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We consider the problem of obtaining maximally entangled photon states at distance in the presence of loss.
We compare the efficiency of two different schemes in establishing N shared ebits: i) N single ebit states
with the qubit encoded on polarization; ii) a single continuous variable entangled state (emode) assisted by
optimal local operation and classical communication (LOCC) protocol in order to obtain a 2N -dimensional
maximally entangled state, with qubits encoded on the photon number.

1 Introduction

The production of maximally entangled state of photons at distance is a key issue in communications
of quantum information, for distributed quantum computation [1], quantum teleportation [2], and quan-
tum cryptography [3]. Unfortunately, the detrimental effect of losses is a serious problem for establishing
entangled resources at distance, since any kind of non-classical state is very sensitive to the effect of loss.

If one needs to teleport N qubits from Alice to Bob, N ebits need to be shared between them, and for
such purpose photons are the only practically available carriers. One can use equivalently either N single
ebit with the qubit encoded on polarization, or a single continuous variable entangled state – “emode” – with
qubits encoded on the photon number. Parametric downconversion allows to create both kinds of entangled
states, ebits and emodes, in the low and high gain regimes, respectively.

In this paper we compare ebits and emodes in the presence of loss. In contrast to the case of a single
emode, a scheme based on ebits with the qubit encoded on the polarization of single photons has the obvious
advantage that the successful achievement of the ebit is automatically checked by the presence of the photon
itself at both Alice and Bob sites, whereas for a single emode, this is not possible, due its vacuum component.
While there is no viable method for testing the presence of the emode without destroying the entanglement,
a scheme for purification of emodes in the presence of loss has been proposed in [4], however, with the
disadvantage of achieving a maximally entangled state of a random set of modes, hence with the need
of changing the encoding/decoding procedure each time, depending on which are the entangled modes.
Therefore, in the presence of loss only the ebit allows knowingly successful teleportation/communication
without increasing the complexity of the protocol versus N . Since emodes are more sensitive to loss for
increasingly large number of photons, a way out for implementing emodes in the presence of moderate losses
is to produce weakly entangled modes, then performing a LOCC operation to enhance the entanglement at
the output of the lossy channel: this is the only viable method for designing a protocol based on ebits with
low probability of failure.

In this paper we will compare the efficiency of ebits and emodes in establishingN maximally entangled
ebits, by considering a protocol for emodes in which weakly entangled states are prepared and an optimal
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LOCC operation is performed after the loss in order to obtain a 2N maximally entangled state. As we will
see, the ebits are largely superiors to emodes in all cases.

2 The comparison

Our task is to create N ebits shared at distance between Alice and Bob in the presence of loss. N ebits
are represented by N copies of a maximally entangled state belonging to the tensor-product C

2 ⊗ C
2 of

two-dimensional Hilbert spaces, or equivalently by a single maximally entangled state in C
2N ⊗ C

2N

. To
achieve this task we consider the use of N ebits and the use of a single emode, with qubits encoded on
photon polarization and photon number, respectively.

First we consider the use of N single-photon states

|ψ〉 =
1√
2
(|0〉a|1〉b + |1〉b|0〉b) , (1)

where the subscripts a, b denote Alice and Bob sites.
The effect of loss on a single-mode state ρ is described by a completely positive map that can be written

in the Kraus form [5]

L[ρ] .=
∞∑

n=0

VnρV
†
n , (2)

with

Vn =
(η−1 − 1)n/2

√
n!

anη1/2a†a , 0 ≤ η ≤ 1 (3)

The physical parameter η plays the role of the energy attenuation factor, since on has Tr[L[ρ]a†a] =
ηTr[ρa†a]. The smaller is the value of η, the larger is the effect of the loss. More generally, η gives the
scaling factor of any normal-ordered operator function, namely

L∨:f(a†, a): = :f(η1/2a†, η1/2a): , (4)

where L∨ denotes the dual map, which is defined through the identity

Tr
[L∨[O]ρ

]
= Tr [OL[ρ]] (5)

valid for any operator O.
The typical best achievable value of the loss in a optical fibers is of order 0.3 dB/km. Hence for two

parties 10 km far apart the loss is 3 dB, corresponding to η = 1/2.
Each mode is affected by the effect of loss, hence from the maximally entangled state (1) one obtains

the mixture

La ⊗ Lb[|ψ〉〈ψ|] = η|ψ〉〈ψ| + (1 − η)|0〉aa〈0| ⊗ |0〉bb〈0| . (6)

Therefore, the probability of sharing N maximally entangled ebits in the presence of loss is given by
pb = ηN .

Now we consider the second scheme, based on a single emode (“twin-beam”)

|χ(λ)〉 =
√

1 − |λ|2
∞∑

i=0

λi|i〉a|i〉b , |λ| < 1 . (7)

When producing the state (7) by parametric down-conversion, the value of parameter λ is related to the
gain G of the optical amplifier as G = (1 − |λ|2)−1. Typically, one has |λ| = 0.2 ÷ 0.75 [6]. The state (7)
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is the entangled resource for the continuous variable teleportation of [7]. In a way analogous to Eq. (6), the
twin-beam state that has suffered the effect of loss becomes a mixture, and here we are interested only in
the component that is still a twin-beam, which is given by

V0 ⊗ V0|χ(λ)〉〈χ(λ)|V †
0 ⊗ V †

0 =
1 − |λ|2
1 − η|λ|2 |χ(η1/2λ)〉〈χ(η1/2λ)| . (8)

We rewrite the state in Eq. (7) damaged by the loss as follows

La ⊗ Lb[|χ(λ)〉〈χ(λ)|] = q |χ(η1/2λ)〉〈χ(η1/2λ)| + σ , (9)

with

q =
1 − |λ|2
1 − η|λ|2 , (10)

and σ is a positive operator with Tr[σ] = 1 − q. The value q gives the probability that the twin-beam state
survives the loss, a part from the gain rescaling λ → η1/2λ.

Our task is now to achieve the maximally entangled state

|φ〉 =
1√
M

M−1∑
i=0

|i〉a|i〉b . (11)

For this purpose we perform a LOCC transformation on the state |χ(η1/2λ)〉. From Vidal’s theorem [8], we
know that the maximal probability p∗ of obtaining the state |φ〉 from |χ〉 by means of a LOCC is given in
terms of the Schmidt coefficients {φi} and {χi} of the states by

p∗ = min
i

∑∞
n=i χ

2
n∑∞

n=i φ
2
n

. (12)

In our case one has

p∗ = min
i∈[0,M−1]

M(η|λ|2)i

M − i
≤ M(η|λ|2)(M−1) ≡ p′ . (13)

Moreover, one can easily show that for |λ| ≤ (ηe)−1/2 one has p∗ = p′. Hence, the overall probability pm

of obtaining the maximally entangled state |φ〉 using a twin-beam |χ(λ)〉 in the presence of loss by means
of an optimal LOCC transformation is given by

pm = q p∗ =
1 − |λ|2
1 − η|λ|2 p

∗ . (14)

In order to compare N ebits versus a single emode one takes M = 2N for the state (11) and compares
the probabilities pb (ebits) with pm (emodes). Some numerical results are shown in Fig. 1, where the
probabilities pb (circles) and pm (triangles) are reported for different values of η and λ. The comparison is
dramatic: qubits are much more efficient than emodes for any realistic value of the gain parameter λ and
loss η.

The much greater efficiency of ebits versus emodes can be inspected analytically as follows. We define
the ratio r ≡ pb/p

′ and we have the chain of inequalities

r =
pb

p′ ≤ pb

qp′ ≤ pb

qp∗ =
pb

pm
. (15)

From Eq. (15) it is clear that r > 1 implies pb > pm, namely the scheme based on N ebits is more efficient
than that based on a single emode. The ratio r writes as

r =
(η

2

)N
(

1
η|λ|2

)2N −1

= exp{(1 − 2N ) ln(η|λ|2) +N ln(η/2)} . (16)



472 G. M. D’Ariano and M. F. Sacchi: Entanglement at distance: qubits versus continuous variables

Fig. 1 Probability of successfully obtaining N shared ebits in the presence of loss using: i) (circles) N

single ebit states with the qubit encoded on polarization; ii) (triangles) a single continuous variable entangled
state (emode) assisted by optimal local operation and classical communication (LOCC) protocol in order
to obtain a 2N -dimensional maximally entangled state, with qubits encoded on the photon number. We
considered different values of the loss η and of the gain parameter of emodes |λ| (twin-beams in Eq. (7)).

The expression of r shows that for sufficiently large N one has r > 1, and the use of N ebits becomes
rapidly much more efficient than using a single emode. In addition, we want to emphasize again that in the
presence of loss only the ebit allows knowingly successful teleportation/communication without increasing
the complexity of the protocol versus N .

3 Conclusions

We have considered the problem of obtaining maximally entangled photon states at distance in the presence
of loss, and compared the efficiency in establishing N shared ebits by using N single ebit states – with the
qubit encoded on polarization – and a single continuous variable entangled state (which we called “emode”)
assisted by an optimal LOCC protocol in order to obtain a 2N -dimensional maximally entangled state, with
qubits encoded on the photon number. We have shown the dramatic superiority of N ebits versus a single
emode, besides the fact that only the ebit allows knowingly successful teleportation/communication. We
have not considered the possibility of purification schemes for emodes. However, we emphasize again that
the only proposed scheme [4] has the disadvantage of achieving a maximally entangled state of a random
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set of modes, with the need of encoding/decoding procedures whose complexity is increasing versusN . We
conclude that a fruitful use of twin beams in quantum information technology at distance completely relies
on the possibility of practical purification schemes, which need to be properly designed in a way which is
suitable to the particular entanglement-based protocol of interest.
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