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We derive the class of covariant measurements that are optimal according to the maximum likelihood
criterion. The optimization problem is fully resolved in the case of pure input states, under the physically
meaningful hypotheses of unimodularity of the covariance group and measurability of the stability subgroup.
The general result is applied to the case of covariant state estimation for finite dimension, and to the Weyl-
Heisenberg displacement estimation in infinite dimension. We also consider estimation with multiple copies,
and analyze the behavior of the likelihood versus the number of copies. A “continuous-variable” analog of the
measurement of direction of the angular momentum with two antiparallel spins by Gisin and Popescu is given.
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I. INTRODUCTION

State estimation is a unique kind of quantum measure-
ment in the quality of information that it provides. In fact,
the knowledge of the state of a quantum system enables the
evaluation of any ensemble average, which is equivalent to
the possibility of performing any desired experiment on the
system. For its intrinsic versatility such unconventional type
of quantum measurement is of interest for the new technol-
ogy of quantum information[1] in the estimation of param-
eters that do not correspond to observables[2]—such as the
phase of an electromagnetic field—but also as a method to
achieve quantum cloning[3,4], whence in designing eaves-
dropping strategies for quantum cryptography[5].

An exact state estimation without any prior knowledge of
the form of the state is impossible[6] due to the no-cloning
theorem[7,8]. This also reflects the fact that an optimal ap-
proximate state estimation would not be achievable as an
orthogonal measurement, since the state estimation is a kind
of “informationally complete” measurement[9]. More gen-
erally, one can have some prior knowledge of the form of the
state, i.e., by parametrizing it with a restricted set of vari-
ables. This is the typical situation of the quantum estimation
theory of Helstrom[2], where the goal is to determine a
multidimensional parameter of a state transformation. When
the set of states to be discriminated are orthonormal the pa-
rameter corresponds to an “observable” whose eigenstates
are the set itself, and the estimation is exact. However, in
practice it happens very often that the multidimensional pa-
rameter cannot be described by an observable(e.g., it is a
phase of a field, or it corresponds to a set of noncompatible
observables), whence a measurement represented by a so-

calledpositive operator valued measure(POVM) needs to be
performed.

For a state estimation that is not equivalent to the mea-
surement of an observable we have a choice of infinitely
many POVM’s achieving the same task with different strat-
egies. Indeed, there is no universal criterion which is optimal
for all situations, and one needs to define the appropriate
figure of merit pertaining to the particular problem. Once the
optimization problem is solved in terms of an optimal
POVM, one can then address the problem of the feasibility
of the measurement apparatus by classification of orthogonal
dilations of the POVM[2,10,11], or else compare the perfor-
mance of actual devices to the ultimate theoretical limit.

A statistically meaningful optimization strategy is the
maximization of the likelihood that the true value of the
estimated parameter coincides with the outcome of the mea-
surement. Such a strategy is actually very general, since for
measurements that aregroup covariant, optimization of a
genericgoal functioncorresponds to optimization of the like-
lihood for a different input state. Physically, “group covari-
ance” means that there is a group of transformations on the
probability space which maps events into events, in such a
way that when the quantum system is transformed according
to one element of the group, the probability of the given
event becomes the probability of the transformed event. This
situation is very natural, and occurs in most practical appli-
cations. For example, the heterodyne measurement[12,13] is
covariant under the group of displacements of the complex
field, which means that if we displace the state of radiation
by an additional complex averaged field, then the output
photocurrent will be displaced by the same complex quantity.
Other examples of covariant measurements are the quantum
estimation of a “spin orientation”[14–17], or of the phase
shift of an electromagnetic field[2,18,19].

The statistics of the measurement can be improved by
using many copies of the same quantum system. In this sce-
nario, it is relevant for experiments to distinguish the mea-
surements achievable by local operations and classical com-
munication(LOCC) from more general schemes that require
entanglement. Unfortunately, a useful classification of LOCC
schemes is still missing. Alternatively, one can give just a
mathematical categorization in terms of the POVM of the
measurement:(i) “independent” measurements, correspond-
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ing to tensor products of independent POVM’s;(ii ) “sepa-
rable” measurements, corresponding to POVM’s where each
element is separable;(iii ) “nonseparable” or “entangled”
measurements, corresponding to POVM’s where some ele-
ment is entangled. In the first category measurements are
performed independently on each copy. In the separable
class, on the other hand, the measurement can be performed
by means of separable operations; hence all LOCC schemes
are included in this category. Notice, however, that not all
separable operations can be implemented locally(see, e.g.,
the case of nonlocality without entanglement of Ref.[20]).
Finally, the class of entangled POVM’s represents the most
general scheme of measurement, and opens the exponential
growth of the Hilbert space dimension versus the number of
copiesN, with the possibility of largely surpassing the sta-
tistical efficiency of the independent measurement schemes
[21–24]. However, as already noticed in Ref.[25], in the
case of pure states and for the maximum likelihood strategy,
the optimal schemes can be surprisingly achieved by sepa-
rable measurements, and here we address this issue for co-
variant measurements. Under the general assumption of
square-summable representation we derive a general “ca-
nonical form” for the optimal measurements for pure input
states, corresponding to a POVM which is separable or en-
tangled, depending on the group representation.

After introducing in Sec. II the precise formulation of the
covariant state estimation problem, in Sec. III we derive
some useful mathematical identities for group integrals
which are then used to algebraically characterize covariant
measurements. This also helps us in deriving a simple upper
bound for the maximum likelihood in Sec. IV, along with the
canonical form of the optimal measurement given in terms of
the group representation. Examples of the canonical form are
given in Sec. V in dimensiond,` for the group
SUsdd—corresponding to the estimation of an unknown pure
state—and in infinite dimensions for the estimation of dis-
placements on the phase space. The case of multiple copies
is then analyzed, discussing the occurrence of entangled ver-
sus separable POVM’s. For the estimation of displacements
on the phase space, the case of two copies experiencing op-
posite shifts in momentum is also analyzed—the continuous-
variable analog of the measurement of direction of the angu-
lar momentum with two antiparallel spins by Gisin and
Popescu[26]. For coherent states it is shown that such a
scheme provides a better estimation of the displacement as
compared to the conventional case of identical displace-
ments.

II. THE PROBLEM

Whenever a quantum systemS undergoes a physical
transformation belonging to a groupG, its state is trans-
formed according to an appropriate representation ofG on
the Hilbert spaceH of the systemS. In the following, we
will consider the case in which the groupG is a Lie group
which acts onH by a (projective) unitary representation
hUgj, whereas the initial state—also called theseedstate—is
a pure stateuCl. Notice that the correspondence between
transformed states and group elements is generally not injec-

tive, since the stateuCl may have a nontrivial stability group,
say GC (we say that a group elementh belongs to the sta-
bility group GC of uCl whenUhuCl=eifhuCl, with fh a real
phase). In this way the transformed states are in one-to-one
correspondence with the cosetsgGC: in other words the
group-orbit manifold(obviously invariant under the group
representationhUgj) is identified with the coset spaceX
=G /GC. We see that in principle from the output stateUguCl
it is possible to estimate the group elementg of the transfor-
mation Ug only if the stability groupGC of the input state
uCl is trivial. Otherwise, we can estimate the cosetxPX
which is in one-to-one correspondence with the output state
uCxl=UgsxduCl, gsxd labeling any element ofG in the cosetx.
In the following we will denote byx0;eGF the coset con-
taining the identity elemente, and the seed state is relabeled
accordingly asuCx0

l;uCl. This notation makes explicit the
isomorphism between the coset spaceX and thehomoge-
neousmanifold of statesuCxl xPX, i.e., on which the group
acts transitively through its unitary representation as
UguCxl~ uCgxl (apart from a phase factor). In this way, the
estimation of the parameterxPX becomes equivalent to a
problem ofcovariant state estimation, and it was proved[19]
that the optimal probability distributionpsxux0d of estimating
x for input state uCx0

l satisfies the identitypsgxugx0d
=psxux0d, namely, the probability distribution on the mani-
fold X for an input stateUguCl is equal to the probability
distribution for input stateuCl but with the manifold shifted
by g−1. In the following we will suppose for simplicity that
the groupG is unimodular(i.e., the left invariant measuredg
on G is also right invariant) and the stability subgroup is
compact. According to a theorem by Holevo[19], for square-
integrable representations the covariant estimation is de-
scribed by a POVMM on the probability spaceX with den-
sity of the general form

dMsxd = UgsxdJUgsxd
† dx, s1d

where dx denotes the invariant measure onX induced by
invariant measuredg on G [27], and the positivekernelop-
eratorJ belongs to the commutantGC8 of the stability group
(i.e., ffJ ,Uhg=0 ∀ hPGC), and satisfies the completeness
constraint

E
X

dx UgsxdJUgsxd
† ; E

G
dg UgJUg

† = I . s2d

The fact thatJPGC8 guarantees that the POVM does not
depend on the particular choice ofgsxd.

III. GROUP INTEGRALS OF OPERATORS

The completeness constraint in Eq.(2) becomes particu-
larly simple with some abstract considerations on group in-
tegrals. Since the groupG is unimodular, its unitary square-
summable representations satisfy Schur’s lemma for any
(generally infinite dimensional) representation spaceH [28],
namely, for any couplehUg

mj andhUg
nj of irreducible compo-

nents of the representation with invariant subspaces
Hm ,Hn#H, respectively, every operatorOmn: Hn→Hm satis-
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fying the identity Ug
mOmn=OmnUg

n ∀ gPG must be of the
form

Omn = HkImn for m , n,

0 otherwise,
J

where; denotes equivalence of irreducible representations,
k is a constant, andImn: Hn→Hm is the isomorphism map-
ping the two equivalent components, namely,Ug

m= ImnUg
nImn

†

∀ gPG (Imm is the orthogonal projector onto the invariant
irreducible subspaceHm).

A simple consequence of Schur’s lemma is the Wedder-
burn decomposition of operatorsO such that TrfImnOg
,`∀ m ,n [29]

E
G

dg UgOUg
† = o

m
o
n,m

amnImn. s3d

Taking the expectation values of both sides of Eq.(3) on an
arbitrary elementuen

smdl of an orthonormal basishuem
smdlj for

Hm one has

amm =E
G

dgTrfsUg
†uen

smdlken
smduUgdOg ∀ n. s4d

Applying now the Wedderburn decomposition to the group
average of projectorsuen

smdlken
smdu and using invariance of the

subspaceHm, one obtains

E
G

dg Ug
†uen

smdlken
smduUg = bmmImm, s5d

wherebmm is a constant to be evaluated. We then have

amm = bmmTrfImmOg, s6d

wherebmm can be determined by taking the expectation value
of both sides of Eq.(5) on any normalized vector inHm, in
particular on the vectoruen

smdl, leading to

bmm =E
G

dg uken
smduUguen

smdlu2. s7d

On the other hand, if the representationsm andn are equiva-
lent, there are two orthonormal basishuen

smdlj and huem
sndlj for

Hm and Hn, respectively, such thatImn=onuen
smdlken

sndu. Now,
taking the matrix element of both sides of Eq.(3) between
vectorsuen

smdl and uen
sndl one has

amn =E
G

dgTrfUg
†uen

sndlken
smduUgOg. s8d

The invariance of both subspacesHm and Hn along with
Schur’s lemma gives the identity

E
G

dg Ug
†uen

sndlken
smduUg = bnmInm, s9d

for a suitable constantbnm to be determined. Substituting the
last equation into Eq.(8) gives

amn = bnmTrfInmOg, s10d

and the constantbnm can be determined by taking the matrix
element of Eq.(9) between vectorsuen

sndl and uen
smdl, namely,

bnm =E
G

dg ken
snduUg

†uen
sndlken

smduUguen
smdl. s11d

Notice that for equivalent componentsm,n for our choice
of bases one hasken

smduUguen
smdl=ken

snduUguen
sndl, whencebnm

=bmm=bnn;bm. Summarizing, we have the decomposition

E
G

dg UgOUg
† = o

m

bm o
n,m

TrfInmOgImn,

bm =E
G

dg uken
smduUguen

smdlu2. s12d

If the groupG is compact and its measuredg is normal-
ized (i.e., eGdg=1), then it is easy to show thatbm=1/dm,
wheredm=dimsHmd (irreducible representations of compact
groups are finite dimensional). In fact, summation over alln
in Eqs. (4) and (8) provides in a direct way the valuesamm

=TrfImmOg /dm and amn=TrfImnOg /dm for the coefficients in
Eq. (3). On the other hand, the derivation given above holds
for unitary square-summable representations, even with a
Dirac-orthogonal basishuex

smdlj for Hm, namely, kex
m uex8

m l
=dsx−x8d. The coefficientsbm

−1 are generally noninteger, are
called formal dimensions, and carry information about the
structure of the irreducible components of the group repre-
sentation.

IV. MEASUREMENTS WITH MAXIMUM LIKELIHOOD

We will now consider measurements which maximize the
likelihood, namely, the conditional probability densitypsxuxd
of having the outcome equal to the true value for anyx.
Because of covariance this optimality criterion is equivalent
to maximize thelikelihood functionalLrfJg=TrfJrg with
r= uClkCu, uCl being the input state.

Notice that the general solution to the maximum likeli-
hood problem, which at first sight may appear of limited
value, is actually equivalent to the solution of any quantum
estimation problem with positive summable “goal” function
fsx̂,xd [the goal function is the opposite of the customary
cost function—fsx̂,xd [2]]. This consists in associating with
each measurement outcomex̂ a “score” fsx̂,xd, with the
function fsx̂,xd increasing versusx̂ for x̂ approaching the true
valuex. Then, the optimal measurement is the one that maxi-
mizes the average score. In a covariant estimation problem a
meaningful goal function must satisfy the invariance prop-
erty fsx̂,xd= fsgx̂,gxd∀ gPG, and this allows us to define a
function hsĝ,gd on the group via the relationhsĝ,gd
; fsĝx0,gx0d for fixed x0. Then, the functionh is positive
(bounded from below), summable, and satisfieshsĝ,gd
=hsg−1ĝ,ed, e denoting the identity transformation. Now,
thanks to covariance the average score can be written as
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s̄=E
G

dg hsg,edTrfrUgJUg
†g = SE

G
dg hsg,edDLMsrdfJg,

where

Msrd =

E
G

dg hsg,edUg
†rUg

E
G

dg hsg,ed

is a completely positive trace preserving map. Therefore, the
maximization of a goal function can be viewed as a maxi-
mum likelihood scheme on the transformed stateMsrd, and
depending on the form of the functionh the choice of the
input state may be restricted to special states, possibly
mixed. Nevertheless, in this paper we will give a complete
solution only for pure input states.

The problem is now to find a positive operatorJ which
maximizes the likelihood functionalLrfJg=TrfJrg, and, at
the same time, satisfies the completeness constraints(2).
Once an optimalJ is found, the presence of a nontrivial
stability group GC for uCl can be taken into account by
replacingJ with its group average overGC

J̄ =

E
GC

dg UgJUg
†

E
GC

dg

. s13d

Notice that the value of the likelihood functional remains
unchanged after this replacement, and the group average is
still optimal [it is easy to show that the same occurs with
Msrd in the case of a general goal function]. As a conse-
quence of the Wedderburn decomposition(12), the complete-
ness constraint(2) for J can be written as

TrfImnJg = dmnbm
−1 ∀ m , n. s14d

It is now convenient to decompose the input stateuCl over
the invariant subspacesHm of the representation asuCl
=omcmuCml. This allows us to simply derive the following
chain of inequalities:

LCfJg = o
m,n

cm
* cnkCmuJuCnl ø o

m,n
ucmuucnuujmnu ø o

m,n
ucmu

3ucnuÎjmmjnn ø So
m

ucmuÎbm
−1D2

ø o
m

bm
−1,

where the sums range in the setMC of all invariant sub-
spaces which are nonorthogonal touCl, LCfJg denotes the
likelihood functional defined by the pure stateuCl, andjmn

denotes the matrix elementkCm uJ uCnl. The first inequality
can be saturated by the choicejmn=eisqm−qnd ujmnu whereqm

is the phase ofcm. The second inequality is a necessary con-
dition for positivity of J, and saturates forujmnu=Îjmmjnn

(notice that this inequality is not also a sufficient condition
for positivity, whence the positivity of the optimalJ must be
checkeda posteriori). The third inequality is due to the fact
that jmmøTrfImmJg=bm

−1. Finally, the last Schwartz inequal-

ity sets the following general upper bound for the maximum
likelihood of covariant measurements:

LCfJg ø o
mPMC

bm
−1. s15d

In the case of a compact group the inequality(15) implies
that the likelihood is always less than the sum of dimensions
of invariant subspaces supportinguCl. For infinite dimen-
sions, on the other hand, the bound(15) and the likelihood
itself may diverge. One can see now that the following
choice of the operatorJ:

J = uhlkhu, uhl = o
mPMC

eiqmÎbm
−1uCml, s16d

attains the boundsomPMC
ucmuÎbm

−1d2 for the likelihood func-
tional. Note that, ifuCl has no component in some irreduc-
ible subspaceHn, then the operatorJ must be extended to
the whole spaceH, in order to satisfy the constraints
TrfImmJg=bm

−1 for all m. Obviously, such extension is gener-
ally not unique, e.g., one can take

J = uhlkhu + o
n¹MC

bn
−1uFnlkFnu, s17d

whereuFnl is any normalized vector inHn, which both guar-
anteesJù0 and satisfies the constraints TrfImmJg=bm

−1 for
all m. Notice that the presence of equivalent representations
in Eq. (17) generally improves the likelihood(this feature
was missed in Refs.[15–17]).

If there are no equivalent representations in the decompo-
sition of uCl, then the kernel(17) averaged over the stability
subgroupGC of uCl is optimal. However, in the presence of
equivalent representations, one also wants the off-diagonal
constraints TrfImnJg=0 to be satisfied∀ m,n. One can see
that the kernel in Eq.(17) satisfies also the off-diagonal con-
straints when the decompositionuCl=omcmuCml satisfies

kCmuImnuCnl = 0, m , n. s18d

As shown in the Appendix, the subspaces carrying equivalent
irreducible components of the representation can always be
chosen in such a way as to satisfy Eq.(18). It is worth no-
ticing that the present “canonical” form for maximum likeli-
hood measurements generalizes the case of the optimal co-
variant phase estimation given by Holevo[19], further
generalized in Ref.[30]. Finally, notice that the result de-
rived here also holds for discrete groups, such as the permu-
tation group orZd3Zd by just substituting integrals with
sums.

V. EXAMPLES

While it is obvious that averaging the result over a num-
ber N.1 of equally prepared identical copies always im-
proves the precision of estimation—either classically or
not—a legitimate question is whether nonindependent mea-
surements on copies can be exploited to further enhance the
precision, compared to this conventional independent mea-
surement scheme. For the maximum likelihood strategy,
when measurements are performed independently on each
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copy, in order to estimate ad-dimensional parameterx, the
value of the likelihood is bounded as follows:

Lav
sNd ; pSoi=1

N
xi

N
= xuxD

=E dx1 ¯ dxNpsx1uxd ¯ psxNuxddSoi=1

N
xi

N
− xD

= NdE dx2 ¯ dxNpsNx− x2 − ¯ − xNuxd

3 psx2uxd ¯ psxNuxd ø Ndmax
x8

hpsx8uxdj. s19d

Unfortunately, the bound in Eq.(19) is generally not achiev-
able, and for increasing value of the dimensionalityd of the
parameterx it becomes quite loose. However, the optimal
measurement onN copies of the same state can achieve a
higher value of the likelihood with respect to thesemiclassi-
cal scheme involving independent measurements. Moreover,
the case of preparation in different input states can lead to
further improvement in the estimation of the group transfor-
mationUg, since the decomposition of the global state may
involve a larger number of invariant subspaces than just
those belonging to the symmetric space.

A. Universal state estimation

1. SU„d…-covariant estimation: Pure state estimation

The estimation of a pure state in a finite dimensional Hil-
bert spaceH can be regarded as a covariant estimation with
respect to the defining representation of the group SUsdd,
where d=dimsHd. Indeed, the orbit of a given pure state
contains all pure states ofH. Clearly, the optimal kernel is
J=duclkcu, according to Refs.[2,19], and consequently the
value of the maximum likelihood isLs1d=d.

2. Pure state estimation with N.1 copies in the same state

This corresponds to the case of estimation of the group
elementgPSUsdd in the reducible representationUg

^N with
initial state uCl= ucl^N. There are inequivalent components
corresponding to the symmetric subspacesH^Nd+, along with
all other permutation invariant subspaces. SinceuCl belongs
to the symmetric subspacesH^Nd+, the optimal J is not
unique, e.g., we can takeJ=d+suclkcud^N+ IW, where d+

= s d+N−1
d−1

d is the dimension ofsH^Nd+ andW is the orthogonal
complement of sH^Nd+. In any case we haveLsNd

=dimsH^Nd+. Notice that the POVM is not separable, due to
the presence of the orthogonal projectorIW.

3. SU„d… estimation with two copies in different states

In this case uCl= uclufl can be decomposed as
Îs1+s2d /2uC+l+Îs1−s2d /2uC−l, where s= ukc uflu and
uC±l=f1/Î2s1±s2dgsuclufl± uflucld. Then the optimal ker-
nel J is proportional to the projector onto the vectoruhl
=Îd+uC+l+Îd−uC−l and the likelihood takes the value
sÎd+s1+s2d /2+Îd−s1−s2d /2d2ød2 (by the Schwartz in-

equality), d− denoting the dimension of the antisymmetric
Hilbert space. It is easily seen that this bound can be attained
by choosings2=1/d. The optimal POVM is separable(the
optimal kernel is actuallyfactorized as J=d2uclkcu ^ ufl
3kfu). No further improvement can be achieved, since a
likelihood greater thand2 is not compatible with the com-
pleteness of the POVM(in fact LCfJgøTrfJg=d2).

B. Weyl-Heisenberg covariant estimation

1. Estimation of displacement on the phase space

This case corresponds to consider the Weyl-Heisenberg
irreducible representationhDszdj of the translation group on
the complex plane,Dszd denoting the displacement operator

Dszd=eza†−z*a with fa,a†g=1. Being noncompact, the repre-
sentation spaceH is infinite dimensional. PhysicallyDszd
represents a joint shift of position and momentum of a quan-
tum harmonic oscillator, and the covariant state estimation
corresponds to a joint measurement of position and momen-
tum. Here one hasb=eCsd2z/pduknuDszdunlu2, where unl de-
notes an element of any orthonormal basis forH, which we
can conveniently take as the set of eigenstates of the number
operatora†a. Choosingn=0 one obtainsb=1, whence the
optimal kernel for initial stateucl is J= uclkcu and the maxi-
mum likelihood isLfJg=1. Notice that forucl= u0l we get
the well known coherent-state POVM describing the hetero-
dyne measurement[12,13].

2. Estimation of displacement with identical shifts on N.1
quantum oscillators

This case corresponds to the tensor representation
hD^Nszdj of the Weyl-Heisenberg group. The irreducible rep-
resentations can be easily obtained by the linear change of
modes represented by the unitary transformation

V = efNfa1
†sa2+. . .+aNd−a1sa2

†+. . .+aN
† dg,

with f=s1/ÎN−1d arctan ÎN−1 so that VD^NszdV†

=DsÎNzd ^ I ^sN−1d. Then the irreducible subspaces are given
by Hn=hV†uwl ^ uFnl , uwlPHj, wherehuFnlj is an orthonor-
mal basis forH^sN−1d. The formal dimension coefficients are
easily obtained as follows:

bn =E
C

d2z

p
uk0ukFnuVD^NszdV†u0luFnlu2

=E
C

d2z

p
uk0ukFnuDsÎNzd ^ I ^sN−1du0luFnlu2

=
1

N
E

C

d2z

p
uk0uDszdu0lu2 =

1

N
.

Since the invariant subspaces carry all equivalent
representations—the isomorphism between two of them is
Imn=V†sI ^ uFmlkFnudV—the problem of choosing a suitable
decomposition of the initial stateuCl in irreducible represen-
tations arises. In the general case, one should apply the full
construction given in the Appendix, while a simpler solution
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is possible for states of the formuCl= ui1lui2l¯ uiNl. In this
case, one has only to write VuCl
=Si1,i2,. . .,iN

ci1i2. . .iN
ui1lui2l¯ uiNl, and to define uFnl

=Cn
−1Si2. . .iN

cni2. . .iN
ui2l¯ uiNl, where Cn=ÎSi2,. . .,iN

ucni2. . .iN
u2,

obtaining the desired decompositionuCl=V†SnCnunluFnl
(notice thatkFmuFnl=dmn since they are eigenstates corre-
sponding to different eigenvalues of the number operator).
The value of the likelihood is thenLfJg=NsSnCnd2.

We now consider two special cases.
(i) N copies of vacuum stateu0l. This case corresponds to

the estimation of the complex shiftz on the sethuzl^Nj of N
copies of a coherent stateuzl. Here, the vacuum stateuCl
= u0l^N belongs to just one invariant subspace, sinceVuCl
= uCl. The optimal kernel is not unique, and is given by any
completion ofJ=Nsu0lk0udN, and the pertaining likelihood
value isN. For N=2 it can be shown that an optimal POVM
corresponds to averaging the outcomes of independent het-
erodyne measurements on two copies, while another optimal
one corresponds to the independent measurement of the po-
sition s1/2dsa1+a1

†d and the momentums1/2idsa2−a2
†d, tak-

ing as the outcomea=x+ iy, where x and y are the two
separate outcomes.

(ii ) Two copies of a number state:uCl= unlunl with n.0.
The maximum value of the likelihood isLfJg
=2fSk=0

n s1/2nn! ds n
kdÎs2kd ! s2n−2kd!g2, and numerical calcu-

lation shows an asymptotic linear behavior versusn. In the
case of two copies of a one-photon stateuCl= u1lu1l. Decom-
posing the seed state we obtainuCl=−sÎ2/2dsV†u20l
+V†u02ld: an example of the optimal kernel is thenJ
=2f2su1lk1ud^2+SiÞ0,2V

†u0ilk0i uVg, achieving a likelihood
equal to 4, which can be shown to be twice the semiclassical
value.

3. Estimation of displacement on two copies, with identical shifts
in position and opposite shifts in momentum

This case corresponds to the representationhVszd=Dszd
^ Dsz* dj, which is reducible, but does not possess any irre-
ducible proper component inH^2, and thus is beyond the
hypotheses of our general results. In fact, the irreducible rep-
resentations are all inequivalent, and make a continuous
set, each component being supported by the
Dirac-normalized eigenvectors [31] s1/ÎpduDswdl
=s1/ÎpdSm,nkmuDswdunlumlunl of the normal operatorW=a
^ I − I ^ a† (the heterodyne photocurrent[12,13,32]). Upon
expanding the operatorsVszd=expszW†−z* Wd over the
Dirac-orthonormal basis, one has

E
C

d2z

p
VszdOV†szd

=E
C

d2z

p
E

C

d2w

p
E

C

d2w8

p
ezsw−w8d*−z* sw−w8duDswdlkDswdu

3OuDsw8dlkDsw8du

=E
C

d2w

p
uDswdlkDswduOuDswdlkDswdu,

namely, a continuous version of the Wedderburn decomposi-
tion still holds,

E
C

d2z

p
VszdOV†szd =E

C
d2w awPw,

for any O such that TrfPwOg,`, with Pw= uDswdlkDswdu
and aw=p−1TrfPwOg (in a proper mathematical setting the
integral overw in the last equation should be interpreted as a
direct integral). The maximum likelihood covariant measure-
ment for state estimation among the set generated by the
seeduClPH^2 is given by theentangledkernelJ= uhlkhu,
where

uhl =E
C

d2w

p
eiuwuDswdl,

which is the analog of Eq.(16) for a continuous spectrum[as
in that previous case,uw is the phase ofkDswd uCl]. It is
worth noticing that foruCl= u0lu0l the problem corresponds
to estimating the amplitudez of the set of coherent states
huzluz* lj, and the value of the likelihood for the optimal mea-
surement is 4, namely, twice the likelihood for the amplitude
estimation for identical stateshuzluzlj. The probability distri-
butions are indeed Gaussian in both cases, but the variance in
this case is half the variance of the Gaussian for the states
uzluzl. The fidelity of the estimate is 2/3 for the statesuzluzl,
while it is 4/5 for uzluz* l. The last example can be regarded
as the “continuous-variable” analog of the measurement of
the direction of two antiparallel spins by Gisin and Popescu
[26], as previously studied in Ref.[33].

4. Estimation of displacement on one part of a bipartite
entangled system

We consider here the representationhDszd ^ Ij acting on
two optical modes. In this case the invariant subspaces are
Hn=hucl ^ uwnl , uclPHj, where huwnlj is any orthonormal
basis inH, all of them supporting equivalent representations,
and the formal dimensionsbn are all equal to 1. If we take a
twin beamuCl=Î1−x2Snx

nunlunl as initial state, its decom-
position is trivial, andunlunl are precisely the components
uCnl on the irreducible subspaces. Then the optimal POVM
is given byuhl=Snunlunl, namely, it is the two-mode hetero-
dyne POVM [12,31,32]. Correspondingly, the value of the
likelihood is LfJg=s1+xd / s1−xd, showing a strong en-
hancement by the effect of entanglement in agreement with
Ref. [23].

VI. CONCLUSIONS

By group theoretic arguments we have derived the class
of measurements of covariant parameters that are optimal
according to the maximum likelihood criterion. The optimi-
zation problem has been completely resolved for pure states
under the simple hypotheses of unimodularity of the group
and measurable stability group. The general method has been
applied to the case of finite dimensional quantum state esti-
mation with many input copies, and, for infinite dimensions,
to the Weyl-Heisenberg covariant estimation, also giving a
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continuous-variable analog of the estimation of the direction
on two antiparallel spins by Gisin and Popescu. The increas-
ing statistical efficiency with the number of copiesN is es-
sentially related to two factors:(i) the way in which the
dimension of theN-fold tensor product Hilbert space in-
creases versusN; (ii ) its decomposition into irreducible sub-
spaces. Moreover, the nonseparability of the optimal
measurement—either in its POVM or in the optimal
states—is strictly related to the structure of the group repre-
sentation.

We conclude by mentioning that the optimal covariant
estimation for mixed input states is still an open problem,
and an explicit analytical optimization seems a very difficult
task. For the case of phase estimation the problem can be
analytically solved in the special instance of states which are
phase pure[34]. For a general covariance group representa-
tion the concept of a phase-pure state can be generalized by
choosing a vectoruCml for each invariant subspace such that
for everym,n one haskCmuImnuCnl=0. Then every stater
satisfying Supphrj,SpanhuCmlj and kCmuruCnl
=eisxm−xndukCmuruCnlu behaves as a pure state in all respects,
so that the upper bound and the canonical form of the opti-
mal POVM still hold. It is likely that a generalization of this
approach may extend the validity of the present solution of
the covariant estimation problem for a special class of mixed
states.
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APPENDIX

In this appendix we show how to chose invariant sub-
spacesHm of equivalent irreducible representations in order
to satisfy Eq.(18), namely,kCmuImnuCnl=0, for the decom-
positionuCl=SmcmuCml, in such a way that all invariant sub-
spaces effectively behave as supporting inequivalent irreduc-
ible representations. This choice of invariant subspaces
guarantees that every operatorJ= uhlkhu, where uhl is any
linear combination of uCnl, will satisfy the constraints
TrfJImng=0 for any m,n. This method will allow one to
extend the general treatment of the phase estimation problem
given in Ref.[30] to any square-summable group represen-
tation.

Let us consider an irreducible component of a unitary
representation ofG with multiplicity mø`, and denote by
Hsvd the invariant subspace carrying all equivalent irreduc-
ible components, and byHsvd= %m=1

m Hm a given choice of
invariant orthogonal subspacesHm, each carrying an equiva-
lent irreducible representation. Since inequivalent irreducible
components already satisfy Eq.(18), we can just focus atten-
tion on the componentuCvl of uCl on Hsvd.

Let us denote byImn the isomorphisms mappingHn into
Hm, and satisfyingfImn ,Ugg=0 ∀ gPG. As already men-

tioned, it is always possible to choose an orthonormal basis
Bm=huen

smdlj for each subspaceHm in such a way thatBm

= ImnBn for anym ,n, where equality between bases is defined
elementwise, i.e.,uen

smdl= Imnuen
sndl for all n. We have now the

following simple lemma.
Lemma(choice of the decomposition into equivalent com-

ponents). For each unitary matrixhVmnjPMm the linear com-
binationsBm8 =SnVmnBn provide a new decompositionHsvd

= %m=1
m Hm8 of Hsvd into subspaces supporting equivalent irre-

ducible components, whereHm8 ;SpansBm8 d.
Proof. The subspacesHm8 are orthogonal. In fact, upon

definingBm8 =huf l
smdlj, we obtain

kf l
smdufn

sndl = o
a,b

kel
saduVma

* Vnbuen
sbdl = dlno

a

sVnaVam
† d = dlndmn.

Moreover, eachHm8 carries a representation equivalent to that
of, say,H1. In fact, the operatorSm1;SnVmnIn1 is indeed an
isomorphism between the subspacesH1 andHm8 , since it de-
fines a one-to-one correspondence between them viaBm8
=Sm1B1, and commutes withUg for all gPG, since eachImn

commutes. This proves that the spaceshHm8 j provide a new
orthogonal decompositionHsvd= %mHm8 into invariant sub-
spaces carrying equivalent components of the representation.

Now, let us consider the componentuCvl of uCl on Hsvd,
and write its decomposition using the set of baseshBmj as
follows:

uCvl = o
mn

Cmn
v uen

smdl. sA1d

We want to construct a new decompositionHn8 of Hsvd such
that the components ofuCvl on invariant subspaces satisfy
Eq. (18), namely, they behave as belonging to inequivalent
representations. This can be done as follows. Define`ùd
=dimsHmd and consider them3d matrix Cv=hCmn

v j. Ac-
cording to Eq.(A1), Cv is a Hilbert-Schmidt operator, and
hence we can write the singular value decomposition

Cv = VTSU, sA2d

where S is a m3d matrix with all vanishing off-diagonal
elements, andV andU arem3m andd3d unitaries, respec-
tively. From Eq. (A2) one obtainsCmn

v =SnlVnmsndnlUln,
where the sums run from 1 tor =ranksCvdøminsm,dd.
Equation(A1) is then rewritten

uCvl = o
nl

sndnlugl
sndl, sA3d

where

ugl
sndl = o

mn

VnmUlnuen
smdl. sA4d

The new basesBn8=hugl
sndlj provide a new decomposition into

invariant subspacesHn8 supporting equivalent components. In
fact, starting from the sethBmj the first unitary transforma-
tion U over each basis preserves the relationsBm= ImnBn,
whereas the second transformationV, according to the pre-
vious lemma, gives the new decompositionHsvd= %m=1

m Hm8 ,
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with Hm8 ;SpansBm8 d. The stateuCvl in Eq. (A3) then satis-
fies

kCmuImnuCnl = 0 for m , n

since the spacesHn8=Spanhugk
sndlj have been chosen such that

each component ofuCvl on Hn8 is just proportional to a single

elementugl
sndl of the orthonormal basis with differentl for

different n.
Notice that, if the group is noncompact and there is an

infinite number of equivalent irreducible subspaces, the spec-
trum of singular values ofC may be continuous, and the
sums in the above derivation must be replaced by integrals,
with some care in the generalization of definition and theo-
rems.
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