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INTRODUCTION

The questions about foundations of Quantum Theory raised laborious research programs
and passionate debates for almost a century. All the solutions that were proposed to the
main questions opened by the advent of Quantum Physics were only partially satisfac-
tory, mixing in different proportions interpretational changes or technical modifications
of the basic elegant formalism exposed by von Neumann [1, 2], which still remains the
most convincing presentation of the theory, and the one that is taught to students. In a
simplified picture of the state of the art, the attempts at giving a natural and convincing
look to Quantum Theory can be classified in the following two families: The first one in-
cludes all approaches retaining the reality of microscopic physical systems, starting from
the idea that matter cannot be made but with smaller pieces of matter. The main concern
for such attempts is to solve the measurement problem [3, 4, 5]. The second class in-
cludes those approaches that are more oriented to accepting the allegedly paradoxical
features of quantum systems as a matter of fact, and to looking at the macroscopic re-
ality as an emergent phenomenology based on radically different laws governing the
microscopic scale. The proposals in this class—maybe less ambitiously than the former
ones—generally seek a non-technical, physically motivated way of introducing the ab-
stract formalism of Hilbert spaces or C*-algebras, without modifying it or changing its
physical interpretation [6, 7, 8, 9]. This line of research was recently revived by the in-
fluence of Quantum Information Theory [10, 11], which provided an astonishing picture
of the information processing capabilities of quantum systems. Several attempts at an
information-theoretical axiomatization have been proposed in recent years [12, 13, 14],
sharing the crucial feature of promoting information processing capabilities to the role
of axioms for a reconstruction of quantum theory [15, 16].

In the present paper we will provide a solution to the main problem in the second
class of approaches, namely a formulation of Quantum Theory that does not rely on
matematical axioms, but on simple general principles that can be formulated using
elementary notions. Our principles perfectly fit the recent trend pioneered by J. A.
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Wheeler [17] of looking at Quantum Theory—and more generally to physical theories—
as rooted in information-theoretical notions. As a consequence of this formulation, the
mathematical structure of finite dimensional Hilbert spaces can be thoroughly derived,
as discussed in Ref. [18]. The key axiom in the present formulation is the purification
postulate, whose consequences were discussed in detail in a very general context in
Ref. [19], where the principle was introduced for the first time. This result brings to
conclusion G. M. D’Ariano’s axiomatization program, whose progresses were reported
in the proceedings of the Växjö conference for many years [20, 21].

THE OPERATIONAL AND PROBABILISTIC FRAMEWORK

The basic notions that we need in order to formulate quantum theory are borrowed
from the operational language. Here is the starting glossary [19] on which we build
the language in which the axioms are stated.

• Test and event: a test is a procedure that the observer can choose to follow at a given
step in an experiment. A test has many outcomes, corresponding to many different
events, but generally their occurrence is not under the control of the observer.

• Outcome: an outcome is directly registered by an observer as the result of following
a procedure. The outcome is interpreted as information heralding the occurrence of
the corresponding event.

• System: tests can be operated in a sequence according to precise rules. The rules
are stated through the specification of an input and output label for every test, and
by the simple prescription that two tests can be composed in a sequence whenever
the output label of the first test coincides with the input label of the second one.
Systems are identified with such labels.

From the description of our elementary concepts, one can figure out the main traits
of the picture of physics resulting from our formulation of Quantum Theory: physical
concepts are related to experimental procedures where an observer performs tests on
the system. The observer registers outcomes, that are bits of information. Systems
are information carriers, and it is only because of our habit that we think of them
as particles—little pieces of matter that often behave like waves. The only inference
we are allowed to do conditionally on the occurrence of an outcome, is the event—a
transformation of the observed system.

Quantum Theory is then derived as a theory about information processing. More
precisely, we will specify in the following a more detailed language, and use it to
formulate six principles, in the from of rules about the ways in which we can process
information through tests. These principles are sufficient to single out the mathematical
structure of Quantum Theory.
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The operational language

We will denote an outcome in a space X of possible outcomes by a lower case index,
as i ∈ X, and the corresponding event as Ei. A test is identified with the collection of its
events and denoted as {Ei}i∈X. Tests, systems and events have a graphical representation
as follows A

{Ei}i∈X
B

where A is the input system and B is the output. The test {Ei}i∈X (the event Ei) is of
type A → B. System types A,B, . . . include the trivial system denoted by I, which is the
input system of every preparation-test and the output system of any observation-test,
corresponding to tests where the observer neglects previous or subsequent processing.
These particular tests are denoted as follows!"#${ρi}i∈X

A
:=

I
{ρi}i∈X

A
,

A %&'({ai}i∈X :=
A

{ai}i∈X
I

Tests can be composed in cascades through the sequential composition, an operation
that allows one to define a new test {F j} j∈Y ◦ {Ei}i∈X of type A → C, with outcome
space X×Y, denoted as {F j ◦Ei}(i, j)∈X×Y, from any couple of tests {Ei}i∈X of type
A → B and {F j} j∈Y of type B → C, namely whenever the output system of the first test
coincides with the input system of the second one.

For every system type X there is a unique singleton test {IX} called identity test such
that the identity event IX satisfies IB ◦E = E ◦IA for every event E of type A → B.

Two arbitrary systems A and B can form a composite system, which is represented by
the parallel composition, and denoted by A⊗B, with the following properties

A⊗B = B⊗A, A⊗ I = I⊗A = A. (1)

Arbitrary tests {Ei}i∈X of type A → B and {F j} j∈Y of type C → D can be run in
parallel obtaining the parallel composition {Ei}i∈X⊗{F j} j∈Y = {Ei⊗F j}(i, j)∈X×Y of
type (A⊗B)→ (C⊗D).

The parallel composition enjoys the following property

(C ⊗D)◦ (A ⊗B) = (C ◦A )⊗ (D ◦B), (2)

and, as a consequence, (A ⊗I )◦ (I ⊗B) = A ⊗B = (I ⊗B)◦ (A ⊗I ).
These rules—that allow one to build arbitrary circuits—are borrowed from quantum

circuits, but are also the faithful transcription of the axioms for a strict symmetric
monoidal category. This structure is the core of the categorical approach to quantum
foundations, recently developed by B. Coecke and collaborators (see e.g. [22]), that
proved itself very fruitful in exploring many conceptual features of quantum theory and
making it more intuitive through pictures that are very similar to the circuital diagrams
used in our approach. This fact anticipates one of the key messages that come from our
approach: Many theorems of quantum information theory actually only depend on very
general facts about the structure of quantum theory, and do not require the details of the
C*-algebraic (or Hilbert space) formalism.
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The outcomes of a test can be merged into a single outcome, representing the opera-
tion of neglecting some information. On formal grounds, this corresponds to the follow-
ing rule. For every test {Ei}i∈X of type A → B, and every disjoint partition {X j} j∈X′

of X there exists a test {E ′
j} j∈X′ of type A → B, called coarse-graining of the test

{Ei}i∈X, such that for two tests {Ei}i∈X and {F j} j∈Y the coarse grainings of tests {Ei ◦
F j}(i, j)∈X×Y and {Ei ⊗F j}(i, j)∈X×Y corresponding to partitions {Xh ×Yk}(h,k)∈X′×Y′

of X × Y coincide with the coarse grainings with the tests {E ′
h ◦F ′

k}(h,k)∈X′×Y′ and
{E ′

h ⊗F ′
k}(h,k)∈X′×Y′ . In words, the operation of coarse-graining commutes with both

parallel and sequential composition. If the test {E ′
j} j∈X′ is a coarse graining for the test

{Ei}i∈X, equivalently we say that the test {Ei}i∈X is a refinement for the tests {E ′
j} j∈X′ .

We say that a test {Ei}i∈X is deterministic if |X| = 1. A test is deterministic if and only
if it is the coarse graining for a test {Ei}i∈X corresponding to the trivial partition {X}.

The probabilistic structure

Up to now we did not introduce any probabilistic structure in our language. The whole
circuital diagrammatic apparatus just provides a formal translation of the operational
grammar ruling the construction of experiments. However, the very notion of test that
we provide—a collection of events—naturally suggests a picture where the events are
mutually exclusive possibilities, whose occurrence provides information about the sys-
tem. We then need a rule to determine the probabilities of events in order to fully specify
the theory. The necessary structure to this purpose is provided through the requirement
that a test for the trivial system I is a probability distribution: {Ei}i∈X = {pi}i∈X with
pi ≥ 0, II = 1. Parallel and sequential composition coincide, and their events are pro-
vided by the product rule pi ◦ p j = pi ⊗ p j = pi p j. Finally, the coarse graining for a
test of type I → I is provided by the sum: p′j = ∑i∈Y j pi. These assumptions provide the
interpretation of tests as collections of mutually exclusive probabilistic events, whose
probability is determined only within a circuit of type I → I.

The circuits become thus the tool to propagate the initial information, which is
contained in the specification of the preparation-test. What is evolved from the input
to the output of a circuit is thus information, rather than matter. In particular, systems
carry information and allow one to evaluate probabilities of events provided an initial
amount of information. The physical world emerges as a consequence of correlations
between events. The basic theory of physics is thus a theory of information processing.

Before stating the axioms, it is worth noticing that from the assumptions about
probabilities we can conclude that preparation-events and observation-events are real-
valued functionals on each other. It is then natural to identify all those events that
correspond to the same functionals, because they are operationally indistinguishable.
We define the corresponding equivalence classes for system A as states of A (St(A))
and effects of A (Eff(A)), respectively. This simple fact immediately provides the sets
of states and effects with a vector space structure, denoted by StR(A) and EffR(A),
respectively: Real-valued functionals can be multiplied by a real scalar and can be
summed to define new real-valued functionals. To the system type A then corresponds
an integer number DA, which is the dimension of the vector spaces StR(A) and EffR(A).

273



The states St(A) and the effects Eff(A) define the cones St+(A) and Eff+(A), that are
obtained multiplying the functionals corresponding to physical events by non negative
scalars. Clearly, Eff+(A) ⊆ St+(A)∗ and St+(A) ⊆ Eff+(A)∗. Even though the axioms
that we will state in Sec. are satisfied by infinite-dimensional quantum systems as well,
the derivation of Ref. [18] exploits the assumption that the spaces StR(A)# EffR(A) are
finite-dimensional. The generalization to the infinite-dimensional case is in progress.

Similarly to the case of states and effects, it is easy to check that every event E of type
A → B induces a well-defined linear map from St(A) to St(B). However, in order to
characterize the event E one needs the entire collection of of linear maps corresponding
to E ⊗IB for every system B. Events can thus be collected in equivalence classes
defined by the following relation: E ∼ F if and only if the linear map corresponding to
E ⊗IC coincides with the one corresponding to F ⊗IC for all systems C. We will call
the equivalence classes transformations. Notice that in general two events can belong to
different transformations even if E ◦ρ = F ◦ρ for every ρ ∈ St(A): this is because one
can still have (E ⊗IC)◦σ )= (F ⊗IC)◦σ for some bipartite state σ ∈ St(AC)

As a consequence of the linear structure of transformations, the coarse graining
{E ′

j} j∈Y of a test {Ei}i∈X corresponding to the partition {X j} j∈Y is provided by E ′
j =

∑i∈X j Ei. A refinement of a transformation E is a subset {Ei} j∈X j of a test {Ei}i∈X
such that E = ∑i∈X j Ei. If the transformation F belongs to one refinement of the
transformation E , we say that F refines E , and write F ≺ E . The set RE := {D |D ≺ E }
is called refinement set of E . A transformation E is atomic if F ≺ E implies F = λE
for some 0 ≤ λ ≤ 1. Atomic states are called pure. All states that are not pure are called
mixed. A state ρ of system A is completely mixed if Rρ is complete in StR(A).

A couple of deterministic states ρ0 and ρ1 is perfectly discriminable if there exists a
binary observation-test {a0,a1} such that ai ◦ρ j = δi, j.

A transformation E corresponding to a deterministic test is called channel. A transfor-
mation E of type A → B along with a channel D of type B → A with DB ≤ DA provide
a lossless compression scheme for the preparation test {ρi}i∈X ⊆ St(A) if D ◦E ◦ρi = ρi
for every i∈X. A lossless compression scheme for ρ is a compression scheme (B,E ,D)
that is lossless for every preparation test {ρi}i∈X with ∑i ρi = ρ . A compression scheme
for ρ is efficient if for every state σ ∈ St(C) there exists a state ρ ′ ∈ Rρ such that
σ = E ◦ρ ′. An ideal compression scheme for ρ is a compression scheme that is both
lossless and efficient.

Finally, in order to state the axioms we need the notion of reversible transformation,
that is any transformation U of type A → B for which there exists U −1 of type B → A
such that U −1 ◦U = IA, and U ◦U −1 = IB.

THE AXIOMS

We are now ready to state the principles. Every principle is a rule about possibility or
impossibility of performing a particular information processing task. Here is the full list.

A1 Causality. It is not possible to change the probability of a preparation event by
choosing an observation-test.
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A2 Local discriminability. If two deterministic states Ψ and Ψ′ in St(A⊗B) are differ-
ent, there exists a local observation-test on which they give different probabilities.

A3 Atomic composition. The sequential composition of atomic transformations is an
atomic transformation.

A4 Perfect distinguishability. Every state that is not maximally mixed can be perfectly
distinguished from some other state.

A5 Compression. For every state ρ there exists an ideal compression scheme.
P6 Purification. For every state ρ ∈ St(A) there exists a purifying system B and

pure state Ψ ∈ St(A⊗B) such that it is possible to simulate the preparation ρ by
composing the preparation Ψ with a deterministic effect on B. For a fixed purifying
system B, all purifications of the same state ρ differ by a reversible transformation
on B.

The first five principles are called axioms. We can think of a standard set of theories
that satisfy them, including classical information theory. The sixth principle has a differ-
ent status, and we call it postulate: Among the standard information processing theories,
purification is the principle that singles out Quantum Theory.

Causality

Causality in science is usually related to the cause-and-effect principle, and is often
naively misinterpreted as a restatement of determinism. From this point of view, it can
be surprising that we take causality as the first axiom of Quantum Theory, which is
popularly known as the theory of the uncertainty principle. However, in our precise
formulation, causality only implies that communication in an operational probabilistic
theory cannot occur from the output to the input. Indeed, the statement of the principle
implies that in an experiment like the following

p(i, j) := !"#$ρi
A %&'(a j

the choice of the observation-test {a j}i∈Y cannot influence the probability distribution of
outcomes pa(i) := ∑ j∈Y p(i, j) in the preparation-test. If this was the case, the observer
performing the preparation-test could infer a non-null information from occurrence of
one outcome, and this would provide a communication scheme from the observer per-
forming the observation-test to the one performing the preparation-test. The impossi-
bility of performing this task implies that the input-output relation reflects the direction
of information flow within an operational circuit. This fact in turn makes sense of the
interpretation of input and output as time-ordered systems. In order to better illustrate
this point, it is useful to introduce the following equivalent condition for causality.

Theorem 1 A theory is causal if and only if the deterministic effect eA for a system type
A is unique.

Using this result, we can exhibit a theory that is not causal. For this purpose, we need
to introduce the Choi correspondence between bipartite quantum states and linear maps
from system A to system B. Reminding that states of A are positive dA × dA matrices
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with Tr[σ ] ≤ 1, and StR(A) are Hermitian dA × dA matrices, one can prove that linear
maps M of type A → B are in correspondence with Hermitian dAdB × dAdB matrices
M as follows

M := M ⊗IA(|Ω〉〈Ω|), M (ρ) := TrA[(IB ⊗ρT )M], (3)

where |Ω〉 := ∑dA
i=1 |i〉|i〉 and XT denotes the transpose of X in the basis {|i〉}1≤i≤dA.

Transformations in Quantum Theory are represented by positive definite Choi matrices
E satisfying TrB[E]≤ IA, while channels are characterized by the identity TrB[C] = IA.

Consider now the theory whose system types are A → B, states of type A → B are
Choi representatives of quantum operations from A to B, and transformations of type
(A → B) → (C → D) are completely positive maps on the Choi matrices such that
whenever C represents a A → B channel, then M (C) represents a C → D channel. In
Ref. [23] it was proved that the most general map of this kind is represented by a positive
dAdBdCdD ×dAdBdCdD matrix E ≤ T for some matrix T satisfying

TrD[T ] = IB ⊗T ′, TrA[T ′] = IC. (4)

In particular, effects in such a theory are all operators 0 ≤ E ≤ IB ⊗ρ for some normal-
ized state ρ . The deterministic effect is not unique, since for every state ρ ∈ St(A) the
effect IB ⊗ρ is deterministic.

The violation of causality reflects the impossibility of identifying the input-output
direction with a definite time direction, because information flows both from input to
the output and backwards. Indeed, we have the following picture of the information flow
thanks to the underlying structure of Quantum Theory coming from Eq. (4) (see [23])

!"#$Ci
A → B

M j
C → D

=

C

U

A
Ci

B

V

D

E1 E2 %&'(Pj

A remarkable consequence of the causality axiom is no-signalling without interaction,
that can be viewed as the operational probabilistic analogue of Einstein’s causality. The
precise formulation of this principle is the following. It is impossible to influence the
probability distribution of outcomes of an observation-test on system A by choosing any
preparation-test on system B, unless systems A and B interact via a bipartite channel.

Indeed, the input-to-output structure of events induces a causal structure in every
circuit, in which one can find the notions of light-cone, of space-like separated events,
of time-like separated events. However it is only thanks to the causality axiom that
communication between every two space-like separated events is forbidden. Moreover,
the causal relation between any two events is invariant under a change of foliation on the
circuit, corresponding to a change of reference frame.

Finally, we would like to remark that while in the general framework probabilities of
events are defined only within a circuit of type I→ I, in causal theories events have prob-
abilities also within circuits of type I → A for arbitrary A. The transformations process
probability distributions, and in the presence of an outcome we have the transition from
a prior to a conditional probability. The input-output processing can thus be identified
with the information flow, which is not the case in non-causal theories. Moreover, thanks
to causality it is possible to identify the input-output orientation with the time arrow.
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Local discriminability

The second principle that we impose is local discriminability. The axiom can be
pictorially represented as follows

Ψ
!"#$ A

B != Ψ′!"#$ A

B⇔ Ψ
!"#$ A %&'(a

B )*+,b
!= Ψ′

!"#$ A %&'(a
B )*+,b

for some choice of local effects a ∈ Eff(A) and b ∈ Eff(B).
Local discriminability implies that even if a state is entangled—namely it does not

correspond to a mixture of local preparations—the information it contains can be ex-
tracted by local measurements. It is due to local discriminability that {a⊗b} is a span-
ning set for bipartite effects EffR(A⊗B), and thus DA⊗B = DADB. Finally, by simple
dimensionality check, this implies that also local states {ρ ⊗σ} are a spanning set for
StR(A⊗B). Then, as a consequence of local discriminability we can write any effect
A ∈ Eff(A⊗B) and any state Σ ∈ St(A⊗B) as follows

A = ∑
i, j

Ai j(ai ⊗b j), Σ = ∑
i j

Σi j(ρi ⊗ν j), (5)

for some real-valued matrices (Ai j) and (Σi j). The role of local discriminability is crucial
also for the following consequence.

Theorem 2 In a theory with local discriminability, transformations of type A → B are
fully characterized by the linear map E : StR(A)→ StR(B).

This result further highlights the importance of local discriminability, because it is the
principle that allows one to characterize a transformation by a local test, without the
need of checking it on every type of bipartite system. In a sense, local discrimination is
the ingredient that makes the characterization of transformations practically meaningful.

Atomic composition

The axiom of atomic composition implies the principle of pure conditioning [24],
namely the local composition of a pure bipartite state Ψ ∈ St(A⊗B) with an atomic
effect b ∈ Eff(B) produces a pure state b◦Ψ ∈ St(A). Atomic composition implies that
if we have maximal knowledge of some events A1, . . . ,Ak (i.e. the events A1, . . . ,Ak
are unrefinable), then we have maximal knowledge also of the history consisting of their
sequence, namely the event Ak ◦ · · ·◦A1.

Perfect distinguishability

This axiom, like the causality axiom, makes a quantitative statement about probabil-
ities. Combining perfect distinguishability with the other principles one can prove that
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all the probabilities in the theory will be derived from the probabilities of the discrim-
inating tests for non-internal states. More precisely, all effects can be written as linear
combinations of perfectly discriminating effects for non-internal states.

Notice that without perfect distinguishability there would be no principle granting
the possibility to encode classical bits on physical systems, and then the theory would
be all in all inconsistent with the elementary notion of classical information. Moreover,
in a fully probabilistic setting, the perfect distinguishability axiom recovers the logic
of propositions. Non-internal states encode truth values for the propositions, that can
be identified with the corresponding perfectly discriminating effects. However, as was
pointed out already in Birkhoff’s and von Neumann’s paper [6], the structure of propo-
sitions emerging from our construction will not be classical logic, but the lattice of pro-
jections of quantum logic. Actually, the lattice of projections plays an important role in
the derivation of Quantum Theory.

Compression

In classical information theory, compression is a crucial notion, that through Shan-
non’s first theorem provides an operational interpretation of the Shannon entropy. The
compression in Shannon’s Theorem has a quantum counterpart in Schumacher’s com-
pression theorem, which regards the asymptotic regime where a vanishingly small de-
coding error is allowed and provides an operational interpretation of the von Neumann
entropy. The notion of entropy in operational probabilistic theories raises tough prob-
lems, starting from the fact that entropy of a state is not uniquely defined. There are two
intuitive and equivalent definitions in the quantum case, but these are inequivalent in a
general scenario [25, 26, 27]. More severely, the interpretation of any of these quantities
as the asymptotic information compression rates fails in the general case [25].

To avoid these technical problems, in our compression axiom we focus on the case
of ideal compression, namely a compression that is perfectly lossless (no vanishingly
small errors) and maximally efficient for a single use of the scheme. In particular,
the axiom makes a statement about the systems existing in our theory, requiring the
existence of systems that provide a lossless and maximally efficient carrier for any
information source. The compression postulate, on more technical grounds, provides
a very restrictive constraint on the convex sets of states, imposing that the all faces of
a given set of states be be in one-to-one correspondence with sets of states of smaller
systems.

Purification

As we already mentioned, the first five axioms in our system provide the standard for
information-processing theories. It is the sixth principle, the purification postulate, that
captures all the features singling out Quantum Theory. Purification with causality and
local discriminability alone already produces an astonishingly wide range of crucial the-
orems like no-cloning, no-programming, information-disturbance tradeoff, the existence
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of a probabilistic teleportation scheme, the reversible dilation theorem for channels, the
Choi correspondence, the structure theorem for memory channels, the necessary and
sufficient conditions for error correction. For the proofs see Ref. [19].

The main consequence of purification for the purpose of deriving the Hilbert space
formalism is the analogue of Choi correspondence, that is derived from the existence of
a probabilistic entanglement swapping scheme. The correspondence reads

Theorem 3 (States-transformations correspondence). Let Θ be a causal theory with
local discriminability and purification. For every system type A of Θ there exists a
system type B and a pure state Ψ ∈ St(A⊗B) such that the correspondence between
transformations T of type A → C and states R ∈ St(C⊗B) defined as

RT := (T ⊗IB)◦Ψ, (6)

is bijective.

As a consequence of this correspondence the sets of transformations of any type are
completely specified provided all state sets are specified. As a consequence we have the
following crucial theorem

Theorem 4 (States specify the theory). Let Θ and Θ′ be two causal theories with local
discriminability and purification, and with the same system types. Then if the state sets
of Θ and Θ′ are the same, the theories coincide.

The importance of this theorem for the derivation is easily understood: If we prove
that our axioms imply that the states of our theory are positive definite matrices with
trace smaller than one, then we can conclude that our theory is Quantum Theory.
More precisely, states are density matrices, effects are positive matrices bounded by
the identity, and transformations are completely positive trace-non-increasing maps.

Finally, another very important consequence of purification is the dilation theorem for
transformations.

Theorem 5 (Reversible dilation of tests). For every test {Ci}i∈X of type A → B,
there exist a system C, a pure state Ψ ∈ St(C ⊗ B), a reversible channel U of type
(A⊗B⊗C)→ (A⊗B⊗C), and an observation-test {ci}i∈X on C such that

A
Ci

B
=

Ψ
!"#$ C

U

C %&'(ci
B A )*+,e
A B

(7)

It is possible to prove that the statement of Theorem 5 is in fact equivalent to the
purification postulate.

One might be tempted to say that the purification postulate, and in particular Theorem
5, shows a bias in favor of the many worlds interpretation of quantum theory [7].
However, two important remarks are in order. The first one is that standard Quantum
Theory does satisfy the purification postulate, and thus the many world interpretation is
not favored by theories with purification more than it is favored by standard Quantum
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Theory. The second remark is that the purification postulate should be interpreted as a
postulate about information processing and not about the ontology of processes: every
test can be perfectly simulated by a scheme as in Eq. (7). This does not imply that
any test is necessarily of this form. As far as no further axiom is assumed about the
mechanics (like reversibility of the dynamics of closed systems), then the many world
interpretation is as acceptable as any formulation of Quantum Mechanics in which a
spontaneous collapse is assumed. From this point of view, our formulation of Quantum
Theory is interpretation-neutral.

CONCLUSION

In conclusion, it is worth stressing that our work consisted in a derivation of the Hilbert
space formalism for Quantum Theory, which provides the syntax to describe experi-
ments in the quantum world. However, we did not address semantics questions, like
“Which physical quantity is measured in this test?" or "How should we choose the
Hamiltonian for a given system?". For example, it is easy to show from our axioms
that every one-parameter group of reversible transformations will be represented by uni-
tary operators of the form Ut = exp[−iHt] for some self-adjoint operator H. However,
the interpretation of H as the energy of the system does not follow from the axioms. In
other words, our derivation allows one to reconstruct the kinematics of Schrödinger’s
equation, but not the mechanics associated to it: The mechanics should instead emerge
from an equivalent informational derivation of quantum field theory [28].
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