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Abstract. We study both systematic and statistical errors in radiation density matrix
measurements. First we estimate the minimum number of scanning phases needed to reduce
systematic errors to below a fixed threshold. Then, we calculate the statistical errors, intrinsic
in the procedure that gives the density matrix. We present a detailed study of such errors
versus the detectors’ quantum efficiengyand the matrix indices in the number representation,

for different radiation states. For unit quantum efficiency, and for both coherent and squeezed
states, the statistical errors of the diagonal matrix elements saturate forlahgeontrast, off-
diagonal errors increase with the distance from the diagonal. For non-unit quantum efficiency
the statistical errors along the diagonal do not saturate and increase dramatically versus both
1 — n and the matrix indices.

1. Introduction

The possibility of investigating quantum radiation states by homodyne detection techniques
has raised much interest recefjtly In particular, progress has been made on the
determination of an exact method to detect the density matrix directly from homodyne
measurements, in any representation, without resorting to using any smoothing or filtering
procedure on the experimental data [2-4]. Such a method can be summarized as follows.
By means of homodyne detection, the field quadrafiyre- (a'€? + ae~'#)/2 is measured
at any desired phase shiftwith respect to the local oscillato# { anda are the creation and
annihilation operators of the field mode). Then the density matrix elements are obtained
by using averaging functions, called ‘kernel functions’ (or ‘pattern functions’), on the
experimental data. We call this procedure ‘homodyning the density nftiie’distinguish
it from the methods used previously, where the density matrix was reconstructed after
evaluating the Wigner function as an intermediate step (the ‘quantum tomography’ [6-8]).
The present method takes into account the detectors’ quantum efficiency, which must be
greater than 0.5 for measuring the density matrix in the number representation [3].

In this paper, we investigate numerically the main features of systematic and statistical
errors in homodyning the density matrix, for both unit and non-unit quantum efficigncy
at the detectors. In section 2 we briefly recall the direct method of homodyning the density

§ E-mail address: dariano@pv.infn.it

| A review on methods to measure quantum states of radiation is given in [1].

9 A recent review on both the new direct method for reconstructing the density matrix from homodyne data and
the previous tomographic methods is given in [5].
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matrix. Since each matrix element is given by an integral over scanning phases, the number
of which is necessarily finite, non-negligible systematic errors arise if the number of phases
is not large enough. Thus, in section 3 we estimate numerically the lowest yafoe the
number of phaseg, needed for an accurate measurement of a radiation state. In particular,
we study the dependence ¢§ on the average number of photons and on the degree of
squeezing of the state. We also show the convergence of some reconstructed matrix elements
towards their respective theoretical values as functiong.olin section 4 we introduce the
statistical errors of the measured matrix elements. We study the errors as functions of the
matrix indices and of the quantum efficiency, for both coherent and squeezed states. We
show that, forp = 1, the statistical errors of the diagonal matrix elements saturate for large
n: this result is also obtained analytically, after introducing an asymptotic approximation
for the kernel functions. In contrast, the off-diagonal errors increase with the distance from
the diagonal. For ® < < 1, we show that the statistical errors along the diagonal do
not saturate and increase dramatically versus bothnland the matrix indices. Due to

such statistical errors, it is not convenient to use the measured density matrix elements to
evaluate the expectation values of generic observables. Therefore, at the end of section 4
we consider the possibility diomodyning the observablee. measuring the expectation
value of an observable directly by sampling an appropriate kernel function experimentally.
In particular, we consider the number of photons and we calculate the precision of this kind
of measurement. In section 5 we conclude the paper and in the appendix we report some
useful calculations in detail.

2. Homodyning the density matrix

We briefly recall the method for homodyning the radiation density matribXOur starting
point is the operator identity [3]
Y Y |
=| = dk—- Tr[pekie]e . 1
p fo - K _d [pe"] @)
The trace in equation (1) can be written in terms of quadrature probability distributions
py(x, ¢) at phasep: for the detectors the quantum efficiengy< 1, such distributions are

related to the ideal onej(= 1) by a Gaussian convolution so that in terms of characteristic
functions one has

Tr [ﬁelki?qﬁ] = e[(lfn)/Bﬂ]sz dx pr](X, ¢)eikx. (2)
After exchanging integrals ovérandx, equation (1) reads

. T d oo A

p= / —‘f’f dx p,(x. §) K" (x). €)

0 T J-x

In equation (3), the kernel operat&i;” (x) is defined as

I%q(:}) (x) — ei(ﬁu*a "}('7) (.X)eii(ba.ka (4)
with

g(n)(x) — /Oo dk@e—(Zn—l)kZ/Sn-&-ikx . e—ik(amra)/z . (5)

w4

(where : : denotes normal ordering). The operat6i(x) can also be written as
D (x) = 0,4 (x) (6)
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with
t ; 2.2 vy 2
A0 (x) = /2y : @@ H0%/2 g2 / dr e )
0

and y = +/n/(2n — 1). Notice that, equivalently, one has
t 2 2.2 \/é)(x 2
ﬂ(n) (x) = \/éxef(a +a)d, /2 73"'/8972)( X / dr & (8)
0

where the antidiffusion operator e(>epaf/8) is due to normal ordering in equation (7).
From equation (3), it is clear that the density matrix elements are evaluated by averaging
the kernel functions (i.e. the matrix elements of the kernel opeﬂé(t@r(x)) calculated for
random homodyne outcomes. As the experimental data are distributed according to the
probability p,(x, ¢), such an average gives a measurement of the density matrix. In other
words, the density matrix is measured by sampling the kernel functions experimentally.
The kernel functions for homodyning the density matrix are written in the following.
We have carried out our analysis in the number representation, dogater than the lower
bound 0.5 (it has been shown that 0.5 is a universal lower bound for any representation

[5D).

2.1. Unit quantum efficiency

Forn = 1, equation (7) reads
t : 2 Vax 2
f(x) = /2 @@tz g2 / drée. (9)
0

A simple and fast algorithm is derived after writing the functigngi(x)|m) in a factorized
form. This technique was first introduced by Richter [9] for diagonal matrix elements and
was later generalized to off-diagonal matrix elements by Leonhetrdtl [10]. In the
appendix we present a simple and alternative derivation which, in our opinion, is useful for
further developments. The kernel functions, calculated from equations (4), (6) and (A9),
read

(m + d|R 5" ()m) = € [4x1,, () V0 (6) — 2/ + Lty 41(X) Vyra ()
—2v/m +d + Luy () ras1(x) ] (10)

where the functions:;(x) and v;(x) are, respectively, the normalizable and the non-
normalizable eigenfunctions of the harmonic oscillator (corresponding to eigenyalue

2.2. Non-unit quantum efficiency

Forn < 1, no factorization for functiong:|fi(x)|m) is known at present. In this case, from
equations (4) and (5) we obtain the following form for the kernel functions [3]:

& () _ ddéoydv2 | M —x %2

DI (Z fj) (@0 +d + Dlx* Re{ (=) D_urara(-2ixx)}  (12)

v=0

where D; (¢) denotes the parabolic cylinder function.
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3. Systematic errors

In equation (3) the density matrix is given by an integral over the phase with respect to
the local oscillator. In order to avoid any systematic error, one should homodyne the
density matrix at perfectly random phases. This is the case of the experimental method
of Munroe et al [11], where the photon number probability distribution is measured by
homodyne detection: in such a measurement no knowledge of the phase is needed, because
the diagonal kernel functions are independentpofHowever, for measuring off-diagonal
matrix elements the knowledge of the random phase is essential, and it is difficult to achieve.
In such a situation, the phase integral is usually performed by a phase scanning, asin [7]. An
insufficient number of phases generates systematic errors, leading to values for the density
matrix elements that are different from the true values. Therefore, in the experimental
determination of the density matrix one has to eliminate these systematic errors as a first step.
The criterion adopted here to establish the degree of accuracy in a measurement is based
on theabsolutedeviation of the measured matrix elements from the ‘true’ matrix elements.
For eacho(n, m) = (n|p|m), obtained from equation (3), we consider the absolute deviation

e(n,m) = |p(n,m) — p;(n, m)| (12)

where p,(n, m) is the true (theoretical) density matrix element. For a fixed state, the set
fe(m,m)} (n,m = 0,1,...) depends on the number of scanning phagessed in the
experiment (the number of experimental data per scanning phase is kept fixed). We have
an accurate matrix measurement when the maximum deviation is reduced below a fixed
thresholds, for example, if§ = 1074,

€ = maXe(n, m)} < 1074 n,m=0,1..)). (13)
Let us show how the accuracy depends jrfor different known radiation states. For

fixed values ofs, the measurement accuracy increases with\Ve expect that the more a
radiation state is either displaced or ‘asymmetrically’ distributed in phase space, the higher
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Figure 1. Minimum number of scanning phasep Figure 2. Absolute deviatione(n,m) versus f for
required by the conditiom < 10~* versus the mean a coherent state withi) = 4: (n,m) = (5,5)
number of photons(n) for coherent states (circles), (circles), (n,m) = (10,5) (triangles), (n,m) =
squeezed states with = 0.6 (triangles) and- = 1 (18, 5) (squares). The theoretical matrix elements are
(squares). (The matrix dimensions are fixedifgx =  p;(5,5) = 0.156 29 p,(10,5) = 0.028 76 p;(18,5) =
47.) 0.00017.
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Figure 3. Absolute deviatione(n, m) versus f for Figure 4. Absolute deviatione(n, m) versus f
a squeezed state witth) = 4,r = 1. (n,m) = for a squeezed state withn) = 4, r = 1:

(5,5) (circles), (n,m) = (10,5) (triangles),(n,m) =  (n, m) = (10, 10) (circles),(n, m) = (10, 9) (triangles),
(15,5) (squares). The theoretical matrix elements arén, m) = (10,0) (squares). The theoretical matrix
0:(5,5) = 0.04182 p,(10,5 = 0.03231 p;(15,5 = elements arep,(10,100 = 0.02495,(10,9) =
0.01852. 0.024 18 p,(10, 0) = 0.09307.

f must be. This is indeed the case. In figure 1 we show the minimum number of phases
fo needed for an accurate measurement of coherent and squeezed ftatessases with
both the average number of photofi$ and the squeezing parametet

We point out that far off-diagonal kernel functions oscillate very quickly as functions of
¢, thus the larger the matrix dimension, the larggris. However, the main result, i.e. the
increase offy with (n) andr, does not change. Indeed, both an increase and a decrease of
the matrix dimension merely shift the plot in figure 1 towards either higher or lower values
of fo. In the following we setima = 47.

A comment about our choice for the accuracy criterion is now in order. Our purpose
is to show the dependence ¢§ on the average energy and on the ‘asymmetry’ in the
phase space. This is achieved by calculating the absolute devi@i@ens:)}: indeed, the
systematic errors are independent of the size of the theoretical matrix element

We briefly show the dependence on the number of phgsder measurements of
individual matrix elements. We expect that for off-diagonal matrix elements the number
of phases needed for an accurate measurement is larger than for diagonal ones, due to
faster oscillations of the integrand in equation (3) vergusFor coherent states this is
generally true, as shown, for example, in figure 2, whe® 5) < 10~ for f > 14 and
€(18,5) < 10~* for f > 24. For squeezed states the behaviour on the distance from the
diagonal is more complicated. In many cases the same result of coherent states is found, see
for example, figure 3, where the diagonal elemer®, 5) converges faster than(10, 5)
and p(15,5) for large enoughf. However, there are exceptions to this behaviour. As

an example, in figure 4 we show the asymptotically slower convergenpél®f 10) with
respect too (10, 9) and p (10, 0).

1 For the squeezing parameterone has(i) — sint? r = |(a)|2.
i In [12] it has been shown analytically that if the density matrix is truncated (i.e. no quantum numbers higher
than f — 1 are excited) therf phases are sufficient for measuring the density matrix without systematic errors.
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4. Statistical errors

The statistical errors on the measured matrix elements are calculated in terms of the errors
on real and imaginary parts of the matrix. For a matrix element m) the real part of the
statistical variance is defined as

g d oo n
Rez{a(n,m)}zf0 ;qs/ dx p,(x. ¢) RE {(n| K" (x)|m)} — RE{p(n, m)} (14)

and analogously for the imaginary part. The experimental error of the measurement is
obtained by rescaling the amplitudes(n, m)| by a factor /N, where N is the total
number of experimental data points. For simplicity, hereafter the quantitym) will be

called the statistical error. The statistical errors turn out to be independghtfof > fo.

Thus, we focus our attention on the general features of thqos@t m)} for different
radiation states, at fixed. First we show the results for unit quantum efficiengyand

later we will consider the dependence n

4.1. General features for unit quantum efficiency

For coherent and squeezed radiation states, the real and imaginary parts of the statistical
errors exhibit a similar behaviour as functions of the matrix indices (with the major exception
of the matrix diagonal, where obviously {m(z, m)} = 0). Thus, without loss of generality,
we can show our results in terms of the amplitugte&:, m)|.

In figure 5 we report the matrix of errofg (n, m)| for a coherent state witth) = 4. The
contour plot shows that errors increase with the distahee|n —m| from the diagonal. This
is related to the analytical form of the kernel operator. In particular, for fixeall the kernel
functions are oscillating functions of [13]. Moreover, for increasing the oscillations
become faster and the oscillation range slowly increases. If a kernel function oscillates
quickly, its statistical average becomes more sensitive to fluctuations of the experimental
data and, therefore, the statistical errors must increasedwith
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Figure 5. Statistical error amplitudegr (n, m)| for a  Figure 6. |o(n,n)| for a coherent state witki) = 4
coherent state witln) =4 (n = 1). (circles) and a squeezed state witt) = 4,r = 1
(triangles) ¢ = 1).
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Figure 7. |o(n,m)| for a squeezed state witfi) = Figure 8. |o(n,n)| versus 1- 5 for n = 0,2,5,15
4r=10n=1). on a semilogarithmic scale (for a coherent state with
(n) = 4). The quantum efficiencies arg =

1,0.99,0.97,0.95,0.9.

The contour plot also emphasizes the ‘saddle region’ around the diagonal, suggesting
that the statistical errors for measured diagonal matrix elemgits:) saturate to a value
independent of: for large enoughu. This is shown more clearly in figure 6. Such
a remarkable feature is general. In fact, it is independent of the eneiggnd, more
importantly, it holds for any state. Noticeably, the limiting valggn, n)| = +/2 does not
depend on the degree of squeezing. The reason for such a saturation is due to the analytic
form of the diagonal kernel functions. Indeed the largés, the faster the kernel functions
oscillate versus: and the errors must increase with On the other hand, fad = 0 the
range of oscillation is fixed between2 and 2, thus the diagonal errors are bounded, and
hence they must saturate. These considerations are confirmed by considering the explicit
form of the statistical errors, as given by equation (14). In particular, in equation (14) we
can extract the relevant contribution for largaupon considering that the kernel functions
oscillate quickly in the region wherg(x, ¢) is sizeable. Thus, for large the kernel
functions are asymptotically approximated by 2@gs) and

7 dd) 00 1/2
lo(n, n)| ~ {/ ;/ dx p(x, ¢)4CO§(knx)} . (15)
0 —00

Moreover, k, — oo for large values of:: if p(x,¢) can be considered constant over a
cycle Ax = 7/ k,, the integral over in equation (15) gives just the average of Gagx),
which leads to

lo(n, n)| ~ /2. (16)

If the probability p(x, ¢) is very sharp (for example, for very squeezed states) the errors
will saturate for larger:. In figure 7 we showo (n, m)| for a squeezed state wiftt) = 4
andr = 1: the plot is quite different from figure 5, but the diagonal errors still saturate to
the valuev/2f.

T We point out that in [10] the upper bound for the statistical errors of diagonal matrix elements was overestimated
by a factor of/2.
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4,r = 1 for n = 1 (circles),n = 0.99 (triangles), for quantum efficiency; = 0.99.
n = 0.97 (squares)y = 0.95 (rhombi),n = 0.9 (stars).

4.2. Dependence on the quantum efficiency

The influence of the quantum efficienay on |o(n, m)| is very strong. Indeed, if the
guantum efficiency of the detectors decreases, the behaviour of the kernel functions (11)
changes dramatically: for fixed and m, the oscillation range increases very rapidly as
n approaches the lower bound= 0.5 and the resulting errors increase rapidly as well.
The growth rate is different for different matrix elements: as an example, in figure 8 we
show some diagonal errors as functions of the quantum efficiency (for a coherent state).
Furthermore, the diagonal errors no longer saturate for large values\valry similar results
are found for squeezed states. In particular, the growth rate of diagonal erfats:)|
versus 1— n is slightly larger than for coherent states. The diagonal errors for a squeezed
state are shown in figure 9 for different valuesnof

For fixedn < 1, the oscillation range of the kernel functions increases with hoth
and the distance from the diagonal. Thus, for increasingand d the statistical errors
increase. For example, we considee 0.99: after a comparison between figures 10 and
5, one can see that the open contour levels|édi, m)| close and any error saturation
disappear. Figure 10 shows that drastic modifications arise with respect to the ideal case
for n = 1. This means that, already fgr= 0.99, in order to have the same experimental
errors on the measurement of the density matrix, the number of data must be much larger
than in the ideal case.

4.3. Precision of homodyning observables

From the measured density matrix, one can evaluate the probability distributions of operators
that are functions of the field operataranda’. Thus, by means of homodyne experimental
data it is possible to obtain indirect measurements of observables. However, for some
observables the propagation law of statistical errors leads to additional noise with respect
to directly detecting the observable itself. In order to evaluate the expectation value of
an observable from homodyne data and to avoid the problems caused by the propagation
of statistical errors, a more convenient procedure can be adopted, naamebdyning the
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observable By homodyning the observabl&e mean the experimental sampling of an
appropriate kernel function, which gives the expectation value of the desired observable
directly. The precision of this kind of measurement is calculated, as an example, for the
mean photon numbef). From equation (1){n) is expressed as

ﬂd o0
() = / 4 / de p(x. $)F(x. §) (7)
o —00
where

F(x,¢) = F(x) = Zn/ dkdik|e ¥ /BHke L O (1k2) =202 1 (18)

2
n=0 o0

In equation (18),L¥ denote zero-order Laguerre polynomials and unit detector efficiency
has been assumed. The statistical fluctuations of the measured mean photon number are
given by

Tdp [ .

‘75”» :/(; ;/ dr p(x, $)F?(x, §) — (A)? (19)
andoy; is the statistical error for homodyning the mean photon number. The preejgjon
of this homodyne measurement is defined by the relation

€ty = 0l — (A7) (20)
where (An?) is the intrinsic quantum uncertainty

(AR?) = (A%) — (7)? = (a"2a%) + (A) — (7)2. (21)
The uncertainty(A7i?) can be expressed in terms of quadrature probability distributions:
after calculating the kernel function for the operatdfa? [14], equation (21) reads

(an?) = / di)/ dr p(x, 9){5x* — 2¢?} — (2)2 (22)
0 T J-x
In conclusion, the precision for homodyning the photon number is
1
€W = 72((Aﬁ2) + ()2 + i) + 1) 72 (23)

5. Conclusions

We analysed both systematic and statistical errors for homodyne detection of the density
matrix of light. Such a detection is performed by suitably processing homodyne
experimental data. We studied the behaviour of systematic errors as functions of the number
of scanning phaseg. We calculated a lower bound fgf, needed for an accurate matrix
measurement of both coherent and squeezed states. We found that this lower bound increases
with both the mean photon number and the ‘asymmetry’ in the phase space of the state. Then
we considered the statistical errors corresponding to the data average that gives each matrix
element. Noticeably, for unit quantum efficiency detectors the diagonal eri@rs:) of

the matrix elementg (n, n) saturate to the fixed valug’2 for large enough. Moreover,

this feature is independent of the degree of squeezing. The off-diagonal errors increase
with the distance from the diagonal. If the quantum efficiency of the detectors is decreased
the errors increase dramatically for each matrix element (and, in particular, any saturation
effects disappear). This means that in order to have the same experimental errors on the
measurement of the density matrix, the number of data points must be much larger than in
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the ideal § = 1) case. Due to the statistical errors, it is not convenient to use the measured
density matrix elements to evaluate the expectation values of generic observables. Thus we
considered, as an example, the homodyne detection of the mean photon number, which is
achieved by sampling an appropriate kernel function and we evaluated the precision of such
a measurement analytically.

We think that the results presented here are relevant from a fundamental point of view
and provide the experimentalist with important information on the behaviour of errors in
homodyning the density matrix.

Appendix

The factorization of the functiom + d|i(x)|m) is performed in two steps. By setting
n = m + d we obtain

V2x

(m +d|a(x)|m) = - +d)| Z('Z:j) %ax)z”“’«/ée*bzf dre’. (A1)

0

Then, the derivatives with respect toand the summation are evaluated as follows. We
introduce the ‘seed functions’

2\
uo(x) = () e (A2)
b
2 \/2)( 2
vo(x) = (2m)Y4e ™™ / dr € (A3)
0
that generate two sets of functiofis; (x)} and{v;(x)} for j =0,1,2,..., as
1 .
uj(x) = ﬁ(x — 20¢) uo(x) (A4)
1
vi(x) = ﬁ(x %8 ) vo(x). (A5)
By means of the following identity between operators:
dxtto(x) = ug(x)(dy — 2x) (AB)
we obtain
(—20,) uo(x)vo(x) = V! ug(x)va(x). (A7)

As noticed in [10], the functiongu;(x)} and {v;(x)} are, respectively, the normalizable
and the non-normalizable eigenfunctions of the harmonic oscillator (corresponding to the
eigenvaluej). Thus, by using the standard recursion relations for the harmonic oscillator
eigenfunctions, we can easily demonstrate the following identity

1 .
(=30 nova(r) = Z <J+d>< 1"~ ’(”iﬁ)uj(x)vw(x)- (A8)

1 Equation (A8) is demonstrated by means of the recursion relation

1920, () vmpa (¥) = i (m + d) -1 () Vp— 140 (%)
—(L+ 2m + ity () mra () + /01 + Dm + L+ d) thy 41 () Vg 14 ().
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After substituting (A7) and (A8) in equation (Al), we obtain the factorized formula

(m +d|p(x)m) = (m|a)lm +d) = () Vra(x) (A9)

where we use the fact that(x) is real self-adjoint.
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