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We consider the convex sets of QO’s(quantum operations) and POVM’s(positive
operator valued measures) which are covariant under a general finite-dimensional
unitary representation of a group. We derive necessary and sufficient conditions for
extremality, and give general bounds for ranks of the extremal POVM’s and QO’s.
Results are illustrated on the basis of simple examples. ©2004 American Institute
of Physics.[DOI: 10.1063/1.1777813]

I. INTRODUCTION

The need for miniaturization and the new quantum information technology1 has recently
motivated a search for new quantum devices with maximum control at the quantum level. Among
the many problems posed by the new technology there is the need of engineering quantum devices
which perform specific measurements2–5 or particular state transformations—the so-calledquan-
tum operations6–8—which are optimized with respect to some given criterion. In most cases such
optimal quantum measurements/operations arecovariant9 with respect to a group of physical
transformations. For the case of a quantum measurement, “group-covariant” means that there is an
action of the group on the probability space which maps events into events, in such a way that
when the quantum system is transformed according to a group transformation, the probability of
the given event becomes the probability of the transformed event. This situation is very natural,
and occurs in most practical applications.(See Refs. 10 and 11.) For example, the heterodyne
measurement12,13 is covariant under the group of displacements of the complex field, which means
that if we displace the state of radiation by an additional complex averaged field, then the output
photocurrent will be displaced by the same complex quantity.

In quantum mechanics the probabilities for a given apparatus for all possible states are de-
scribed by positive operator valued measures(POVM),3 and we will say that the measurement is
covariant when its POVM is covariant under a unitary group representation.2,10 For quantum
operations(QO), on the other hand, covariance means that the output of a group-transformed input
state is simply the transformed output state—a situation again quite common in practice. Typically
covariance means that the apparatus is required to work equally well on a full set of states which
is invariant under a group of transformations. For instance, if one wants to engineer an eavesdrop-
ping apparatus for a BB84 cryptographic scheme14,15that clones equally well all equatorial qubits,
then the optimal cloning operation must be covariant under the groupG=Z4 of p /2 rotations of
the Bloch sphere around its polar axis, which is a subgroup of the group of all axial rotations
G=Us1d.16 Similarly, if one wants to engineer a QO which works equally well on all pure states,
then the operation must be covariant under the fullSUsdd group, whered is the dimension of the
Hilbert space of the quantum system.

It is easy to see that all POVM’s covariant under some group representation make a convex
set, which describes the complete class of possible covariant apparatuses. The same obviously
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holds for group-covariant QO’s. Typically in most applications the optimization resorts to mini-
mize a concave function on the convex set of covariant machines(in quantum estimation theory3

actually such function is generally linear), whence the optimal machine will correspond to an
extremal element of the convex set. For such purpose it is convenient to classify all extremal
covariant POVM’s and QO’s, and this is precisely the subject of the present paper.

For finite dimensional Hilbert space, a characterization of all noncovariant extremal QO’s was
given in Ref. 17, whereas a characterization of all extremal POVM’s can be found in Refs. 18 and
19 for discrete finite probability space. On the other hand, no classification of the extremal QO’s
or POVM’s is available yet under a covariance constraint, since, as we will see, this constraint
makes the classification problem much harder. Coincidentally, in many applications the optimal
QO/POVM is restricted to be rank-one from the special form of the optimization function(this is
the case, for example, of optimal phase estimation for pure states,2,3,20 or of phase covariant
optimal cloning of pure states16), and this has lead to a widespread belief that optimality is
synonym of rank-one. However, as we will see in this paper, for sufficiently large dimension the
extremal QO’s/POVM’s can easily have rank larger than one: this can actually happen for opti-
mization with mixed input states, such as in the case of optimal phase estimation with phase-
coherent mixed states.21

In this paper we provide a classification for finite dimensions of all extremal POVM’s and
QO’s that are covariant under a general unitary group representation. We will generally consider
continuous Lie groups, since then all results will also apply to the case of discrete groups as well,
with just a little change of notation. We provide necessary and sufficient conditions for extremal-
ity, along with simple necessary conditions, which allow to “sieve” the extremal QO’s/POVM’s.
From these conditions general bounds for the rank of the extremal QO’s/POVM’s easily follow as
corollaries.

The paper is organized as follows. In Sec. II we briefly review the concept of POVM and that
of covariant POVM based on the Holevo’s theorem.2 In Sec. III we recall the necessary concepts
about QO’s, including their operator form introduced in Ref. 22, which allows to easily classify
the covariant QO’s as non-negative operators in the commutant of a suitable representation of the
group. Section IV is entirely devoted to some technical lemmas which will be used in the classi-
fication of both POVM’s and QO’s. Finally Secs. V and VI contains the classification theorem of
extremal group covariant POVM’s and QO’s, respectively, with some simple explicit examples, in
particular with application to phase-covariant estimation and phase-covariant optimal cloning.

II. POSITIVE OPERATOR VALUED MEASURES

In the following we will denote byBsK ,Hd the linear space of bounded operators from the
Hilbert spaceK to the Hilbert spaceH, and byBsHd8BsH ,Hd the algebra of bounded operators
on H. By T1sHd we will denote the trace-class operators onH, and by T1

+sHd its positive
elements.

A general measurement is described by a probability spaceX equipped with a sigma-algebra
structuressXd of measurable subsetsBPssXd. The measurement returns a random outcomex
PX. In quantum mechanics the probability that the outcome belongs to a subsetBPssXd de-
pends on the staterPT1

+sHd of the system in a way which is distinctive of the measuring
apparatus according to the Born rule

psBd = TrfPsBdrg, s1d

whereP is a function onssXd which is positive-operator valued inBsHd, with the normalization
condition

PsXd = IH. s2d

Positivity of P is needed for positivity of probabilities for every stater, whereas Eq.(2) guaran-
tees normalization of probabilities. In synthesis,P is a positive operator valued measure(POVM)
on the probability spaceX. In a sense the POVMP represents our knowledge of the measuring

J. Math. Phys., Vol. 45, No. 9, September 2004 Extremal covariant quantum operations and POVM’s 3621

Downloaded 25 Aug 2004 to 143.107.130.131. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



apparatus from which we can infer information on the stater from probabilities. The linearity of
the Born rule(1) in both argumentsr andP is consistent with the intrinsically statistical nature of
the measurement, in which our partial knowledge of both the system and the apparatus reflects in
convex structures for both states and POVM’s. This means that not only states, but also POVM’s
can be “mixed,” namely there are POVM’s that give probability distributions that are equivalent to
choose randomly among different apparatuses.

Group covariant POVM’s: Let us consider now the general scenario in which a group of
physical transformationsG can act on the probability spaceX. We will write gx for the action of
the group elementgPG on the pointxPX, andgB for the action ofg on a whole subsetB#X.
We will always consider the case in whichG acts transitively onX, namely for any two points on
X there is always a group element which connects them. A consequence of transitivity is thatX
can be always regarded as the homogeneous factor spaceX=G /Gx, Gx denoting the stability
group of any pointxPX.

A POVM P on H for the probability spaceX is covariant under the unitary representation
g→Ug of the groupG when for every setBPssXd one has

Ug
†PsBdUg = Psg−1Bd. s3d

The following general theorem by Holevo2 classifies all group-covariant POVM’s.
Theorem 1 (Holevo):For square-integrable representations, a POVM P on the probability

spaceX is covariant with respect to the unitary representation g→Ug on H of the groupG of
transformations ofX if and only if it admits a density of the form

dPx = Ugx

† JUgx
dx, gx P G:gxx0 = x, s4d

wheredx is an invariant measure onX, with Jù0 in the commutantGx0
8 of the isotropy groupGx0

of x0, satisfying the constraint

E
G

dg Ug
†JUg = IH, s5d

with dg invariant measure onG.
In the case in which the POVM is designed to estimate the group element itselfgPG

corresponding to an unknown transformationUg, then the stability group is the identity, whence
X=G and the POVMP is covariant if and only if it admits a density of the form

dPg = Ug
†JUg dg, g P G s6d

for any Jù0 satisfying the constraint(5). The possibleseedoperatorsJù0 satisfying the
constraint(5) form a convex set. In Sec. V we will classify all extremal elementsJ of such
convex set.

III. QUANTUM OPERATIONS

The mathematical structure that describes the most general state change in quantum
mechanics—such as the evolution of an open system or the state change due to a measurement—is
thequantum operation(QO) of Kraus.1,6 Such abstract theoretical evolution has a precise physical
counterpart in its implementations as a unitary interaction between the system undergoing the QO
and a part of the apparatus—the so-calledancilla—which after the interaction is read by means of
a conventional quantum measurement. We can consider generally different input and output Hil-
bert spacesH andK, respectively, allowing the treatment of very general quantum machines, e.g.,
of the kind of quantum optimal cloners.22,23For example, in the cloning from one ton copies one
has input spaceH and output spaceK=H^n, or its symmetric versionK=sH^nd+ for symmetric
cloning. Within the present paper we will only consider finite-dimensional Hilbert spaces. In the
Heisenberg picture the QO evolves observables, and will be denoted by a mapM from BsKd to
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BsHd. In the Schrödinger picture the QO evolves states, and it is given by the dual map
Mt :T1sHd→T1sKd, the dualism being determined by the equivalence of the two pictures in terms
of the trace inner product, namely TrfMsXdrg=TrfMtsrdXg for all rPT1sHd and for all X
PBsKd. The mapsM andMt are linearcompletely positive(CP), namely they preserve positiv-
ity of the input operator for any trivial extensionM ^ I on a larger Hilbert space that includes any
possible additional quantum system,I denoting the identity map on the additional system. In the
Schrödinger picture the CP property physically means that the mapMt from T1sHd to T1sKd
preserves positivity of any input state of the quantum system(with Hilbert spaceH) entangled
with any possible additional quantum system. The mapMt of a QO must also be trace-not-
increasing, with the trace TrfMtsrdgø1 representing the probability that the transformation oc-
curs, and the input and output states being connected as follows:

r ° r8 =
Mtsrd

TrfMtsrdg
. s7d

By denoting with IH the identity operator on the Hilbert spaceH, we see that the trace-not-
increasing condition along with positivity of the map are equivalent to the constraint

MsIKd = K P BsHd, 0 ø K ø IH. s8d

For finite-dimensional Hilbert spaces it is convenient to represent the mapsM from BsKd to
BsHd as operatorsRM on K ^ H using the following one-to-one correspondence:

RM = Mt
^ IsuIlkI ud, Mtsrd = TrHfsIK ^ rtdRMg, s9d

where uIl=on unl ^ unl is a fixed vector inH ^ H, hunl ^ umlj denotes an orthonormal basis for
H ^ H, and the transpositiont for operators is defined with respect to the orthonormal basisunlkmu
for BsHd taken as real. One can easily check the correspondence(9), and injectivity follows from
linearity. In addition, the operatorRM is non-negative if and only if the mapM is CP, and the
constraint(8) in terms of the operatorK rewrites as follows:

TrKfRMg = K, 0 ø K ø IH. s10d

The positive operatorsRM satisfying the constraint(10) make a convex set, which is the operator
counterpart of the convex set of the corresponding QO’sM.

Group covariant CP-maps: We call the mapM from BsKd to BsHd G-covariant, when

MsVg
†XVgd = Ug

†MsXdUg, ∀ g P G, s11d

hUgj and hVgj denoting unitary representations ofG over the input and output spacesH andK,
respectively. The Schrödinger picture version of identity(11) is

MtsUgrUg
†d = VgMtsrdVg

†, ∀ g P G, s12d

whereMt goes fromT1sHd to T1sKd.
The operator formRM for mapsM simplifies the classification of QO’s that are covariant

under a groupG, resorting to the Wedderburn’s decomposition of the commutant of the represen-
tation. It is easy to show that the mapM is G-covariant[i.e., it satisfies Eq.(11)] if and only if
its corresponding operatorRM is invariant under the representationVg ^ Ug

* .22 In fact, from Eq.(9)
using invariance of partial trace under cyclic permutation of operators acting only on the traced
space one has

0 =Mtsrd − Vg
†MtsUgrUg

†dVg=TrHhsIK ^ rtdfRM − sVg
†

^ Ug
tdRMsVg ^ Ug

*dgj, s13d

and, since Eq.(9) is a one-to-one correspondence between maps and operators, one concludes that
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fRM,Vg ^ Ug
*g = 0, ∀ g P G. s14d

Therefore, the problem of classifying covariant CP-maps resorts to that of classifying positive
elements of the commutant of the representationVg ^ Ug

* on K ^ H. By labeling withk the generic
equivalence class of the representation, with multiplicitymk, the Wedderburn’s decomposition of
the representation space is written as follows:24

K ^ H = %
k

sHk ^ Cmkd. s15d

Then, sinceRM must be a positive operator in the commutant of the representation it must have
the general form

RM = %ksIHk
^ wk

†wkd = W†W, W8 %ksIHk
^ wkd, s16d

wherewk is any operator onCmk, i.e., amk3mk matrix. Therefore, the classification of covariant
trace-not-increasing QO’s withMsIKd=Kø IH is equivalent to classify the operatorsRM of the
form (16) with the constraint

o
k

TrKfsIHk
^ wk

†wkdg = K ø IH. s17d

The constraint(17) is generally quite involved, due to the subspace mismatch between the tensor
productK ^ H and the Wedderburn’s decomposition: its simplification will be the main task of
Sec. VI.

IV. TECHNICAL LEMMAS

This section will be entirely devoted to technical lemmas, which will be used for the classi-
fication of both extremal covariant POVM’s and QO’s. The lemmas connect conditions on the
vanishing of partial traces with linear spannings.

In the following we will make use of the following simple fact for any linear spaceL and a
subspaceS#L: if the only vector ofL that is orthogonal to the whole subspaceS is the null
vector, then one hasS=L. Moreover, since orthogonality to a sets of vector implies orthogonality
to its linear spanSpanssd, then the previous assertion holds also for subsetss#L (not necessarily
subspace), namely if the only vector orthogonal to the subsets is the null vector, than one has
L;Spanssd. From now we will also make use of the following natural notation

XsBsAd ^ IBdY† 8 SpanhXsA ^ IBdY†,A P BsAdj, s18d

for X,Y any operators with domainA ^ B.
Lemma 1: Let BPBsB2 ^ B1,Ad, A and B1,2 denoting arbitrary finite-dimensional Hilbert

spaces. Then, the injectivity of the linear CP mapWsAd=TrB1
fB†ABg on BsAd is equivalent to the

spanning condition

BsAd = BsBsB2d ^ IB1
dB†. s19d

Proof: The injectivity of the mapWsAd=TrB1
fB†ABg on BsAd means that

∀A P BsAd, TrB1
fB†ABg = 0 ⇒ A = 0. s20d

The condition TrB1
fB†ABg=0 is equivalent to TrfC TrB1

fB†ABgg=0 ∀CPBsB2d. Therefore, since
one has

TrfC TrB1
fB†ABgg = TrfsC ^ IB1

dB†ABg = TrfBsC ^ IB1
dB†Ag s21d

condition (20) is then equivalent to
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∀A P BsAd, TrfBsBsB2d ^ IB1
dB†Ag = 0 ⇒ A = 0, s22d

where we used notation(18). Equation(22) says that the only operatorAPBsAd orthogonal to the
operator spaceBsBsB2d ^ IB1

dB†#BsAd is the null operator, which means thatBsBsB2d ^ IB1
dB† is

actually the full linear spaceBsAd, namely condition(22) is equivalent to condition(19). j

The above theorem leads immediately to the following corollaries.
Corollary 1: A necessary condition for injectivity of the mapWsAd=TrB1

fB†ABg on BsAd is

dimsAd ø minhdimsB2d,ranksBdj. s23d

Corollary 2: The injectivity of the mapWsAd=TrB1
fB†ABg on BsAd is equivalent to the

existence of a linear injective mapV from BsAd to BsBd such that

∀A P BsAd, BsVsAd ^ IB1
dB† = A. s24d

The relation between the mapsW and V is given by

WsAd = TrB1
fB†BsVsAd ^ IB1

dB†Bg. s25d

Proof: The spanning condition(19)—equivalent to the injectivity of the mapWsAd
=TrB1

fB†ABg on BsAd—guarantees that for eachAPBsAd there exists an element, sayVA, of
BsBd such thatBsVA ^ IB1

dB†=A. Consider now an orthonormal basisAj for BsAd, and denote by
Vj any element ofBsBd such thatBsVj ^ IB1

dB†=Aj. It is clear that thehVjj can be chosen as
linearly independent. Now, for every elementAPBsAd defineVsAd=o j TrfAj

†AgVj. This map is
clearly linear and injective. The mapVsAd corresponds to a nonorthogonal change of basis(from
hAjj to hVjj) which compensates the nonorthogonal change of basisBsVj ^ IB1

dB†=Aj. Equation
(25) follows by substituting Eq.(24) into the mapW. j

We have also the additional lemma.
Lemma 2: As in Lemma1, the injectivity of the mapWsAd=TrB1

fB†ABg on BsAd is equivalent
to the linear independence of the set of operatorshWi

†Wjj, where Wi PBsB1,B2d are defined from
the singular value decomposition B=oi uVilkWiu through the identityuWil=sWi ^ IB1

duIl, uIl
PB1

^2 denoting the fixed vectoruIl=ol ull ^ ull, for hull ^ umlj arbitrary orthonormal basis ofB1
^2.

Proof: First, notice that the identityuXl=sX^ IB1
duIl sets a bijection between vectorsuXl

PB2 ^ B1 and operatorsXPBsB1,B2d. Then, using the singular value decompositionB
=oi uVilkWiu, with uVilPA and uWilPB2 ^ B1, the partial trace in Eq.(20) becomes

TrB1
fB†ABg = o

i j

kViuAuVjlTrB1
fuWilkWjug = o

i j

kViuAuVjlWi
tWj

* , s26d

where t denotes the transposition for whichsX^ IB1
duIl=sIB1

^ XtduIl, and * denotes complex
conjugation, i.e.,X†=sXtd* . By taking the complex conjugate of the last equation and introducing
the matrixAij =̇kViuAuVjl* PMNsCd whereN=ranksBd (N2 is the cardinality of the sethWi

†Wjj), the
statement(20) is equivalent to

hAijj P MNsCd, o
i j

AijWi
†Wj = 0 ⇒ Aij = 0, ∀ i, j , s27d

namely the operatorshWi
†Wjj are linearly independent. j

In the following we will need the following generalization of Lemma 1.
Lemma 3: Let BPBs%ksB2

skd
^ B1

skdd ,Ad, and denote by Pk the orthogonal projector over
B2

skd
^ B1

skd, A and B1,2
skd being arbitrary finite-dimensional Hilbert spaces.

The following implication,

A P BsAd, TrB2
skdfPkB

†ABPkg = 0 ∀ k ⇒ A = 0, s28d

is equivalent to
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BsAd = SpanhBf%ksBsB2
skdd ^ IB1

skddgB†j, s29d

and necessary conditions are

dimsAd2 ø o
k

dimsB2
skdd2, s30d

dimsAd ø ranksBd. s31d

Proof: The condition TrB
1
skdfPkB

†ABPkg=0 ∀k is equivalent to say that for anyCkPBsB2
skdd

one has TrfPkCkTrB
1
skdfPkB

†ABPkgg=0 ∀k. Since one has

TrfCkTrB1
skdfPkB

†ABPkgg = TrfsCk ^ IB1
skddPkB

†ABPkg=TrfBPksCk ^ IB1
skddPkB

†Ag, s32d

and, therefore, condition(28) is equivalent to

A P BsAd, TrfBPksBsB2
skdd ^ IB1

skddPkB
†Ag = 0 ∀ k ⇒ A = 0. s33d

The last condition says that the only operator inBsAd which is orthogonal to the set
BPksBsB2

skdd ^ IB
1
skddPkB

† ∀k is the null operator, or, in other words that the set spans the full
operator spaceBsAd, namely Eq.(29). The necessary conditions then follow trivially. j

We are now ready to classify the extremal group covariant POVM’s and QO’s in the following
sections. In order to classify extremal elements of convex sets, we will use the method of pertur-
bations. We will call a non-null operatorB a perturbationfor an operatorA in a convex set if both
A± tB are still in the convex set for some(sufficiently small) t.0. Then, clearlyA is not extremal
in the convex set if and only if it has a perturbation.

V. EXTREMAL COVARIANT POVM’S

We have seen that the covariant POVM for the estimation of a group elementg of an unknown
unitary transformationUg is of the general form

dPg = dg Ug
†JUg

†, s34d

with probability spaceX=G, and with

E
G

dg Ug
†JUg = IH. s35d

The Wedderburn’s decomposition(15) of the representation space here rewrites as follows:

H = %
k

sHk ^ Cmkd, s36d

where we remind thatk labels the equivalence class of irreducible components, andmk denotes its
multiplicity. The integral in the normalization condition(35) belongs to the commutant of the
representation, whence it can be rewritten as follows:

E
G

dg Ug
†JUg = %

k
dHk

−1fIHk
^ TrHk

sPkJPkdg = IH, s37d

Pk denoting the orthogonal projector on the subspaceHk ^ Cmk. Equation(37) follows from the
simple fact that for an irreducible representation on the space sayL, one haseG dg Ug

†ZUg

=dL
−1 TrfZgIL for measure dg normalized to unit onG. Equation(37) allows to split the constraint

(35) into the following set of constraints:
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TrHk
sPkJPkd = dHk

Imk
, ∀ k, s38d

where byImk
we denote the identity matrix overCmk. We then conclude that the classification of

extremalG-covariant POVM’s is equivalent to find the extremalJ within the convex set of
operatorsJù0 satisfying the constraints(38). For such purpose we have the following theorem.

Theorem 2: LetJ be an element of the convex set of positive operators onH satisfying the
constraints

TrHk
sPkJPkd = dHk

Imk
, ∀ k P S, s39d

whereS denotes the set of equivalence classes of irreducible components in the representation.
Write J in the formJ=X†AX with Aù0, choosingRngsXd=SuppsAd8KersAd'. Then

(1) Q is a perturbation ofJ if and only if Q is Hermitian, withTrHk
sPkQPkd=0 ∀kPS, and

Q=X†BX for some nonzero Hermitian B withSuppsBd#SuppsAd.
(2) For the specific choice of the form of Aas A= %kAk, with AkPBsHk ^ Cmkd, one has B

= %kBk, BkPBsHk ^ Cmkd and SuppsBkd#SuppsAkd, ∀kPS;
(3) J=X†X is extremal if and only if

BsRngsXdd = SpanhXf%ksIHskd ^ BsCmkddgX†j. s40d

Proof:

(1) Let Q Hermitian, with TrHk
sPkQPkd=0, and Q=X†BX for some nonzero HermitianB

PBsHd and with SuppsBd#SuppsAd. Then for ranksBd.0 Q is necessarily nonzero, and
sinceAù0, both constraintsA± tBù0 and TrHk

sPksJ± tQdPkd=dHk
Imk

∀k are satisfied for
somet.0, whenceQ is a perturbation forJ. Conversely, supposeQPBsHd is a perturba-
tion for J. Since we must haveJ± tQù0 andTrHk

fPksJ± tQdPkg=dHk
Imk

for somet.0,
then Q is Hermitian with TrHk

sPkQPkd=0 ∀kPS. Moreover, if we writeJ in the form J

=X†AX with nonnegativeAPBsHd, andRngsXd=SuppsAd, then alsoQ can be written in the
same form Q=X†BX for some nonzero HermitianBPBsHd and TrHk

fPksJ± tQdPkg
=dHk

Imk
. In fact, if X is not invertible, it can be always completed to an invertible operator

Z=X+Y by adding an operatorY with RngsYd=KersAd, and one can equivalently writeJ
=Z†AZ. Now we can write also the perturbation operator in the formQ=Z†BZ. However,
since A± tBù0 for some t, then necessarilyB must haveSuppsBd#SuppsAd=RngsXd,
whenceZ†BZ=X†BX.

(2) First it is obvious that a choice of the formA= %kAk, with AkPBsHk ^ Cmkd is always pos-
sible. Then, in order to haveA± tBù0 for somet.0, one must haveB= %kBk, eachBk
Hermitian, withSuppsBkd#SuppsAkd, ∀kPS.

(3) Since SuppsAd#RngsXd and Aù0, we can always mergeÎA into X by substitutingX
→ÎAX. Then, sinceJ is not extremal iff it has a perturbation, by part(1) one sees thatJ is
extremal iff for HermitianBPBsHd with SuppsBd#RngsXd, one has

TrHk
sPkX

†BXPkd = 0 ∀ k P S ⇒ B = 0, s41d

whence via Cartesian decomposition ofB we have the equivalent statement

B P BsRngsXdd, TrHk
sPkX

†BXPkd = 0 ∀ k P S ⇒ B = 0. s42d

Then, by Lemma 3 this is equivalent to conditions40d. j

Corollary 3: A necessary condition for extremality of the seedJ of a group covariant repre-
sentation as in Theorem 2 is

ranksJd2 ø o
k

mk
2. s43d
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Proof: Equation(43) is a trivial consequence of the necessary condition(40). j

Corollary 4: Every rank-one POVM is extremal.
Proof: For ranksXd=1 the iff condition(40) is trivially satisfied. j

Theorem 3: For S containing only a single equivalence class, say h, with multiplicity mh

ù1, the extremality of a covariant POVM on the Hilbert spaceH=Hh ^ Cmh is equivalent to the
linear independence of the set of operatorshWi

†Wjj, where Wi PBsCmh,Hhd are defined from the
spectral decompositionJ=oi uWilkWiu of the seedJ of the POVM through the identityuWil
=sWi ^ Imh

duIl, uIlP sCmhd^2 denoting the fixed vectoruil=ol ull ^ ull, for hull ^ umlj arbitrary or-
thonormal basis ofsCmhd^2. Extremal POVM’s with any rankranksJdømh are admissible.

Proof: ForS containing a single equivalence classh with multiplicity mhù1 the seedJ of the
POVM must satisfy the single constraint

TrHh
sJd = dHh

Imh
. s44d

Now, write J in the formJ=X†AX with XPBsHh ^ Cmh,Ad, andRngsXd=SuppsAd, A being a
Hilbert space such thatSuppsAd#A#Hh ^ Cmh, and which can be chosen asA.RngsXd. Then,
according to Theorem 2Q is a perturbation forJ iff it is of the form Q=X†BX, with B Hermitian,
SuppsBd#SuppsAd, and TrHh

sX†BXd=0. This means that the extremality ofJ is equivalent to
the injectivity of the mapWsBd=TrHh

sX†BXd over the set of Hermitian operatorsB with
SuppsBd#SuppsAd, which is equivalent to injectivity of the same map onBsRngsXdd. We are
thus in the situation of Lemma 2, withA=RngsXd, B1=Cmh andB2=Hh. Therefore, by writing the
singular value decomposition ofX=oi uVilkWiu, with SpanhuuVilj=RngsXd=SuppsAd the injec-
tivity of the mapWsBd=TrHh

fX†BXg on BsRngsXdd is equivalent to the linear independence of
the set of operatorshWi

†Wjj, whereWi PBsCmh,Hhd are defined through the identityuWil=sWi

^ Imh
duI il, uIlP sCmhd^2 denoting the fixed vectoruIl=ol ull ^ ull, with hull ^ umlj arbitrary ortho-

normal basis ofsCmhd^2. Now, the maximum rank of the POVM is given by the maximum number
of operatorsWi such that the set of operatorshWi

†Wjj in BsCmhd is linearly independent. Since we
can have at mostmh

2 linearly independent operators inBsCmhd, the maximum cardinality of the set
hWij is mh. j

Corollary 5: A POVM which is covariant under an irreducible representation is extremal: If
and only if iff it is rank one.

Proof: For S containing a single equivalence classh with multiplicity mh=1 the iff condition
(40) rewrites

BsRngsXdd = SpanhXsIHshd ^ C1dX†j = SpanhXX†j, s45d

which is satisfied iff ranksXd=1. As an alternative proof, the present corollary corresponds to the
situation of Theorem 3 for multiplicitymh=1. j

A. Example

Consider a POVM onH with dimsHd=d covariant underG=Us1d, with

Uf = expsifNd, N = o
n=0

d−1

nunlknu. s46d

Here we haved one-dimensional irreducible representations with charactersxksfd=expsikfd, k
=0, . . . ,d−1, namely they are all inequivalent, whence with unit multiplicity. Therefore, the nec-
essary condition(43) bounds the rank of the POVM as follows:

ranksJd2 ø dimsHd, s47d

and in order to have ranksJd=2 one must have dimsHdù4. According to Theorem 2 the extremal
POVM’s have seed of the formJ=X†X satisfying the identity
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BsRngsXdd = SpanhuXklkXku:0 ø k ø dimsHdj, s48d

whereuXkl=Xukl, huklj denoting any orthonormal basis forH. Notice that in the present example
the operatorJ corresponds to a so-calledcorrelation matrix, namely a positive matrix with all
ones on the diagonal. This follows from the constraint(38), which in our case is simplykkuJukl
=1,∀k. Therefore, the present classification of extremal POVM’s coincides with the classification
of extremal correlation matrices given in Ref. 25.

B. Example

Consider a POVM forn qubits on the Hilbert spaceH=sC2d^n covariant under the tensor
representationUf

^n of G=Us1d, with

Uf = expsifu1lk1ud, s49d

where hu0l , u1lj is a orthonormal basis forC2. Here we haven+1 one-dimensional irreducible
representations with charactersxksfd=expsikfd, k=0, . . . ,n, and with multiplicity mk= s n

k
d. An

orthonormal basis of each subspaceCmk of H= %kCmk is given by

s50d

wherePj
sn,kd denotes thej th permutation ofk qubits in the stateu1l in the tensor product ofn qubits

in total, with all other qubits in the stateu0l. In the present example, the iff condition for extre-
mality (40) requires thatJ=X†X satisfies the identity

BsRngsXdd = SpanhXuilkkk j uX†,k P S,i, j = 1, . . . ,mkj, s51d

where nowhuilkj denotes any orthonormal basis forCmk. The necessary condition(43) bounds the
rank of the POVM as follows:

ranksJd2 ø o
k=0

n Sn

k
D2

= S2n

n
D . s52d

Here, in order to have ranksJdù2 one needsnù2 qubits. Forn=2 according to the previous
example, one necessarily must have at least two inequivalent classes, since each of the irreducible
components has less than four dimensions(the same is true also forn=3). The previous example
is also recovered by considering the special case in whichRngsXd# ssC2d^nd+, i.e., containing
only the subrepresentation ofUf

^n on the symmetric subspacessC2d^nd+, with multiplicity 1.

C. Example

Consider a POVM onH^2 which is covariant under the group representationUg ^ IH, where
Ug is an irreducible representation ofG on H. Here, we trivially have a single equivalence class,
sayh, (corresponding to the irreducible representationUg) with multiplicity mh=dimsHd, i.e., the
Hilbert spaceH coincides with the multiplicity spaceH.Cmh. This is exactly the case considered
in Theorem 3. Therefore, the extremality of the POVM is equivalent to the linear independence of
the set of operatorshWi

†Wjj, whereWi PBsHd are defined from the spectral decompositionJ
=oi uWilkWiu of the seedJ of the POVM through the identityuWil=sWi ^ IHduIl, as in Theorem 3.
Therefore, we can have extremal POVM’s with any ranksJdødimsHd. Notice that there cannot
be more than a single maximally entangled vectoruWil in the decomposition ofJ, since, other-
wise, at least two operatorsWi would be proportional to unitary operators, and then the sethWi

†Wjj
would be necessarily linearly dependent(two products would be both proportional to the identity).
The rank-one case with a single maximally entangled projector corresponds to a so-calledBell
POVM.
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VI. EXTREMAL COVARIANT QUANTUM OPERATIONS

In the following we will denote shortly byAG the operator algebra generated by the group
representationVg ^ Ug

* , by AG8 its commutant, and finally byHG8 the Hermitian operators in the
commutant. The following theorem classifies all extremalG-covariant mapsM in the convex set
given by Eq.(17).

Theorem 4: Let R be an element of the convex set of positive operators in the commutantAG8
of the operator algebraAG generated by the group representation Vg ^ Ug

* on K ^ H, i.e., of the
form

R= %ksIHk
^ wk

†wkd = W†W, W8 %ksIHk
^ wkd, s53d

satisfying the constraint

o
k

TrKfsIHk
^ wk

†wkdg = K ø IH, s54d

where

H ^ K = %
k

sHk ^ Cmkd s55d

is the Wedderburn’s decomposition of the representation space, k labeling the equivalence class of
representations, with multiplicity mk. Denote by Pk the orthogonal projector over the spaceHk

^ Cmk of the equivalence class. Write R in the form R=X†QX with Q,XPAG8 and RngsXd
=SuppsQd. Then:

(1) S is a perturbation of R if and only if SPHG8 , with TrKfSg=0, and S=X†OX for some nonzero
OPHG8 with SuppsOd#RngsXd. Specifically, writing Q= %ksIHk

^ Qkd and X= %ksIHk
^ Xkd,

one has O= %ksIHk
^ Okd with SuppsOkd#RngsXkd ∀k.

(2) One can always write R in the form R=X†X, with XPAG8 of the form X= %ksIHk
^ Xkd. Denote

by S the set of equivalence classes k for which XkÞ0. Then, a necessary and sufficient
condition for extremality of R=X†X with TrKfRg=K is the injectivity of the mapTsOd
=TrKfX†OXg on AG8 ùBsRngsXdd, namely

O P AG8 ù BsRngsXdd, TrKfX†OXg = 0 ⇒ O = 0, s56d

which is equivalent to

%kPSBsRngsXkdd = %kPSXkTrHk
fPksIK ^ BsHddPkgXk

†. s57d

Proof:

(1) Let SPHG8 , with TrKfSg=0, and S=X†OX for some nonzero HermitianO with
SuppsOd#SuppsQd. Then for ranksOd.0 SPHG8 is necessarily nonzero, and sinceHG8
PQù0, all constraints:Q± tOPHG8 , Q± tOù0, and TrKfR± tSg=K are satisfied for some
t.0, whenceS is a perturbation forR. Conversely, suppose thatSPK ^ H is a perturbation
for R. Since we must haveHG8 {R± tSù0 and TrKfR± tSg=K for somet.0, thenSPHG8
with TrKfSg=0. Moreover, if we writeR in the formR=X†QX with RngsXd=SuppsQd, then
alsoS can be written in the formS=X†OX for some nonzero HermitianOPHG8 . In fact, if X
is not invertible, it can be always completed to an invertible operatorZ=X+Y by adding an
operator YPAG8 of the form Y= %ksIHk

^ Ykd with RngsYkd=KersQkd [where Q
= %ksIHk

^ Qkd], and one can equivalently writeR=Z†QZ with QPHG8 andZPAG8 . Now we
can write also the perturbation operator in the formS=Z†OZ. However, since for somet the
operator Q± tOù0 must belong to the commutantAG8 , then necessarilyOPHG8 and
SuppsOd#SuppsQd=RngsXd, with Z†OZ=X†OX. Specifically, writing Q
= %ksIHk

^ Qkd, one hasO= %ksIHk
^ Okd with SuppsOkd#SuppsQkd=RngsXkd∀k.
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(2) As in part (1) we can always takeQ as the identity, and redefineX→ÎQX, sinceQù0,
keepingX of the formX= %ksIHk

^ Xkd, since both operators in the productÎQX belong to the
algebraAG8 . From part(1) we then see thatR=X†X with XPAG8 is extremal if and only if

O P HG8 ù BsRngsXdd, TrKfX†OXg = 0 ⇒ O = 0, s58d

and via Cartesian decomposition this is equivalent to

O P AG8 ù BsRngsXdd, TrKfX†OXg = 0 ⇒ O = 0. s59d

SinceOPAG8 ùBsRngsXdd can be decomposed asO= %ksIHk
^ Okd with OkPBsRngsXkdd

∀kPS, then the statements59d is equivalent to

∀k P S Ok P BsRngsXkdd,

o
kPS

TrKfsIHk
^ Xkd†sIHk

^ OkdsIHk
^ Xkdg = 0 ⇒ Ok = 0 ∀ k P S, s60d

or else

∀k P S Ok P BsRngsXkdd,

TrKf%kPSsIHk
^ Xkd†sIHk

^ OkdsIHk
^ Xkdg = 0 ⇒ Ok = 0 ∀ k P S, s61d

The vanishing of the partial trace can be written as the vanishing of the trace Trf%kPSsIHk
^ Xkd†sIHk

^ OkdsIHk
^ XkdsIK ^ Cdg for any CPBsHd, namely the vanishing of

Trh%kPSOkXk TrHk
fPksIK ^ CdPkgXk

†j for any CPBsHd, and upon definingS= %kPSOk, the
statements61d rewrites

SP %kPSBsRngsXkdd, TrhS%kPSXk TrHk
fPksIK ^ BsHddPkgXk

†j = 0 ⇒ S= 0, s62d

namely, since the only operator in the linear space%kPSBsRngsXkdd orthogonal to the
subspace%kPSXk TrHk

fPksIK ^ BsHddPkgXk
† is the null operator, one has

%kPSBsRngsXkdd = %kPSXk TrHk
fPksIK ^ BsHddPkgXk

†. s63d

j

Corollary 6: As in Theorem 4, a necessary condition for extremality is

o
kPS

ranksXkd2 ø dimsHd2. s64d

Corollary 7: Any rank-one covariant QO is extremal.
Proof: For ranksXd=1 the setS must contain only one equivalence class, and the iff condition

(57) of Theorem 4 is then trivially satisfied. j

Corollary 8: For an irreducible representation any extremal covariant QO must be rank-one.
Corollary 9 (Choi): In the noncovariant case, a QOM from BsKd to BsHd is extremal iff it

can be written in the formMsOd=oi Wi
†OWi, with Wi PBsH ,Kd and the set of operatorshWi

†Wjj
linearly independent.

Proof: The noncovariant case corresponds to the trivial covariance groupG= I , i.e., the group
containing only the identity element. This corresponds to have just a single equivalence class, with
multiplicity equal to dimsH ^ Kd. Then, as in the proof of point(2) of Theorem 4 the extremality
of R=X†XPBsH ^ Kd is equivalent to the injectivity of the mapWsAd=TrKfX†AXg on
BsRngsXdd. According to Lemma 2, using the singular value decompositionX=oi uVilkWiu, with
uVil orthonormal basis forRngsXd and uWilPK ^ H, one hasMsOd=oi Wi

†OWi for OPBsKd,
and WsAd=oi j kViuAuVjlWi

tWj
* for APBsRngsXdd, and injectivity of W is equivalent to linear
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independence of the set of operatorshWi
†Wjj. j

Corollary 9 is the same as Choi theorem.17 Notice that differently from the case of QO’s, for
POVM’s the noncovariant case cannot be recovered as a special case of the covariant classifica-
tion, since the group itself(or, more generally, the homogeneous factor space) coincides with the
probability spaceX of the POVM, whence trivializingG also trivializesX.

A. Example

Consider the phase-covariant cloning16,22 for equatorial qubits from 1 to 2 copies. This cor-

responds toG=Us1d, with representationsUf=eifu1lk1u0 andVf=eifos=1
2 u1lk1us wheres=0 denotes

the input qubit ands=1,2 theoutput ones. HereH=C2 andK=H^2. We first need to decompose
the representationVf ^ Uf

* . This is made of one-dimensional representations, with characterseikf,
with k=−1,0,1,2 andmultiplicities m−1=1, m0=3, m1=3, andm2=1. The necessary condition
(64) in the present case becomesokPS ranksXkd2ødimsHd2=4, which means that we can have
either a single equivalence class with ranksXkdø2, or two equivalence classes with ranksXkd=1
each. Orthonormal bases for the supporting spacesHk ^ Cmk;Cmk of the kth equivalence class of
irreducible representations are reported in Table I as subset of an orthonormal basis for the tensor
productK ^ H.

The operatorsR=okPS Rk=okPSol ucl
skdlkcl

skdu satisfying the necessary conditions and the
trace-preserving condition are reported in Table II. It is easy to check that the case of ranksXkd
=2, which would be possible only fork=0 or k=1, does not satisfy the iff condition(56).
Therefore it is possible to have only rank-one operatorsXk.

As a specific optimization problem, let us consider the maximization of the fidelity averaged
over the two outputs

TABLE I. Orthonormal bases for the supporting spacesHk ^ Cmk;Cmk of thekth equivalence class of irreduc-
ible representations for 1 to 2 phase-covariant cloning. The orthonormal basis are chosen as subsets of an
orthonormal basis for the tensor productK ^ H.

k ukil ^ uhjl

−1 u001l
0 u101l , u011l , u000l
1 u100l , u010l , u111l
2 u110l

TABLE II. Cloning from 1 to 2 copies: classification of operatorsR=okPS Rk=okPSol ucl
skdlkcl

skdu satisfying the necessary
condition.

S=̇hkj hucl
skdlj hucl

sk8dlj

h−1,2j u001l u110l
h0,1j au000l+bu011l+cu101l a8u111l+b8u100l+c8u010l uau2+ ub8u2+ uc8u2=1

ua8u2+ ubu2+ ucu2=1

h0,−1j u000l+au011l+bu101l cu001l uau2+ ubu2+ ucu2=1

h1,−1j au100l+bu010l+cu111l du001l uau2+ ubu2=1

ucu2+ udu2=1

h1,2j au100l+bu010l+ u111l du110l uau2+ ubu2+ udu2=1

h0,2j au000l+bu011l+cu101l du110l uau2+ udu2=1

ubu2+ ucu2=1

h0j 1/Î2u101l+ 1/Î2u011l , u000l
h1j 1/Î2u010l+ 1/Î2u100l , u111l
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F = kcu 1
2hTr1fMtsuclkcudg + Tr2fMtsuclkcudgjucl=Trf 1

2sI ^ uclkcu + uclkcu ^ IdMtsuclkcudg
s65d

and for equatorial qubits we can chooseucl= u+l, whereu± l8 s1/Î2dsu0l± u1ld. Then the fidelity
rewrites as

F = TrfWRMg, s66d

W= u + lk+ u^3 + 1
2su− lk− u ^ u + lk+ u + u + lk+ u ^ u− lk− ud ^ u + lk+ u. s67d

One can see thatW is invariant for permutations over the output copies, and, by construction, also
all vectors in Table II have the same symmetry. Due to the special form of the fidelity, the optimal
map [satisfyingMsIKd= IH] is obtained forS=h0,1j with corresponding rank-two operatorRM
given by

RM = ucs0dlkcs0du + ucs1dlkcs1du,

ucs0dl − =
1
Î2

Su000l +
1
Î2

u011l +
1
Î2

u101lD ,

ucs1dl − =
1
Î2

Su111l +
1
Î2

u100l +
1
Î2

u010lD , s68d

B. Example

Consider the phase-covariant cloning16,22 for equatorial qubits from 1 to 3 copies. This cor-

respond toG=Us1d, with representationsUf=eifu1lk1u0 and Vf=eifos=1
3 u1lk1uk wheres=0 denotes

the input qubit ands=1,2,3 theoutput ones. HereH=C2 andK=H^3. We first need to decom-
pose the representationVf ^ Uf

* . This is made of one-dimensional representations, with characters
eikf, with k=−1,0,1,2,3 andmultiplicities m−1=1, m0=4, m1=6, m2=4, andm3=1. Orthonormal
bases for the supporting spacesHk ^ Cmk;Cmk of the kth equivalence class of irreducible repre-
sentations are reported in Table III as subset of an orthonormal basis for the tensor productK
^ H. Again, since dimsHd=2, the necessary condition(64) says that we can have only one
equivalence classk with ranksXkdø2, or two equivalence classes both with ranksXkd=1. In Ref.
22 it is shown that the map which optimizes the averaged equatorial fidelity is actually given by
the rank-one map forS=h1j with corresponding operatorRM given by

RM = ucs1dlkcs1du,

TABLE III. Orthonormal bases for the supporting spacesHk ^ Cmk;Cmk of the kth equivalence class of irre-
ducible representations for 1 to 3 phase-covariant cloning. The orthonormal basis are chosen as subsets of an
orthonormal basis for the tensor productK ^ H.

k ukil ^ uhjl

−1 u0001l
0 u1001l , u0101l , u0011l , u0000l
1 u1000l , u0100l , u0010l , u1101l , u1011l , u0111l
2 u1100l , u1010l , u0110l , u1111l
3 u1110l
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ucs1dl =
1
Î3

su1000l + u0100l + u0010l + u1101l + u1011l + u0111ld. s69d

Notice that, as a consequence of the specific symmetric form of the chosen fidelity criterion,
the cloning maps of the examples in Secs. VI A and VI B are both symmetrical, namely the output
Hilbert space is indeed restricted to the symmetric tensor spacesH^nd+. Clearly, with the same
method also nonsymmetric types of cloning can be analyzed well.

C. Example

Consider a generic covariant QO withK.H, Vg=Ug, andG=SUsdd, whered=dimsHd. In
this case the representationUg ^ Ug

* has two irreducible components, one which is one dimen-
sional, corresponding to the invariant vectoruIlPH^2, and one on the orthogonal complement,
and the two components will be denoted byk=0 andk=1, respectively. Since both the irreducible
components of the representation have unit multiplicity, the operatorR=X†X must haveX
=okPS ckPk, ckPC, Pk denoting the orthogonal projector on the invariant space of the irreducible
componentk, and the necessary condition(64) is trivially satisfied. On the other hand, one can see
that the iff condition (56) is satisfied for the irreducible representationsS=h0j and S=h1j,
whereas for the reducible oneS=h0,1j the map TsOd=TrKfX†OXg is never injective on
AG8 ùBsRngsXdd [one has TrKfX†OXg=s1/ddfuc0u2a0+sd2−1duc1u2a1gIH for O=a0P0+a1P1,
a0,a1PC]. Therefore, the only trace-preserving optimal maps are those corresponding to the
operatorsR= uIlkI u and R=fd/ sd2−1dgsI ^2−s1/dduIlkI ud, corresponding to the trivial mapM=J
and to the so-called isotropic depolarizing channelMsOd=fd/ sd2−1dgTrfOgIH−f1/sd2−1dgr.
Finally, notice that in the present example the optimal covariant maps are compatible only with
(multiple of) the trace-preserving condition, since both partial traces TrKfPkg are proportional to
the identity.

D. Example

We consider now the same problem as in the previous example, but now withVg=Ug
* . In this

case we need to consider the positive operatorsR which are invariant underUg
*

^ Ug
* . It will be

easier to consider the representationUg ^ Ug and then take the complex conjugate ofR at the end.
Now we have again two irreducible inequivalent components, sayk=± with invariant spaces
sH^2d±, the symmetric and the antisymmetric spaces. As in the previous example, the general form
of R=X†X is X=okPS ckPk, ckPC, andP±= 1

2sIH
^2±Ed, whereE is the swap operator on the tensor

product. However, the mapTsOd=TrKfX†OXg is injective onAG8 ùBsRngsXdd only for represen-
tations with a single irreducible component. One can see that TrHfP±g= 1

2sd±1dIH, and only
trace-preserving(or multiplying by a constant) QO’s are compatible with the present covariance.
In conclusion, the only extremal covariant operators areR±=sd±1d−1sI ^2±Ed, corresponding to
the channelsM±sOd=sd±1d−1fTrsOdIH±Otg. The mapM+ is the optimal transposition map of
Ref. 26.
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