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1. INTRODUCTION
Even before the birth of quantum mechanics, optics and
mechanics have long developed on parallel tracks, be-
cause light and massive entities were considered as
waves and particles, respectively. At the beginning of
the twentieth century, with the introduction of quantum
mechanics, waves and particles started to play an inter-
changeable role, with the concepts of photons and of the
de Broglie wavelength. This gave rise to the birth of
quantum optics and atom optics.1 However, while an op-
tical single-mode system has been available since long
ago, the same cannot be said for matter waves. In fact,
in the field of atom optics, only recently have break-
throughs in the evaporative cooling of dilute alkali gases
allowed the generation of Bose–Einstein condensates
(BEC’s).2 The BEC is a macroscopic occupation of the
ground state of the gas and is one important paradigm of
quantum statistical mechanics.

In recent theoretical and experimental investigations
of BEC’s, one of the most important and urgent issues is
the determination of the actual quantum state of the con-
densate. In fact, as in optics, the presence of many par-
ticles in a single mode makes it possible to explore the
multiparticle quantum state of the mode. At first
thought, a number state might seem a natural description
of a condensate mode, but the actual state may well de-
pend on the details of preparation. For example, both
the demonstration of first-order interference3 and obser-
vations of normalized, spatial correlation functions4 near
unity suggest coherent states, while the presence of colli-
sions among atoms may lead to the formation of squeezed
0740-3232/2000/122529-07$15.00 ©
states.5 Also, the internal states of the condensate atoms
allow precise manipulation of the BEC state by interac-
tion with light.6

Few experimental methods of obtaining partial infor-
mation about the quantum state of a BEC have been
suggested.7 However, motivated by the success of quan-
tum tomographic techniques in optics,8 a number of re-
searchers have recently proposed more-direct methods for
measuring the quantum state of a BEC.9–11

In optical tomography the key point is the use of a ref-
erence field, namely, the local oscillator.8 This device,
prepared in a coherent state, allows one to probe the de-
sired state through the measurement of a set of
probabilities.12 However, a difficulty arises if one tries to
adapt the same technique to a BEC. In fact, while in op-
tics it is easy to obtain a coherent reference field (e.g.,
from a laser), such a field is not actually available for at-
oms. Nevertheless, recent reports of progress in this di-
rection seem promising.13,14 Hence, in the present paper,
we provide a detailed study of the possibility of recon-
structing the quantum state of a BEC with the inclusion
of both situations: when a reference field is available
and when it is not.

The paper is organized as follows. In Section 2 we re-
view the tomographic principle and consider a suitable
operator transform on the atomic system. In Section 3
we consider the case of state reconstruction in the ab-
sence of a reference field, and in Section 4 the opposite
case is analyzed. Finally, in Section 5 we comment on
the numerical results, and in Section 6 we conclude with
a brief discussion.
2000 Optical Society of America



2530 J. Opt. Soc. Am. A/Vol. 17, No. 12 /December 2000 Mancini et al.
2. BASIC MODEL
Recently, we established15 a very general principle for
constructing measurable probabilities, which determine
completely the quantum state in the tomographic ap-
proach. For a more refined treatment, see Ref. 16.

Let us consider a quantum state described by the den-
sity operator r̂, which is a nonnegative Hermitian opera-
tor, i.e.,

r̂† 5 r̂, Tr r̂ 5 1, (1)

^vur̂uv& 5 rv,v > 0. (2)

We label the vector basis uv& in the space of pure quantum
states by the index v, which may represent any degree of
freedom of the system under consideration. Relation (2)
can be rewritten by use of the Hermitian projection opera-
tor

P̂v 5 uv&^vu (3)

in the following form:

rv,v 5 Tr~P̂vr̂ !. (4)

At the same time, in the space of states, there will be a
family of unitary transformation operators Û( s) that de-
pend on some parameters s 5 ( s1 , ..., sk ...), which can
sometimes be identified with a group-representation op-
erator. It has been shown15 that known tomography
schemes can be considered from the viewpoint of group
theory by use of appropriate groups. More recently, this
concept has been developed to yield an elegant group-
theoretic approach to quantum state measurement.16

Here we formulate the tomographic approach in the fol-
lowing way. Let us introduce a transformed density op-
erator

r̂s 5 Û21~ s!r̂Û~ s!. (5)

Its diagonal elements are still nonnegative probabilities:

^vur̂suv& [ w~v, s! > 0. (6)

These probabilities are functions of stochastic variable(s)
v and parameter(s) s. As a consequence of the unit trace
of the density operator, these probabilities also fulfill the
normalization condition

E dvw~v, s! 5 1. (7)

Of course, in the case of discrete indices, the integral in
Eq. (7) should be replaced by a sum over discrete vari-
ables.

The left-hand side of Eq. (6) can be interpreted as the
probability density for the measurement of the observable
V̂ (the operator whose eigenstates are given by uv&) in an
ensemble of transformed reference frames labeled by the
index s, provided that the state r̂ is given. Along with
this interpretation, one can also consider the transformed
projector

P̂v~ s! 5 Û~ s!P̂vÛ21~ s!, (8)

in terms of which Eq. (6) for the probability w(v, s) takes
the form
w~v, s! 5 Tr@ r̂P̂v~ s!#. (9)

These probability densities are also called marginal dis-
tributions as a generalization of the concept introduced by
Wigner.17 The tomography schemes are based on the
possibility of finding the inverse of Eq. (9). If it is pos-
sible to solve Eq. (9), considering the probability w(v, s)
as a known function and the density matrix as an un-
known operator, the quantum state can be reconstructed
in terms of measurable positive-definite probability distri-
butions. This is the essence of state reconstruction tech-
niques.

Specifically, we consider two atomic sources whose at-
oms (described by two bosonic modes b̂1 and b̂2) can be
mixed through an atomic beam splitter,18 we assume that
a phase shift f can also be introduced successively be-
tween them. We shall specify these modes below. At
the output a detection of the number of atoms in both
modes can be performed. This amounts to the possibility
of measuring the probability distributions related to the
transformed state

r̂ → Û~u, f!r̂Û†~u, f!, (10)

where the transformation operator is given by

Û~u, f! 5 exp$2i~u/2!@b1
†b2 exp~2if! 1 b1b2

† exp~if!#%.

(11)
Here, cos2(u/2) represents the transmission coefficient at
the beam splitter. Relation (10) plays the same role as
Eq. (5), and, in the spirit of the tomographic principle, the
set of marginals associated with the transformed state
will allow us to recover the original state. In Sections 3
and 4, as anticipated in Section 1, we shall distinguish
the two situations that involve the availability of a refer-
ence field.

3. CASE 1
We first treat the case in which a reference field is not
available. All that we can do in this case is to consider
two condensates that belong to the two modes b̂1 , b̂2 , im-
posing the constraint of total particle number conserva-
tion, i.e., @ r̂, N̂# 5 0, to infer their (joint) state. This
state is assumed to be a generic two-mode state of the
type

uC& 5 (
n50

N

cnuN 2 n&1un&2 . (12)

At this stage we use the formal equivalence between the
algebra for two harmonic oscillators and that for angular
momentum.19 We write the state un&1uN 2 m&2 5 u j
1 m&1u j 2 m&2 as a spin state um&, where j 5 N/2 and
m 5 n 2 j(m 5 2j, 2j 1 1 ,..., j 2 1, j). The j 1 1
states um& have all the properties of the eigenstates of Ĵ2

and Ĵz , where

Ĵ1 5 Ĵ2
† 5 b̂1

† b̂2 , Ĵz 5 ~1/2!~ b̂1
† b̂1 2 b̂2

† b̂2!,

Ĵ2 5 Ĵz
2 1 ~1/2!~ Ĵ1Ĵ2 1 Ĵ2Ĵ1!. (13)

The effect of the beam splitter, including the phase shift,
is a rotation by an angle u about an axis uf 5 ux cos f
2 uy sin f of the angular momenta Ĵ, i.e.,
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Û~u, f! 5 exp~2iuĴ • uf!. (14)

At the same time, the rotation (14) can be specified by
means of the Wigner-D function19:

^m8uÛ~u, f!um& [ Dm8m
~ j !

~ c 5 0, u, f!, (15)

where now c, u, f represent the Euler angles. Then the
probability of j 1 m counts at the first detector, and
j 2 m at the second one is given by

w~m, u, f! 5 (
m152j

j

(
m252j

j

Dmm1

~ j ! ~ c, u, f!rm1m2

~ j !

3 Dmm2

~ j !* ~ c, u, f!. (16)

The measurement of the atomic number in both modes
guarantees a unit efficiency. In fact, data for which the
sum of counts is not N can be disregarded. Moreover, in
Eq. (16) we have left the argument c unspecified in the
right-hand side and have omitted it in the left-hand side,
since D mm8

( j) } exp(2imc): The marginal distribution de-
pends only on the two angles u and f.

Following Refs. 20 and 21 we will derive the expression
for the density matrix of a spin state in terms of measur-
able probability distributions. This can be done by use of
the known integral product of three Wigner-D functions
over the rotation group and with the orthogonality of the
Wigner-3j symbols W m1m2m3

j1 j2 j3 .19 Finally, the density-
matrix elements can be expressed in terms of the mar-
ginal distribution as

rm1m2

~ j ! 5 ~21 !m2 (
j850

2j

(
m852j8

j8

~2j8 1 1 !2

3 (
m52j

j E ~21 !mw~m, u, f!

3 D0m8
~ j8!

~ c, u, f!W m2m0
jjj8 W m12m2m8

jjj8
dV

8p2 , (17)

where the integration is performed over the rotation pa-
rameters, i.e.,

E dV 5 E
0

2p

dcE
0

p

sin u d uE
0

2p

df. (18)

Thus we can use Eq. (17) to sample two-mode BEC
density-matrix elements, starting from the measurable
probabilities w(m, u, f) and some known functions.

4. CASE 2
Recent progress in the generation of an atomic coherent
source13 makes us hopeful about the possibility of having
an atomic reference field.14 Thus, in this section, we
shall consider the first mode as the condensate to be in-
vestigated and the second mode as coming from a coher-
ent atomic source.

Let r̂ be the state of mode 1 that we wish to recon-
struct and b̄ the coherent state characterizing mode 2.
Then the probability of counting n atoms in mode 1, for
u 5 p/2, will be
w~n, b! 5 Tr@Û21~u 5 p/2, f!r̂ub̄&22

3 ^b̄uÛ~u 5 p/2, f!un&11^nu#, (19)

where b 5 ub̄uexp(iw), w 5 arg b̄ 2 f 1 (p/2). This cor-
responds to the probability distribution for the measure-
ment of the displaced number operator D̂†(b)b̂1

† b̂1D̂(b),
analogously to what is done in photon number
tomography.22 In photon number tomography, however,
one has to collect number distributions by spanning the
whole complex plane b; here, instead, we will simplify the
procedure (see also Ref. 23).

Of course, the number of atoms in the condensate,
though not fixed, will be finite; thus it happens that
^kurum& 5 0 for k, m . N1 , with N1 being a suitable es-
timation of the maximum number of the condensed at-
oms. By virtue of this assumption we can rewrite Eq.
(19) as

w~n, b! 5 exp~2ubu2!n! (
k,m50

N1

^kurum&

3
1

Ak!m!
ubum1k22n exp@i~m 2 k !w#

3 Ln
~m2n !~ ubu2! Ln

~k2n !~ ubu2!, (20)

where Ln
(m) are the associated Laguerre polynomials.

Let us now consider, for a given value of ubu, the func-
tion w(n, b) as a function of w and calculate the coeffi-
cients of the Fourier expansion, which are

w ~s !~n, ubu! 5
1

2p
E

0

2p

dww~n, b!exp~isw! (21)

(s 5 0, 1, 2,...). By combining Eqs. (20) and (21), we get

w ~s !~n, ubu! 5 (
m50

N12s

An,m
~s ! ~ ubu!^m 1 surum&, (22)

where

An,m
~s ! ~ ubu! 5 exp~2ubu2!n!

1

A~m 1 s !!m!

3 ubu2~m2n !1sLn
~m2n !~ ubu2!Ln

~m1s2n !~ ubu2!.

(23)

If the distribution w(n, b) is measured for n
5 0, 1 ,..., N (N > N1), then Eq. (22) represents, for
each value of s, a system of (N 1 1) linear equations be-
tween the (N 1 1) measured quantities and the (N1
1 1 2 s) unknown density-matrix elements. Therefore,
to obtain the latter, we need only invert the system24

^m 1 surum& 5 (
n50

N

Mm,n
~s ! ~ ubu!w ~s !~n, ubu!, (24)

where the matrices M are given by M 5 (ATA)21AT. It
is possible to see that such matrices satisfy the relation

(
n50

N

Mm8,n
~s !

~ ubu!An,m
~s ! ~ ubu! 5 dm,m8 , (25)
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for m, m8 5 0, 1,..., N1 2 s, which means that from the
exact probabilities satisfying Eq. (22) the correct density
matrix is obtained. By combining Eqs. (24) and (21) we
find that

^m 1 surum& 5
1

2p (
n50

N E d̂wMm,n
~s ! ~ ubu!exp~isw!w~n, b!,

(26)

which may be regarded as the formula for the direct sam-
pling of the condensate density matrix. In particular, we
can see that the determination of the state of the conden-
sate requires only that the value of w (i.e., the phase be-
tween reference and condensate field) be varied. More-
over, the present reconstruction procedure involves
Laguerre polynomials in place of additional summations,
guaranteeing a better stability in the numerical manipu-
lation of a large set of data, as compared with analogous
methods.23

Finally, the non-unit-efficiency h in the detection pro-
cess can be accounted for by consideration of a binomial
convolution of the ideal probability25:

wh~k, b! 5 (
n5k

` S n
k Dhk~1 2 h!n2kw~n, b!, (27)

with the consequent modification of the matrix A.

5. NUMERICAL RESULTS
It is plausible, as has already been suggested,5,11 that the
state of a condensate with repulsive collisions may be a
squeezed state with reduced number fluctuations. Hence
below we will consider this situation. A single one-mode
state can be written as

uC& 5 (
n50

`

cnun&, (28)

where the coefficients cn are given by26

cn 5 S 2

r 1 1 D 1/2

r1/4S r 2 1

r 1 1 D n/2

~2nn! !21/2Hn

3 SA 2r2

r2 2 1
x0D expS 2

r

r 1 1
x0

2D , (29)

where r is the squeezing parameter, x0 is the (real) dis-
placement, and Hn denotes the Hermite polynomials.

A phase-space representation of this state can be given
by the Q function27

Q~a! 5 ^aur̂ua&, (30)

where a is the complex amplitude of a coherent state.
This yields

Q~a! 5 exp~2uau2!U(
n50

`
~a* !n

An!
cnU2

. (31)

For the case discussed in Section 3, we have to
consider5,11 a two-mode squeezed state written in the
angular-momentum representation, i.e.,
uC& 5 N (
m52j

j

cj1mum&, (32)

where N is a normalization factor and the coefficients
cj1m are as given in Eq. (29). Since the quantity x0

2

1 (r2 2 1)/4r represents the mean number of atoms in
mode 1, it must be smaller than the total number of at-
oms N. Furthermore, the atomic coherent-state basis for
a system of angular momentum j is defined by28

uu, f& 5 (
m52j

j

Dm,2j
~ j ! ~ c 5 0, u, f!um&

5 (
m52j

j S 2j
m 1 j D 1/2S sin

u

2 D j1mS cos
u

2 D j2m

3 exp~2imf!um&, (33)

then one can define the Q-quasi-probability distribution
analogously to Eq. (30):

Q~u, f! 5 ^u, fur̂uu, f&. (34)

For the state considered in Eq. (32), this equation be-
comes

Fig. 1. Squeezed two-mode state: (a) ideal Q function when the
displacement parameter is x0 5 A5 and the squeezing parameter
is r 5 e, (b) corresponding Q function reconstructed by the
method given in Section 3. To obtain this figure we simulated
experimental data by adding to each probability w a noise term
with a Gaussian distribution whose width was proportional to
the ratio between the probability itself and the number of runs
for the given parameters.
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Q~u, f! 5 U (
m52j

j

Dm,2j
~ j !* ~ c 5 0, u, f!cj1mU2

. (35)

This Q function is shown in Fig. 1(a). Figure 1(b) displays
the Q function calculated from the reconstructed density-
matrix elements. We can see that the method presented
in Section 3 is quite accurate, apart from some back-
ground noise.

Analogously, in Fig. 2(a) we have plotted the ideal
Wigner function27 of Eq. (31), while Fig. 2(b) is its recon-
structed version. In this case the statistical error de-
pends on the chosen value of ubu. For ubu values close to
zero, the diagonal density-matrix elements can be deter-
mined with great precision, whereas the off-diagonal ele-
ments strongly fluctuate. The opposite happens when ubu
is increased. To compensate for the fluctuations the
number of measurement events must be increased. An-
other source of error stems from the truncation of the re-
constructed density matrix at the value N1 .

It is worth comparing the above results with those ob-
tained in the case of a number state. For this purpose,
we show in Fig. 3(a) the ideal Wigner function for a num-
ber state. In this case the Wigner function becomes
negative, displaying the highly nonclassical character of a
Fock state. As in the previous figures, in Fig. 3(b) we
show the Wigner function obtained by application of Sec-

Fig. 2. Squeezed state for the single mode: (a) ideal Wigner
function when the displacement parameter is x0 5 ) and the
squeezing parameter is r 5 e, (b) corresponding Wigner function
reconstructed by the method given in Section 4. The reconstruc-
tion parameters are ubu 5 1.1 and h 5 0.9, and 3 3 105 simu-
lated experimental data per each phase have been used (see
text).
tion 4’s reconstruction method to such a state: The two
figures are practically indistinguishable, showing the ac-
curacy of the present method.

Finally, as an instructive comparison we show in Fig. 4
the same Wigner function as in Fig. 2(a), calculated when
the state reconstruction takes place with a random-phase
relation between probe and condensate. As can be seen,
the state becomes randomized and diffused in phase, but
its Wigner function remains positive. This figure should
be contrasted with Fig. 3. In this case the apparent U(1)
symmetry does not pertain to the state29; rather, it is due

Fig. 3. Number state for the single mode: (a) ideal Wigner
function for the Fock state un& 5 u5&, (b) corresponding Wigner
function reconstructed by the method given in Section 4. The
reconstruction parameters are ubu 5 0.3 and h 5 0.9, and 3
3 105 simulated experimental data per each phase have been
used (see text).

Fig. 4. Squeezed state with a random phase between 0 and 2p.
Here a value of the displacement parameter x0 5 A5 has been
used.
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to the measurement method, which implies a preparation
of the (same) state at each experimental run.

6. CONCLUSION
To conclude, we have studied, through numerical simula-
tions, the possibilities of a tomographic approach to the
quantum state of a Bose–Einstein condensate. We have
considered two possible situations: the case in which an
atomic reference field is available and that in which it is
not available. The corresponding methods turn out to be
accurate and robust to detection inefficiency and enable
one to distinguish among various possible quantum states
of the condensate.

It is worth noting that the techniques studied here al-
low direct sampling of the density-matrix elements,
avoiding any ambiguities in the reconstruction procedure
that are due to singularities.30

The key point remains the possibility of having a refer-
ence field and/or its state preparation. Furthermore, we
note that, to efficiently implement the numerical algo-
rithms, it is necessary to deal with a relatively small
number of atoms. Despite these difficulties, we believe
that measuring the true density matrix of a condensate is
both accessible and a possibility worth considering.

Finally, we would like to remark that the procedures
presented here could also be considered for other fields,
such as high-energy heavy-ion collisions, where pions can
condense as well.31
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