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Covariant quantum measurements that maximize the likelihood
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We derive the class of covariant measurements that are optimal according to the maximum likelihood
criterion. The optimization problem is fully resolved in the case of pure input states, under the physically
meaningful hypotheses of unimodularity of the covariance group and measurability of the stability subgroup.
The general result is applied to the case of covariant state estimation for finite dimension, and to the Weyl-
Heisenberg displacement estimation in infinite dimension. We also consider estimation with multiple copies,
and analyze the behavior of the likelihood versus the number of copies. A “continuous-variable” analog of the
measurement of direction of the angular momentum with two antiparallel spins by Gisin and Popescu is given.
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[. INTRODUCTION calledpositive operator valued measufl@OVM) needs to be
performed.

State estimation is a unique kind of quantum measure- For a state estimation that is not equivalent to the mea-
ment in the quality of information that it provides. In fact, surement of an observable we have a choice of infinitely
the knowledge of the state of a quantum system enables thaany POVM'’s achieving the same task with different strat-
evaluation of any ensemble average, which is equivalent tegies. Indeed, there is no universal criterion which is optimal
the possibility of performing any desired experiment on thefor all situations, and one needs to define the appropriate
system. For its intrinsic versatility such unconventional typefigure of merit pertaining to the particular problem. Once the
of guantum measurement is of interest for the new technoleptimization problem is solved in terms of an optimal
ogy of quantum informatioiil] in the estimation of param- POVM, one can then address the problem of the feasibility
eters that do not correspond to observalifis—such as the of the measurement apparatus by classification of orthogonal
phase of an electromagnetic field—but also as a method tdilations of the POVM2,10,17, or else compare the perfor-
achieve quantum C|Oning3,4]’ Whence in designing eaves- mance Of. a.CtUaI deV|Ce.S to the U|t|mate theoretical I|m|t.
dropping strategies for quantum cryptogragby. A statistically meaningful optimization strategy is the

An exact state estimation without any prior knowledge ofMaximization of the likelihood that the true value of the
the form of the state is impossibjé] due to the no-cloning estimated parameter c0|nC|(_JIes with the outcome of the mea-
theorem([7,8]. This also reflects the fact that an optimal ap- Surément. Such a strategy is actually very general, since for
proximate state estimation would not be achievable as amenisr?ége(;g??15?1cttri]c?r:cg?rzosup%rfgsv?gigltir%?;gt]ilggtg?hgfliI?e-
g:{t]i(f)1?(;)fr:::léll'[rigigi;rgcr)nnilg|t,etiP(;Tii‘térsseu?:3‘?:169[eﬁs]t“r'?/'z:l)tflgnglgn"il k"ﬁﬁood for a different input state. Physically, “group covari-

I h ior k led fthe f f1h ance” means that there is a group of transformations on the
erally, one can have some prior knowiedge or tne form ot &, .5, apijity space which maps events into events, in such a

state, i.e.', t.)y paramgtriziljg it.With a restricted set c_>f Va.ri'way that when the quantum system is transformed according
ables. This is the typical situation of the quantum estimation; one element of the group, the probability of the given

thelo_rc)i/_ of H_elstr?m[Z], Wherefthe goal is t? dete_rmln\sw? event becomes the probability of the transformed event. This
multidimensional parameter of a state transformation. WheR ation is very natural, and occurs in most practical appli-

the set of states to be discriminated are orthonormal the P&ations. For example, the heterodyne measurefi@nt3 is

rame;c]er corr_espifonds dtohan “qbservab_le” Whos?_'e'genStaF%%variant under the group of displacements of the complex
are the set itself, and the estimation is exact. However, "field, which means that if we displace the state of radiation
practice it happens very often that the multidimensional pay, o, “additional complex averaged field, then the output
rameter cannot be described by an observalg., it is a  ioi60urrent will be displaced by the same complex quantity.
phase of a field, or it corresponds to a set of noncompatibl ther examples of covariant measurements are the quantum
observables whence a measurement represented by a SQsstimation of a “spin orientation[14—17, or of the phase
shift of an electromagnetic fiell2,18,19.
The statistics of the measurement can be improved by
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ing to tensor products of independent POVM@8) “sepa- tive, since the statgl’) may have a nontrivial stability group,
rable” measurements, corresponding to POVM's where eachay Gy (we say that a group elemehtbelongs to the sta-
element is separablgjii) “nonseparable” or “entangled” bility group Gy of [¥) whenU,|¥)=€%|¥), with ¢, a real
measurements, corresponding to POVM's where some elghasé. In this way the transformed states are in one-to-one
ment is entangled. In the first category measurements amorrespondence with the cosej&.: in other words the
performed independently on each copy. In the separablgroup-orbit manifold(obviously invariant under the group
class, on the other hand, the measurement can be performegpresentationfUgy}) is identified with the coset spac&

by means of separable operations; hence all LOCC schemesz/G,,. We see that in principle from the output sth.tg\w

are included in this category. Notice, however, that not allit is possible to estimate the group elemgrif the transfor-
separable operations can be implemented loaaée, e.g., mationUg only if the stability groupGy, of the input state
the case of nonlocality without entanglement of R&0]). |W) is trivial. Otherwise, we can estimate the coget X
Finally, the class of entangled POVM's represents the mosivhich is in one-to-one correspondence with the output state
general scheme of measurement, and opens the exponenqiMX):Ug(X)W), g(x) labeling any element d& in the cosek.
growth of the Hilbert space dimension versus the number ofn the following we will denote by,=eG,, the coset con-
copiesN, with the possibility of largely surpassing the sta- taining the identity elemerg, and the seed state is relabeled
tistical efficiency of the independe_nt m_easuremer_lt SChemQﬁccordingly aé\pXo)E |¥). This notation makes explicit the
[21-24. However, as already noticed in RgR3], in the  jsomorphism between the coset spateand thehomoge-
case of pure states and for the maximum likelihood strategyseousmanifold of stateg¥,) x X, i.e., on which the group
the optimal schemes can be surprisingly achieved by sepggcts transitively through its unitary representation as
rable measurements, and here we address this issue for Q9;|W,) = [¥,) (apart from a phase factorin this way, the
variant measurements. Under the general assumption @ktimation of the parametere X becomes equivalent to a
square-summable representation we derive a general “Caroblem ofcovariant state estimatiomnd it was provegil9]
nonical form” for the optimal measurements for pure inputthat the optimal probability distributiop(x|x,) of estimating
states, corresponding to a POVM which is separable or eng ., input state |\IIX0> satisfies the identityp(gx| gx,)

tan'g]!ed,.dtepgnd.ing anthe ?Ir(t)#p repr'eseptatioln.t' fth =p(x|xy), namely, the probability distribution on the mani-
ter introducing In Sec. € precise formuiation ot e ¢4 3 for an input stateUg|‘If> is equal to the probability

gg\lfnaé'an;e?t?temgfg'gqnﬂ?galpr.gglr?tr.?ésm f?rec.rcl)” W.ent(ierr';lledistribution for input staté¥) but with the manifold shifted
usetu : ! ' group Integ y g% In the following we will suppose for simplicity that

which are then used to algebraically characterize covariaq e groupG is unimodulari.e., the left invariant measurg
measurements. This also helps us in deriving a simple uppey, o

. L : . n G is also right invariant and the stability subgroup is
bound_for the maximum I_|kel|hood in Sec. IV, _along with the ompact. According to a thearem by Holel®], for square-
canonical form of the optimal measurement given in terms o

) . ntegrable representations the covariant estimation is de-
the group representation. Examples of the canonical form arg.ibed by a POVMM on the probability spaca with den-
given in Sec. V in dimensiond<ow for the group

SU(d)—corresponding to the estimation of an unknown pureSlty of the general form

state—and in infinite dimensions for the estimation of dis- dM(x) = Ug(x)EU;(x)dXv (1)
placements on the phase space. The case of multiple copies ) ] .

is then analyzed, discussing the occurrence of entangled vefthere dx denotes the invariant measure @ninduced by
sus separable POVM's. For the estimation of displacementévariant measurelg on G [27], and the positivkernelop-

on the phase space, the case of two copies experiencing optator= belongs to the commuta@y, of the stability group
posite shifts in momentum is also analyzed—the continuousd-€., [E,Uy]=0 0 he Gy), and satisfies the completeness
variable analog of the measurement of direction of the anguconstraint

lar momentum with two antiparallel spins by Gisin and

Popescu[26]. For coherent states it is shown that such a f dx Ug(x)EU;(x)Ef dg UQEUQ:I. (2)
scheme provides a better estimation of the displacement as x G

compared to the conventional case of identical displace- — ,
men?s P he fact that= e G, guarantees that the POVM does not

depend on the particular choice gfx).

Il. THE PROBLEM

. I1l. GROUP INTEGRALS OF OPERATORS
Whenever a quantum syste$ undergoes a physical

transformation belonging to a grou@, its state is trans- The completeness constraint in Eg) becomes particu-
formed according to an appropriate representatio®ain  larly simple with some abstract considerations on group in-
the Hilbert spaceH of the systemsS. In the following, we tegrals. Since the grou@ is unimodular, its unitary square-
will consider the case in which the gro@p is a Lie group summable representations satisfy Schur’s lemma for any
which acts onH by a (projective unitary representation (generally infinite dimensionakepresentation spadé [28],
{Ug}, whereas the initial state—also called #eedstate—is  namely, for any coupl¢Ug} and{Ug} of irreducible compo-

a pure statgdW¥). Notice that the correspondence betweennents of the representation with invariant subspaces
transformed states and group elements is generally not inje¢t,,,H, C H, respectively, every operat@,,: H,—H,, satis-
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;ying the identity UgO,,,=0,,Ug [0 g G must be of the a,,=b,,Trl,,0], (10)
orm
and the constart,,, can be determined by taking the matrix
Kl,, foru~wv, element of Eq(9) between vectore, (v)y and|e<“>> namely,
mr 0 otherwise,

where~ denotes equivalence of irreducible representations, bm:j dg (e’ |UjlelXer|Uglef). (11)
k is a constant, and,,: H,—H, is the isomorphism map- G
ping the two equivalent components, name\.Jrg‘FIWUSILV
0geG (l,, is the orthogonal projector onto the invariant
|rredUC|bIe subspaclel -

A simple consequence of Schur’s lemma is the Wedder-
burn decomposition of operator® such that T ,,0]

Notice that for equivalent components~ v for our choice
of bases one ha$e§”>|ug|e;”)>:<ef1”)|Ug|e;”>>, whenceb,,
=b,,=b,,=b,. Summarizing, we have the decomposition

<ol u,v[29 f dg U,0Ui=> b, > T11,,0]l,,,,
G N v~
J dg UOU{=2> X a,l,,. €)
Mo
b, = f dg [(el’|Uglei ). (12)
Taking the expectatlon values of both sides of a) on an G

) (w)
arbitrary elemente ) of an orthonormal baS|(s|e )} for If the groupG is compact and its measudg is normal-

H, one has ized (i.e., [cdg=1), then it is easy to show thdt,=1/d,,
whered,=dim(H,) (irreducible representations of compact
a,,= fG dg Tr[(U]Je{Xe”|Ug)O] O n. (4)  groups are finite dimensionaln fact, summation over ah

in Egs.(4) and(8) provides in a direct way the values,,
. " =Trfl1,,0]/d, anda,,=Trl,,0]/d, for the coefficients in
Applying now the Wedderburn decomposition to the grouqu_ (3). On the other hand, the derivation given above holds

; (1)y/ 1) R
avgrage:_lf prerctcE)rtE?’r‘] ><enu| and using invariance of the for unitary square-summable representations, even with a
subspace,,, one obtains Dirac-orthogonall basi9{|e(x")>} for H,, namely, (&|€;)
1 GO () =8(x=x"). The coefficientéo;l are generally noninteger, are
dg Ug|en e |U9:bwluw ©) called formal dimensionsand carry information about the
G structure of the irreducible components of the group repre-
whereb,,, is a constant to be evaluated. We then have  sentation.
b'““Tr[I““O]’ ®) IV. MEASUREMENTS WITH MAXIMUM LIKELIHOOD

whereb,,,, can be determined by taking the expectation value
of both sides of Eq(5) on any normalized vector iHl ,,
particular on the vecto||e“> leading to

We will now consider measurements which maximize the
likelihood, namely, the conditional probability densjigx|x)
of having the outcome equal to the true value for any

Because of covariance this optimality criterion is equivalent
bﬂﬂzf dg [(ef|Uglel)[2. (7)  to maximize thelikelihood functionalZ [E]=Tr{Zp] with
G p=|¥XW¥|, |¥) being the input state.
On the other hand, if the representathmandv are equwa— Notice that the general solution to the maximum likeli-

hood problem, which at first sight may appear of limited
value, is actually equivalent to the solution of any quantum
estimation problem with positive summable “goal” function
f(X,x) [the goal function is the opposite of the customary
cost function—(X,x) [2]]. This consists in associating with
each measurement outcomea “score” f(X,x), with the
J dg Tr[U el )(ef|u 0. (8)  functionf(X,x) increasing versug for X approaching the true
valuex. Then, the optimal measurement is the one that maxi-
mizes the average score. In a covariant estimation problem a
meaningful goal function must satisfy the invariance prop-
erty f(X,x)=f(gX,gx) 0 g e G, and this allows us to define a
J function h(g,g) on the group via the relatiorh(g,Qg)
f dg Ujlel"Xel[Ug=b,, 1, © = f(9xo,9%,) for fixed X,. Then, the functiorh is positive
(bounded from beloyy summable, and satisfiek(g,q)
for a suitable constarit,,, to be determined. Substituting the =h(g™'g,e), e denoting the identity transformation. Now,
last equation into Eq8) gives thanks to covariance the average score can be written as

lent, there are two orthonormal bag|s./ (1)) and{le;’ "N for
H, andH,, respectively, such thdt,,= En|en“)><eﬁ”>|. Now,
taking the matrix element of both sides of E§) between
vectors|e”) and|e!”) one has

The invariance of both subspaces, and H, along with
Schur’s lemma gives the identity
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_ - . ity sets the following general upper bound for the maximum
S=f dg Ng,e)Tr{pUg=U,] = f dg Ng.e) | L u[E] likelihood of covariant measurements:
G G
where Ly[E]l< > bl (15)
weMy
dg h(g,e)U;pUg In the case _of a compact group the inequalityp) implies_
G that the likelihood is always less than the sum of dimensions
Mlp) = of invariant subspaces supportifif). For infinite dimen-
f dg h(g,e) sions, on the other hand, the bou¢idb) and the likelihood
G itself may diverge. One can see now that the following
is a completely positive trace preserving map. Therefore, th@hOICe of the operatog:
maximization of a goal function can be viewed as a maxi- =_ - i9, -1
mum likelihood scheme on the transformed st&tép), and = =[n)al, |7 #gwe' b, V), (16
depending on the form of the functidmthe choice of the J—

input state may be restricted to special states, possiblgttains the bound=, .y, c./\Vb,H? for the likelihood func-

mixed. Nevertheless, in this paper we will give a completetional. Note that, iff¥') has no component in some irreduc-

solution only for pure input states. ible subspacéd,, then the operatoE must be extended to
The problem is now to find a positive operat8rwhich  the whole spaceH, in order to satisfy the constraints

maximizes the likelihood functional [Z]=Tr{Ep], and, at Tr[IWE]:b;L1 for all w. Obviously, such extension is gener-

the same time, satisfies the completeness constréiits ally not unique, e.g., one can take

Once an optimaE is found, the presence of a nontrivial

stability group Gy, for |[¥) can be taken into account by E=|mnl+ 2 bl oXD,), (17)
replacingZ with its group average oveb.y, vEMy
where|®,) is any normalized vector iRl,, which both guar-
f dg UgEU; antees= =0 and satisfies the constraints[r[LQLE]=b;1 for
=_ ZGv (13) all u. Notice that the presence of equivalent representations
= ' in Eq. (17) generally improves the likelihooghis feature
f dg was missed in Ref§15-17).
Gy If there are no equivalent representations in the decompo-

Notice that the value of the likelihood functional remains Sition of [¥), then the kerne{17) averaged over the stability
unchanged after this replacement, and the group average $§0groupGy of [¥) is optimal. However, in the presence of
still optimal [it is easy to show that the same occurs with €duivalent representations, one also wants the off-diagonal
M(p) in the case of a genera| goa' funct]oms a conse- constraints -I[ﬂMVE]ZO to be satisfied] M. One can see
quence of the Wedderburn decompositia8), the complete-  that the kernel in Eq17) satisfies also the off-diagonal con-
ness constraint2) for = can be written as straints when the decompositi¢i)=3 ,c, |V ,) satisfies

T, E1=8,b O p~v. (14) (W, J¥,)=0, u~w. (18

It is now convenient to decompose the input stat® over ~ As shown in the Appendix, the subspaces carrying equivalent
the invariant subspacel, of the representation agl) irreducible components of the representation can always be
=%,c,|¥,). This allows us to simply derive the following chosen in such a way as to satisfy E&g). It is worth no-

chain of inequalities: ticing that the present “canon_ical” form for maximum I_ikeli-
hood measurements generalizes the case of the optimal co-
Ly[E]=2 C eV, |EIV,) < > [HIHIIINES > Ic,| variant phase estimation given by Holejd9], further
v m v generalized in Ref[30]. Finally, notice that the result de-
[ 1)\2 1 rived here also holds for discrete groups, such as the permu-
X|eNEunbin = (% |C#|\'bﬂ> = EM: b tation group orZyX Z4 by just substituting integrals with
sums.

where the sums range in the d9dt, of all invariant sub-
spaces which are nonorthogonal|®), £[=] denotes the
likelihood functional defined by the pure stat&), and Euv
denotes the matrix eIeme(ﬂfM|E|\IfV>. The first inequality While it is obvious that averaging the result over a num-
can be saturated by the choisguzé("u‘l’v) &,/ whered,  ber N>1 of equally prepared identical copies always im-
is the phase of,. The second inequality is a necessary con-proves the precision of estimation—either classically or
dition for positivity of E, and saturates fo|r§W|=\s"§W§W not—a legitimate question is whether nonindependent mea-
(notice that this inequality is not also a sufficient conditionsurements on copies can be exploited to further enhance the
for positivity, whence the positivity of the optimal must be  precision, compared to this conventional independent mea-
checkeda posteriory. The third inequality is due to the fact surement scheme. For the maximum likelihood strategy,
thatgwsTr[IWE]:b;l. Finally, the last Schwartz inequal- when measurements are performed independently on each

V. EXAMPLES
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copy, in order to estimate ddimensional parametet, the  equality), d_ denoting the dimension of the antisymmetric

value of the likelihood is bounded as follows: Hilbert space. It is easily seen that this bound can be attained
N by choosings?=1/d. The optimal POVM is separablghe
" Eilei optimal kernel is actuallyfactorized as = =d?|){¢| ® |$)
Lo =P =x|x X{¢|). No further improvement can be achieved, since a
N likelihood greater thaml? is not compatible with the com-
Ei: X; pleteness of the POVNIn fact Ly[E]<Tr[E]=d?).
:JXm"‘dXNp(X1|X)"'D(XN|X)5 N X
B. Weyl-Heisenberg covariant estimation
= Ndf dxo - - dxyP(NX = Xp =+ + = X|X) 1. Estimation of displacement on the phase space
This case corresponds to consider the Weyl-Heisenberg
d '
X PxgX) -+ pOyx) < N rr)lfn{p(x 3 (19) irreducible representatiofD(2)} of the translation group on

the complex planeD(z) denoting the displacement operator
D(z):ezatz*a with [a,a']=1. Being noncompact, the repre-
sentation spacéd is infinite dimensional. Physicallyp(z)
represents a joint shift of position and momentum of a quan-

atum harmonic oscillator, and the covariant state estimation

higher value of the likelihood with respect to tekemiclassi- . -
. S corresponds to a joint measurement of position and momen-
cal scheme involving independent measurements. Moreove{Um Here one hab= [ (d22/ m|(nD@|)[% where|n) de
. —JC ’ -

the case of preparation in different input states can lead to ; | ¢ of h | basisHonwhich
further improvement in the estimation of the group transfor-10t€S an element of any orthondrmal basisrowhich we

mation Uy, since the decomposition of the global state maycan conveniently take as the set of eigenstates of the number

-1- . - - -
involve a larger number of invariant subspaces than jus9p(e_ratora a. Choqs!qgn—o one oi)tfunsb-l, whence the
those belonging to the symmetric space. optimal kernel for initial statéy) is ==|¢)(y| and the maxi-

mum likelihood is£[Z]=1. Notice that for|)=|0) we get
the well known coherent-state POVM describing the hetero-
dyne measuremefi2,13.

Unfortunately, the bound in E@19) is generally not achiev-
able, and for increasing value of the dimensionatitgf the

parameterx it becomes quite loose. However, the optimal
measurement o copies of the same state can achieve

A. Universal state estimation

1. SU(d)-covariant estimation: Pure state estimation

The estimation of a pure state in a finite dimensional Hil- 2 Estimation of displacement with identical shifts on-N1

bert spaceéH can be regarded as a covariant estimation with quantum oscillators
respect to the defining representation of the grougdsu This case corresponds to the tensor representation
where d=dim(H). Indeed, the orbit of a given pure state {D®N(z)} of the Weyl-Heisenberg group. The irreducible rep-
contains all pure states &f. Clearly, the optimal kernel is resentations can be easily obtained by the linear change of
E=d|){(y{, according to Refs[2,19], and consequently the modes represented by the unitary transformation
value of the maximum likelihood i€ =d. : P

V= e¢N[a1(a2+. LAay)—ag(ayt. . .+aN)],

2. Pure state estimation with I+ 1 copies in the same state with ¢=(1/\5'N_—1) arctan Y\N=1 so that VDEN(V

This corresponds to the case of estimation of the groug-p(N2 1D, Then the irreducible subspaces are given
elementg e SU(d) in the reducible representatichiwg’N with  py H, ={Vle)® |D,),|¢) € H}, where{|®,)} is an orthonor-

initial state|W)=[y)“". There are inequivalent components ma| pasis forH®N-D, The formal dimension coefficients are
corresponding to the symmetric subspédé™).,, along with  easily obtained as follows:

all other permutation invariant subspaces. Sipggbelongs
to the symmetric subspao¢i®V),, the optimal £ is not

_[ oz &N(\\ /T 2
unique, e.g., we can tak&=d,(|y)(#)N+1,, whered, b“_f(:7|<o|<¢“|VD (2V|0)| )]

:(d‘;':lll) is the dimension ofH®N), andW is the orthogonal )
complement of (H®N),. In any case we havec®™ :f d—z|<0|<<Dn|D(\e'NZ) ® 12ND|0)|d,)[?
=dim(H®N),. Notice that the POVM is not separable, due to c T

the presence of the orthogonal projectgr 2
=2 Liop@ior=4
3. SU(d) estimation with two copies in different states NJe 7 N’

In_this case [V)=[¢)|¢) can be decomposed as Since the invariant subspaces carry all equivalent
V(A+8)/2[ W) +\(1-59)/2|W_), where s=[y|#)| and  representations—the isomorphism between two of them is
[P,y =[1/2(1£9)](|)|p) x| H)| ). Then the optimal ker- 1,,,=V'(I @ |®,){(P,[)V—the problem of choosing a suitable
nel E is proportional to the projector onto the veco))  decomposition of the initial state’) in irreducible represen-
=yd, /¥ )+\Vd_|¥_) and the likelihood takes the value tations arises. In the general case, one should apply the full
(Vd,(1+59)/2+d_(1-s9)/2)><d? (by the Schwartz in- construction given in the Appendix, while a simpler solution
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is possible for states of the forf’)=|i;)|io)--|ix). In this

case, one has only to write  V|W¥)
2]1| inCigige - 'N|Il>|l2> ‘lin), and to define |P,)

_C E|2 |NCn|2 i ||2> ||N> where C 22 N |Cn| i |

obtalnlng the desired decomposnldﬂf) S Cn|n>|CI>n>

(notice that(®,|®,) =6, Since they are eigenstates corre-
sponding to different eigenvalues of the number opeyator

The value of the likelihood is thed[Z2]=N(Z,C,)>
We now consider two special cases.

(i) N copies of vacuum stat). This case corresponds to

the estimation of the complex shifton the sef|2)®N} of N
copies of a coherent state). Here, the vacuum statel’)
=|0)*N belongs to just one invariant subspace, SiN(¥)

=|W¥). The optimal kernel is not unique, and is given by any

completion of £=N(|0)0|)N, and the pertaining likelihood

value isN. For N=2 it can be shown that an optimal POVM

PHYSICAL REVIEW A 70, 062105(2004)

namely, a continuous version of the Wedderburn decomposi-
tion still holds,

d’z t 2
—V(20V'(z)= | dw a,Py,
c T C

for any O such that TP, 0] <o, with P,,=|D(w)}D(w)|

and a,,=7 'Tr[P,O] (in a proper mathematical setting the
integral overw in the last equation should be interpreted as a
direct integra). The maximum likelihood covariant measure-
ment for state estimation among the set generated by the
seed W) e H®? is given by theentangledkernel Z=|7){7|,
where

d?w .
|77>=f —We'0W|D(W)>,
c ™

corresponds to averaging the outcomes of independent hetthich is the analog of Eq16) for a continuous spectrufias

erodyne measurements on two copies, while another optimah that previous casef),, is the phase ofD(w)|¥)].

It is

one corresponds to the independent measurement of the p@orth noticing that forlW)=|0)|0) the problem corresponds

sition (1/2)(a1+a1) and the momentunil/2i)(a,— az) tak-
ing as the outcomex=x+iy, wherex andy are the two
separate outcomes.

(i) Two copies of a number statg¥)=|n)|n) with n>0.
The maximum value of the likelihood isZ[ZE]
=2[30 (1/2'1)(})\(2K) ! (2n-2K)! %, and numerical calcu-
lation shows an asymptotic linear behavior verausn the
case of two copies of a one-photon stiale=|1)|1). Decom-
posing the seed state we obtaiW)=—-(v2/2)(V'20)
+V102): an example of the optimal kernel is theH
=2[2(]1)(1])®2+3,; 40 V10 )0i|V], achieving a likelihood

to estimating the amplitude of the set of coherent states
{|2)|]z* )}, and the value of the likelihood for the optimal mea-
surement is 4, namely, twice the likelihood for the amplitude
estimation for identical state$z)|2)}. The probability distri-
butions are indeed Gaussian in both cases, but the variance in
this case is half the variance of the Gaussian for the states
|2)|2). The fidelity of the estimate is 2/3 for the statesz),
while it is 4/5 for|z)|z* ). The last example can be regarded
as the “continuous-variable” analog of the measurement of
the direction of two antiparallel spins by Gisin and Popescu
[26], as previously studied in Ref33].

equal to 4, which can be shown to be twice the semiclassical

value.

3. Estimation of displacement on two copies, with identical shifts

in position and opposite shifts in momentum

This case corresponds to the representafiiz)=D(2)

® D(z*)}, which is reducible, but does not possess any irre-
ducible proper component ik®?, and thus is beyond the

hypotheses of our general results. In fact, the irreducible rep-
resentations are all inequivalent, and make a continuou
supported by th

set, each component being
Dirac-normalized  eigenvectors [31]  (1/y 7-r)|D(w)>
=(1/v“77)2m,n<m|D(w)|n>|m>|n> of the normal operatow=a
®l-l®a' (the heterodyne photocurrefit2,13,32). Upon
expanding the operator¥/(z)=expzW-z*W) over the
Dirac-orthonormal basis, one has

d2
f —V(z)OVT(z)
C

2 2 2001
:f d_zf d_Wf d_WeZ(w—W’)*—Z*(w—W’)|D(W)><D(W)|
c mTJC c

X O[D(wW)XD (W)

2
- f d7w|D(w))(D(W)|O|D(W)><D(W)|a
C

4. Estimation of displacement on one part of a bipartite
entangled system

We consider here the representati@(z) ® I} acting on
two optical modes. In this case the invariant subspaces are
Ho={l¥) ®|en, ) e HY, where {|¢,)} is any orthonormal
basis inH, all of them supporting equivalent representations,
and the formal d|menS|or1$] are all equal to 1. If we take a
twin beam|¥)=11-x3 x"|n)|n) as initial state, its decom-
osition is trivial, and|n)|n) are precisely the components

» on the irreducible subspaces. Then the optimal POVM
is given by|7)=2,|n)|n), namely, it is the two-mode hetero-
dyne POVM[12,31,32. Correspondingly, the value of the
likelihood is L[Z]=(1+x)/(1-x), showing a strong en-
hancement by the effect of entanglement in agreement with
Ref. [23].

VI. CONCLUSIONS

By group theoretic arguments we have derived the class
of measurements of covariant parameters that are optimal
according to the maximum likelihood criterion. The optimi-
zation problem has been completely resolved for pure states
under the simple hypotheses of unimodularity of the group
and measurable stability group. The general method has been
applied to the case of finite dimensional quantum state esti-
mation with many input copies, and, for infinite dimensions,
to the Weyl-Heisenberg covariant estimation, also giving a
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continuous-variable analog of the estimation of the directiortioned, it is always possible to choose an orthonormal basis
on two antiparallel spins by Gisin and Popescu. The increassﬂ:{|ef1”)>} for each subspacel, in such a way thaB,

ing statistical efficiency with the number of copilsis es- =1,,B, for any u, v, where equality between bases is defined
sentially related to two factorg(i) the way in which the  glementwise, i.e|e®)=1,,/e") for all n. We have now the
dimension of theN-fold tensor product Hilbert space in- following simple lemma.

creases versus; (ii) its decomposition into irreducible sub- | emma(choice of the decomposition into equivalent com-
spaces. Moreover, the nonseparability of the optimahonents. For each unitary matrigV,,,} € M, the linear com-
measurement—either in its POVM or in the optimal pinationsB’ =3V, B, provide a new decompositioH(®
states'—is strictly related to the structure of the group repre—:@lT:lH;L of H(® i/ﬁto subspaces supporting equivalent irre-
sentation. ducible components, wheté/, = SpariB),).

We (_:onclude _by mentioning thf'it the optimal covariant Proof. The subspacebl’ are orthogonal. In fact, upon
estimation for mixed input states is still an open problem,, .. . el mo
defining B, ={|f,*)}, we obtain

and an explicit analytical optimization seems a very difficult

task. For the case of phase estimation the problem can b FIF00y = 3 (gl
analytically solved in the special instance of states which are*’! ''n . &
phase purg34]. For a general covariance group representa- ’

tion the concept of a phase-pure state can be generalized bjoreover, eact;, carries a representation equivalent to that
choosing a vectof¥ ) for each invariant subspace such thatof, say,H,. In fact, the operato§,;=3,V,,1,; is indeed an

for every u~ v one has(‘I'M|IW|\If,,>=O. Then every statp isomorphism between the subspathsand H,:u since it de-
satisfying Supfp} C Spad|¥ )} and (¥, |p|¥,) fines a one-to-one correspondence between themByjia
=du|(W |p|W,)| behaves as a pure state in all respects™S,1B1, and commutes with)q for all g e G, since each,,,

so that the upper bound and the canonical form of the opticOmmutes. This proves that the spadeis} provide a new

mal POVM still hold. It is likely that a generalization of this orthogonal decompositioi”’ =@ ,H, into invariant sub-
approach may extend the validity of the present solution ofPaces carrying equivalent components of the representation.
the covariant estimation problem for a special class of mixed Now, let us consider the compone#t,,) of [¥) on H),

VoVogle?y = 3,2 (VW) = 808,

states. and write its decomposition using the set of bafigs} as
follows:
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=dim(H,) and consider thenxd matrix V*={W7 }. Ac-
APPENDIX cording to Eq.(Al), ¥ is a Hilbert-Schmidt operator, and

In this appendix we show how to chose invariant sub_hence we can write the singular value decomposition

spacesH,, of equivalent irreducible representations in order yeo=VTsU, (A2)
to satisfy Eq.(18), namely,(¥ | ,,|¥,)=0, for the decom-

position|\lf>:2'ucﬁ|l[/’u>, in such a way that all invariant sub- where is a mxd matrix with all vanishing off-diagonal
spaces effectively behave as supporting inequivalent irreduglements, an¥ andU aremx m andd X d unitaries, respec-
ible representations. This choice of invariant subspacetively. From Eg. (A2) one obtainsV,,=%,V,,0,6,Up,
guarantees that every operafee=|7)(7|, where|7) is any =~ where the sums run from 1 to=rank'¥*)<min(m,d).
linear combination of|¥,), will satisfy the constraints Equation(Al) is then rewritten

Tr[=1,,]=0 for any u~v. This method will allow one to

extend the general treatment of the phase estimation problem W, =2 0,80, (A3)
given in Ref.[30] to any square-summable group represen- "
tation. where

Let us consider an irreducible component of a unitary
representation o6 with multiplicity m=cc, and denote by |g(”)>=EV U, |e‘”)). (A4)
H(@ the invariant subspace carrying all equivalent irreduc- ' n e

ible components, and bi“’=@_H, a given choice of

invariant orthogonal subspacts,, each carrying an equiva- The new baseB;={|g, “)} provide a new decomposition into

lent irreducible representation. Since inequivalent irreduciblénvariant subspaces! supporting equivalent components. In

components already satisfy §d.8), we can just focus atten- fact, starting from the sefB,,} the first unitary transforma-

tion on the component’ ) of [¥) on H@, tion U over each basis preserves the relati@s=1,,B,,
Let us denote by, the isomorphisms mapping, into  whereas the second transformatiénaccording to the pre-

H,. and satisfying[l,,,Uy]=0 O ge G. As already men- vious lemma, gives the new decompositibll‘f”):@;f:lH’,
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with H/ =SpariB,). The statd¥,) in Eq. (A3) then satis- element|g, " of the orthonormal basis with differemtfor
fies different v.

Notice that, if the group is noncompact and there is an
infinite number of equivalent irreducible subspaces, the spec-
trum of singular values off may be continuous, and the

) , o sums in the above derivation must be replaced by integrals,
since the spaced,=Sparj|g,”)} have been chosen such that with some care in the generalization of definition and theo-
each component df',) onH! is just proportional to a single rems.

(W l1,,|¥,)=0foru~wv
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