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Tomographic measurement of the density matrix of the 
radiation field 

G M D’Ariano 
Dipanimento di Fisica ’A Volra’, via Bassi 6,1-27100 Pavia, Italy 

Abstracr Recently a novel homodine tomographic technique has been proposed which allows 
us to detect the density matrix experimentally in terms of averages on data. The method has 
been further exrended to a general matrix element (+l6lq) of the density operator 6, along with 
the possibility of using low-efficiency detectors. In this paper this technique is remusidered as 
a new genuine quantum measurement. Numerical resuits for measured probabilities are given. 
and the mechanism underlying the genesation of statistical mrs in the measured matrix is 
illusirated. It is shown that the data prQcessing of the novel technique can also be used as a 
new imaging algorithm for conventional tomography. 

1. Introduction 

In quantum optics, differently from the quantum mechanics of particles, one has the unique 
opportunity of measuring all possible linear combinations of position $ and momentum J? 
of the oscillator field mode a. This can be achieved by means of a balanced homodyue 
detector, which measures the quadrature .?# = $(atei+ fae-’d) at any desired phase C$ 
with respect to the local oscillator. The homodyne-tomography technique originated from 
the idea that the collection of probability distributions [ p ( x .  4)]4Ep3,n, is just the Radon 
transform (or ‘tomography’) of the Wigner function W(or,G) [l]. By inverting the Radon 
transform one can obtain W(u, G )  from p ( x ,  6) and then from W(a ,  G )  one recovers the 
matrix elements of the density operator 8. This is the basis of the method proposed by 
Smithey et a2 [2] to detect the density matrix experimentally. However, the inversion of 
the Radon transform needs rutnlytic knowledge of p ( x ,  4). and hence, strictly speaking, this 
method is not a measurement of the density matrix. In fact, the inverse Radon transform 
is achieved by ‘filtering’ data, as in the usual x-ray medical tomography, and a suitable 
cur-off is required which sets the resolution for W(cu, Cf.  The data filtering is equivalent to 
a set of assumptions on the quantum state (in the end it is just a ‘fit’ on a priori analytic 
forms for p(x,C$)).  Moreover, setting the resolution for W(ar,G) in advance makes the 
state ‘more classical‘, thus losing the most interesting features which the experimentalist is 
looking for. 

In [3] D’Ariano et al presented a new technique which provides the mamx elements in 
the number representation simply in terms of averages on data, avoiding the evaluation 
of W(cu,G) as an intermediate step. In this paper I will show that this method 
actually corresponds to a genuine measurement of the density matrix. More recently, 
D’Ariano et nl [4] addressed the problem of experimentally ‘sampling’ a general matrix 
element (ql&). They also showed that experimental sampling is also possible for 
non-unit efficiency q at the detectors, provided that q satisfies a lower bound related 
to the ‘resolutions’ of vectors 19) and \yo) in the quadrature representations. Hence, 
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not all matrix representations can be measured, nor are ‘experimentally equivalent’: 
however, for coherent and number-state representations the matrix can be measured for 

In this paper the homodyne-tomography technique of [3,4] will be reconsidered as a 
new type of genuine quantum measurement. Part of section 2 (from equation (3)) and 
sections 3 and 4 are a short review of I4J). In section 5 I will describe the mechanism 
underlying the generation of statistical errors in the measured mahix, showing that non- 
unit efficiency produces errors that dramatically increase for large numbers of photons 
in the matrix indices. Numerical results will be given for the tomopphically measured 
number probability. In section 6 I will give samples of a tomographic reconstruction 
of the Wigner function from the measured matrix elements. In section I I will briefly 
explain how the ‘data processing’ algorithm of the present method can also be used 
as a new tool for conventional tomographic imaging and for image compression: more 
details on this topic will be available in a forthcoming paper with Macchiavello and 
Paris. Finally, section 8 concludes the paper with a summary of the most relevant 
results. 

q > + .  

2. Basis of the method 

A homodyne tomography of a single mode a of the field is an ensemble of repeated 
measurements of the quadratures 24 = 4 (at24 + ae-i4) scanning the phase @ E [0, n) 
relative to the local oscillator. The quadrature 24 is measured by means of a balanced 
homodyne detector (see figure 1). 

The aim is to measure a matrix element (+I&) between vectors + and p from the 
random outcomes x of 2+. Strictly spe&nz, by ‘measurement’ I mean the following 
sequence of actions: 
(i) Collecting datu: get many outcomes x of 24 with 4 E [0, n). 
(ii) Processing datu: evaluate functions x + f&, 6) whose (theoretically given) analytic 

form depends parametrically on the vectors + and (0. 

(iii) Averaging datu over x and 4: f&, @) + f$&, @) ($I&). (In the following 
theoretical and experimental expectated values are identified by the same symbol.) In 
terms of the probability densities p(x ,  @) the average of a function f is given by 

The averaged function f*q will also be referred to  as^ the ‘kemel’ or ‘data processing 
rule’. 

Figure 1. Scheme of tomographic detection of the density “ix (*161Q) 
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(iv) Evaluating errors: confidence intervals S(@I&o) are obtained according to the central- 

Notice that the above operational definition of measurement does not include any kind of 
smoothing or best fit. The resulting outline of the experimental set-up is sketched in figure 1. 

The previous definition of measurement leads to the following general rule: . the matrix element (@lGlq) can be measired if and only if the kemel fq&,$) is 
bounded versus x and $5. 

Boundness of the kemel guarantees that every kemel moment is also bounded for all 
possible (a priori unknown) probability densities p ( x ,  $). Then, according to the central- 
limit theorem one has that: 
(i) the matrix element can be sampled on a sufficiently large set of data; 
(ii) the average values for different experiments will be normal-Gaussian distributed around 

the 'true' value, allowing estimation of confidence intervals ('errors'). 
Now we can readily see that the Wigner function cannot be measured  by^ optical 

limit theorem. 

homodyne tomography. In fact, the Wigner function is defined as 

and changing to polar variables A = (i/2)re* and evaluating the trace on the eigenvectors 
( [ x + ) ]  of P+, we obtain 

with e+ = Re(ae-'+). Equation (3) just states that W ( a ,  5) is the inverse Radon transform 
('back projection') of p ( x ,  4). Now we write (3) in the sampling form (1) by exchanging 
integrals over $ and x with respect to the outer integral over r. We have 

where the kernel K ( x )  is given by 

In equation (5) P denotes the Cauchy principal value. From equations (4) and (5) it is clear 
that W ( a ,  6) cannot be measured (E statistically sampled), because the kemel K ( x  -a+) 
is unbounded as a function of x and $. This is the reason why the method of [2] is not a 
measurement of W ( a . 5 )  nor of (@I&). 

In order to obtain the data processing rule for measuring a general matrix element 
(@[&) we seek a sampling formula in the form 

Starting from the operator identity 

(7) 
6 = / d2A Tr (Ge"'-") &--hot 

by the same change to polar variables of (3), we obtain 
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Using the resolution of identity in terms of the eigenvectors &+)) of i+ and exchanging 
integrals we have 

where again K ( x )  = - ips .  Taking the matrix elements of both sides of (9) we obtain the 
desired sampling formula 

The matrix element ($lGlq) can be measured if the kemel ($ lK(x  -i+)Iq) in (10) is 
bounded as a function of x and 4. Notice that the matrix element ( @ l K ( x  - 26)lq) can 
be bounded despite the kemel K ( x )  not being bounded (as an example, consider the delta- 
function S(x - ?+) = Ix)++(xl: then the expectation value between coherent states is just 
the Gaussian (alJ(x -?+)la) = fiexp(-Z [x - Re(aeC'@))l2)). 

Before analysing specific matrix representations, let us generalize (IO) to the 
case of non-unit quantum efficiency [4]. Low efficiency detectors in a homodyne 
scheme simply produce a probability p q ( x , @ )  which is a Gaussian convolution of 
the ideal one p ( x , @ ) .  In terms of the generating functions for the i+-moments one 
has 

(11) 
+m I-r) 

d r p , ( x ,  @)e'" = exp(--r2) 
8rl 

Upon substituting (11) into (8) and following the same lines that lead us to (9), one has the 
sampling formula for low-efficiency detection 

where now the kemel is given by 

3. Measurable representations and general bounds 

In equation (13) the matrix element (@IKq(x -2+)Iqp) is bounded if (@\e-ir2+lq) decays 
faster than exp [-(1 - q)r2/8q].  In order to evaluate the detailed balance of Gaussians 
in (12) and (13) we introduce the concept of 'resolution' E$(@)  of the vector @ in the 
+representation 

The resolution E$(@)  represent the Gaussian decay length of the probability 1+(x1@)I2 versus 
x ,  with the rule that E;(@) = O  and E$(@)  = 00 for functions decaying faster and slower 
than the Gaussian, respectively. Then, let us consider the averaged ('reduced') resolution 
of the two vectors @ and q 
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In terms of cZ(q4) it is easy to state the balance between the decay of (+le-ir’*lq) and the 
enhancement of the anti-Gaussian in (13). Taking into account that the Fourier transform is 
equivalent to a unitary rotation by 5 (i.e. i+ + ?++$), one can readily assert that the mabix 
element (+IK(x  - i+)lq) is bounded if the following inequality is satisfied for q4 E [O, r): 

(16) 
I ‘ > 1 + 4 E 2 ( 4 )  ’ 

Upon maximizing (16) with respect to q4 we obtain the overall bound 

E > 4- (17) 
where 

Hence, in conclusion: 

the matrix element (+l&o) can be measured if the minimum reduced resolution of 
vectors + and q4 in the quadrature representations satisfies the bound (17). 
In the next section we will consider some particular density matrix representations of 

interest for applications. 

4. Data processing rules for some relevant representations 

4.1. Quadrature represenfation 

The resolution is E = 0 (delta-function): hence it is not possible to measure the,density 
matrix in this representation, even for q = 1. 

4.2. Coherent-state representation 

The resolution is 6 = $: according to (17) the density matrix can be measured for q > i. 
The data processing rule is given by 

(19) 
with K = Jq/(2q - l), WO = $(p&+ + Ge-’O) and +(a, 0; z )  denoting the degenerate 
hypergeometric function. 

4.3. Number-state representation 

The resolution is E = 4: the matrix element can be measured for q > $. The data processing 
rule is given by 

( a l ~ ~ ( x  - i+) la)  = 2K’(aei+lp&+) e-z(Kx-u+y +(-$, 1; 2 ( K x  -to+)’) 

(20) 
In equation (20) Do(z) denotes the parabolic cylinder function. Notice that the 
data processing rule does not contain any dimensional truncation of the Hilbert 
space. 



698 G M D'Ariano 

4.4. Squeezed-state representation 

The leading term in (14) comes- only from the squeezed vacuum (the coherent part 
just shifts the quadrature). For a squeezed vacuum with squeezing parameter s, the 

probability of the quadrature 26 is the Gaussian I+(xl+)Iz = exp(-Z$x2), where 
s+ = Is; sin4 -is-+  COS$^-^. Hence, the smallest resolution is E = $min(s, s-') and the 
matrix element can be measured for q > 11 + min(s, s-')]-'. 

5. The number-state representation: statistical errors 

Particularly interesting is the possibility of recovering the density matrix in the number-state 
representation even for quantum efficiency 0.5 < q < 1. In this section we analyse in more 
detail the analytic form of the kernel (ZO), also in order to understand the mechanisms 
producing statistical errors in the measured matrix elements. 

In figure 2 the kernel (nlK,,(x -?+)In + d )  is plotted versus x for 4 = 0 at different 
values of q 9  n and d. One can see that for q = 1 the range of the plots is essentially constant 
(between -2 and 2), and increases slowly for large distances d >> 1 from the diagonal. 
However, for increasing n the kernel oscillates quickly, with a large number of nodes. 
Fast oscillations make the average of the kernel-hence the measured value (nlfjlm)-more 
sensitive to fluctuations of the random outcomes x of the quadrature, resulting in larger 
confidence intervals. On the other hand, a constant range makes the errors bounded, so they 
will saturate at large n's. 

For q < 1 the behaviour of the kernel changes dramatically, with the range increasing 
versus n, more and more quickly as q approaches the lower bound q = 0.5. In this case 
the resulting errors will increase rapidly versus n, and more data will be needed to 'clean 
out' the noise due to non-unit efficiency. 

In figures 3 and 4 the number probability distributions for squeezed states are given 
from homodyne computer-simulated data: the behaviour of the statistical errors (the shaded 
area around the horizontal lines) is qualitatively different for q = 1 (figure 3) and for 
q = 0.8 (figure 4). Figure 3 shows the Wheeler-Schleich oscillations [6] of a squeezed 
state. Figure 4(a) gives the probability for a squeezed vacuum measured for q = 0.8, 
whereas figure 3(b) gives the probability for the same data at q = 0.8, but measured using 
the kernel with q = 1: this shows the smearing effect of improper accounting for quantum 
efficiency. From both figures 3 and 4 it is evident that the present method allows us to 
recover delicate interference oscillations of non-classical states. The statistical reliability 
of measured values and confidence intervals have been carefully checked on many Monte 
Carlo simulations for different kinds of states (see [3]). Here in figures 5 and 6 some checks 
are reported for coherent states. 

6. Wigner function from the density matrix 

Despite the fact that the Wigner function cannot be measured directly through homodyne 
tomography, it can, however, he reconstructed from the measured density matrix in a 
dimensionally truncated Hilbert space. This can be achieved using the formula 
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Figure 3. Tomographic reconsmction of the wheelerschleich oscillations of a squeezed state 
with (A) = 13,5125 and 6.05 squeezing photons. Confidence intervals are represented by the 
shaded area around the horizontal lines. Detection efficiency is I) = 1. Homodyne data are 
computer simulated. The plot on the right corresponds to 100 expenmenis of 2600 phases with 
100 data each. On the left only 10 aperimenu with 260 phases (LOO data each) have been used. 
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Figure 4. Tomographic reconsmction of the photon-number probability of a squeezed vacuum 
((i) = 1) with detection efficiency q = 0.8. Homodyne data are computer simulated. (Here we 
averaged over 21 phases using 200 blocks of 5 x IO5 data for each phase) Experimental errors 
(confidence intervals) are represented by the shaded area around the horizontal lines. (a) Exact 
reconmuction based on (20). (b) Reconsmction from the same data without taking into account 
quarum efficiency (namely using (20) for I )  = 1). 

which in the number representation is rewritten as the Fourier transform 
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Figure 5. Normalization and mixing of~the rewnsvuued density matrix versus the number 
data for each experiment (subenscmble of dam) for a coherent state with (n) = 8. Detection 
efficiency is 11 = 1. E m  bars are estimated on a set of five experiments. 
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Figure 6. Distribution of normalized deviations froi 
theoretid Values AQ.., (&m - Qn,n)/Fn,m for the 
first 30 x 30 yatrix elements. Detection efficiency is 
q = 1. The quanNm state is a coherent one with 
(n) = 4. The histogram pertains to IOW experiments 
with 27 scanning phases each, and 200 measurements 
for each phase. A standardized Gaussian c w e  is 
superimposed. 

A(n, d: lwI2) = (-)"2(2 - 8do)12ald -e-Ziai2L~(120r12) (23) 

and where L f ( x )  denote Laguerre polynomials. The Hilbert space truncation of the sums 
in (22) sets a sort of resolution for the reconstruction of W(a,  G). This kind of resolution 
mostly affects the angular direction (versus arg(w)). whereas radial oscillations come from 
the hguerre polynomials as a function of [w I. It follows that despite the truncated dimension 
of the matriv is relatively small, the natural quantum oscillations in the Wigner functions 
are easily recovered (the truncation of the Hilbert space is set according to normalization 
checks). 

J (n + n!  d)! 
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Figure 7. Superposition of two symmetrical coherent states with (n) = 5 photons each. W@ff 
functions reconstructed with a tomographically measnred density matrix truncated at a maximum 
of 31 photons, Detection efficiency is q = 1. 100 experiments and 100 measurements for each 
phase (Mi), 10000 experiments and 1wO measurements for each phase (right). For all plots 27 
scanning phases are used. 
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Figure 8. Superposition of four symmetrical coherent states with (n) = 5 photons each. Wgner 
functions reconstructed with a tomographically measured density matrix truncated at a maximum 
of 31 photons. 100 experiments and 100 measurements for eaoh phace (left), 1000 ~xpOrimcnts 
and 1000 measu~~ .mts  for each phase (right). For all plots 21 s d n g  phases are used. 
Detection efficiency is q = 1. 

In figures 7 and 8 the Wlgner function of Schrodmger cat states are given as 
reconstructed from homodyne computer-simulated data It is clear that the old filtered- 
Radon-transform method 121 would require small cut-offs to recover such Wigner 
oscillations, thus needing much larger sets of data to be processed. 
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Figore 9. W g w  funion of a S&Shger cat sate 
(superpasition of hvo coherent states with 1 photon 

-2 0 2 each). Reeonstruetion with ‘I = 0.8. Here 26 phases 
are used with 108 dag each. ’the truncated dimension 
of the Hilbert space is 10 photon mardrr” M a )  

7. ‘Classical’ and quantum imaging 

The reconstruction of the Wigner function from a tomographidy measured density matrix 
can also be regarded as a new tool for imaging. In fact, it,is essentially a new kind of 
regularization of the inverse Radon transform. Corresponding to an image (E density) 
W ( a ,  G) in the complex plane-detected from its radial projections p(x ,  @)-one  has a 
density matrix en,m which is no longer positive definite when the image W(0r.G) does 
not correspond to a genuine Wigner function (namely, that obeys Heisenberg relations for 
quadratures i+). The imaging resolution is set by the truncated Hilbert space dimension dx, 
and the image is ‘compressed‘ into the truncated density matrix The distance 
between the ‘true’ and the ‘reconstructed‘ images is given by 

which is just the Hilbert distance between the true and the reconstructed density matrix. It is 
clear that the method can be used for both deterministic p ( x ,  @) (namely, analytically given) 
and for data random distributed according to p(x ,  4). However, the method is particularly 
convenient in the latter case, whereas in the former it is just an image compression to&. 

A typical situation for imaging from random data can be depicted as follows. Im 
equipment for x-ray tomography using very low fluxes. Instead of collecting the 
p ( x ,  c$) of radial x-rays for various @‘s (then evaluating the filtered 
collects the locations (x)+ of the (not-too-many) photons along the line 
@-direction. Then, from the locations {XI+  one obtains the density matrix a,,,, using (ZO), 
and finally with (22) one reconstructs the image W(a,  G). 

In figure 10 the image of the letter ‘a’ is reconstructed from simulated radial data. It is 
evident that the image is ‘classical‘ (it does not correspond to a genuine quantum Wigner 
function), because the relevant details of the image are much smaller than the Planck cell-a 
unit square in this plot. 
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Figure 10. Imaging of the letter ‘a’: the data 
pmceuing rule in (20) and (7.2) is used as a 
new kind of regularl?ation of the inverse Radon 
transform Radial data are computer simulated 
(IO expimeno with 100 phases, 1000 data 
each). 

8. Conclusions 

The method described in this paper is a genuine measurement of the density matrix. 
Data processing does not rely on a priori statistical hypotheses, and the analytic form 
of the processing is derived theoretically without approximations. The statistical reliability 
of confidence intervals is based on the central-limit theorem, with excellent checks on 
Monte Carlo simulations. We have seen that some matrix representations cannot be 
measured-the quadrature and the Wigner-whereas others can-the number and the 
coherent representations for q 1 On the basis of computer-simulated experiments we 

2:  have seen how delicate quantum oscdlations of probabilities can be detected experimentally, 
also overcoming the smearing effect of non-unit efficiency. Finally, I showed that the 
method itself can be used as a new imaging andor compression algorithm for conventional 
tomography, with the greatest advantage being in the presence of random data. 
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