborting and have a single commitment step. For wider classes of protocols, it is still a matter
of debate whether a secure QBC protocol exidtdn this example we derive the continuity
argument from the expression of Alice’s and Bob’s respective cheating probabilities as a conse-
quence of the topological equivalence between the Hellinger distance and the CB-norm distance in
Eq. (59).
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From the point of view of Bob, Alice’s action of committing the bit is equivalent to a channel
®,m on an algebraB(h), dimh <o, for each value of the committed Hit=0,1, where A®
E{A}b)}}‘zl is a collection of operators satisfying the Kraus conditE:hglA(b)TA(b)ﬂ, and @ 5w
denotes the channel induced by this Kraus decomposition. At the opening, Alice informs Bob
about which element of the Kraus decompositiaf?’ she actually used in the commitment.
However, prior to unveiling the labgl Alice can perform arEPR attackwith the purpose of
changing the Kraus decomposition to another equivalent decompoaititiv) = {A(b (V)}, where

(b)(V) —E(A(b)vlp for someV e U(CY. The EPR attack is achieved by AI|ce via the unitary
transformanonv on an ancillaryk-dimensional spacé{. The conditional probability that Alice
can cheat successfully by convincing Bob that she has committedbsday,while having suc-
cessfully committed=0 instead, is given by

_s (UAYT(WVAY @ 1, |v)?

PA(V,v) ,
Vo) = 2 T o Lo

(71)

where||(A '®1,,)1? is the probability that thgth Kraus element is unveiled. Whic¥ should
Alice use” Without any knowledge &), the best she can do is to adopt a conservative strategy
of choosing theV that will maximize her cheating probability in the worst-case scenario, namely
for the anonymous state) chosen by Bob to minimiz@@(v,u). This is theminimaxchoice ofV,
corresponding to the cheating probability

E{j:: sup inf  PX(V,v). (72
Veu(ck vehoH;|=1
On the other hand, for equiprobable bit valles {0, 1} Bob’s optimal probability of cheating is
given by the probability of error in discriminating between the corresponding output states, more
precisely

Py = 3*%  SUup a0~ paallr =3[+ D(@p0,Paw)], (73)
ueb®H;Hv||:1
where we have definey:lA :=®, ®id(|v)(1{). Using Jensen’s inequality, we can bound Alice’s
cheating probablhty:’ (V,v) from below as

PAV,0) = | 3 [AL(V)TAY @ 10| . (74)
J

Note that the value of the max-min in E/2) will not change if we perform the maximization
over the closed convex hull d(CX), i.e., the seK(C¥) of all linear contractions ofi¥, and the
minimization over the closed convex hull of the pure states)ar, i.e., the setS(h® H) of
states onB(h®H), thus completing the domain of the max-min to the prodkiét®) X S(h
® H) of compact convex sets. Now, the functional

F(V,p) := 2 Re THo[AP(W)'A[Y @ 1]} (75)
i
is affine in bothV e K(CX) andp e S(h ® H), so that we can use standard minimax argunfémds
justify the interchange of extrema in E(/2), and then apply Lemma 2 to obtain

sup inf [F(V,[uXe))|= sup inf [F(V,p)| (76)
Veu(ck veh®H VeK(ck eeShaH)
= inf  sup |[F(V,p)| (77)

eeS(HoH) ve K(CKy
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= inf sup |F(V,|v){d)]. (79)
veh@H;|[l=1 Ve U(k)

Now, since a monotone function does not affect the saddle point, we can us&@q&72), (74),
and(78) to obtain

E’é = f2(Dp0), Paw).

Using Eq.(59) and then Eq(73), we finally obtain the chain of estimates
P2 = (M p0,Pam) = [1 - D(Dp0,Paw)]2 = [1 - 2PE-1/2)12,

where it follows that, for “asymptotically” concealing protocols, i.e., those for W@ml,
Alice’s probability of cheating will approach unity, and the protocol will not be binding.
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