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We investigate operational probabilistic theories where the pure states of every system are the vertices of a
simplex. A special case of such theories is that of classical theories, i.e., simplicial theories whose pure states
are jointly perfectly discriminable. The usual classical theory satisfies also local discriminability. However,
simplicial theories—including the classical ones—can violate local discriminability, thus admitting entangled
states. First, we prove sufficient conditions for the presence of entangled states in arbitrary probabilistic theories.
Then we prove that simplicial theories are necessarily causal, and this represents a no-go theorem for conceiving
noncausal classical theories. We then provide necessary and sufficient conditions for simplicial theories to exhibit
entanglement and classify their system-composition rules. We conclude by proving that, in simplicial theories,
an operational formulation of the superposition principle cannot be satisfied, and that—under the hypothesis of
n-local discriminability—no mixed state admits a purification. Our results hold also in the general case where
the sets of states fail to be convex.
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I. INTRODUCTION

Entanglement is the quantum feature marking the starkest
departure of quantum theory from classical theory (in the
following, these will be referred to as QT and CT, respec-
tively). The phenomenon is commonly popularized as so-
called quantum nonlocality, although the two concepts are
not coincident. Indeed, it is known that the mere existence of
entangled states is not sufficient for nonlocality [1,2]. On the
other hand, CT does not allow for any kind of entanglement
or nonlocality.

States in CT have a very simple geometrical structure;
namely, the set of states for every system is a simplex. In
the present work, we argue that the absence of entanglement
in CT is due not only to the simplicial structure of the set
of states of the single systems, but also to the composition
rule of the systems, which satisfies local discriminability [3].
Indeed, as we will show, simplicial theories can exhibit entan-
glement, including general classical theories, namely, those
simplicial theories where the pure states are jointly perfectly
discriminable [4–6]. Besides classical theories, the definition
of simplicial theory encompasses even more general cases—
e.g., noisy versions of classical theories, where pure states
cannot be reliably distinguished due to a limited set of mea-
surements [7]. The characteristic trait of a simplicial theory is
that every state has a unique convex decomposition into pure
states. The results of the present work hold for all simplicial
theories, encompassing even cases where the sets of states are
not convex. In contrast to the common understanding of the
quantum-classical divide, as a consequence of our results we
show that a classical theory generally admits entangled states.
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The paper is organized as follows: In Sec. II we provide a
review of the framework of operational probabilistic theories
(OPTs). In Sec. III we point out the relevance of the notion
of parallel composition in a probabilistic theory, focusing on
the consequences regarding the presence of entanglement in
arbitrary OPTs. In particular, we prove sufficient conditions
for the presence of entangled states in a probabilistic theory.
In Sec. IV, we specialize to simplicial theories, discussing
various features of this class of OPTs. First, as a consequence
of the geometric structure of the sets of states, we show that
a simplicial theory is necessarily causal, highlighting that
causality is intrinsic to classical theories—and, in particular,
to CT. Then, we provide necessary and sufficient conditions
for the presence of entangled states in a simplicial theory,
along with a classification of simplicial theories in terms of
their composition rules for systems. We conclude by showing
that, despite the possibility of exhibiting entanglement, no
simplicial theory can admit of superposition (in an opera-
tional sense), or purifications of (any) mixed states (under
the hypothesis of n-local discriminability). Finally, in Sec. V
we discuss some information-theoretic features shared by
simplicial theories with entanglement, making a comparison
with the existing literature on probabilistic theories, and we
draw our conclusions.

II. REVIEW OF FRAMEWORK OF OPERATIONAL
PROBABILISTIC THEORIES

The primitive notions of an operational theory are those of
systems, tests, and events. A system S represents the physical
entity which is probed in the laboratory, such as a radiation
field, a molecule, or an elementary particle. A test E is char-
acterized by a collection of events {Ex}x∈X and represents the
single occurrence of a physical process, such as the use of a
physical device or a measuring apparatus. The outcome space
X associated with the test E collects all the possible outcomes
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that can occur within the test. Each test E is characterized by
an input system A and an output system B. For instance, think
of electron-proton scattering: both the input and the output
systems are an electron-proton pair, the test contains only
one event corresponding to the two-particle interaction, and
finally the outcome space is a singleton. On the other hand, a
fundamental feature for a physical theory is the power to make
predictions. Accordingly, the operational structure needs to
be endowed with a suitable set of rules for computing the
probability distributions associated with each experiment.

The above structure can be formalized by defining the
notion of an operational probabilistic theory (OPT).1 In the
present section, we recall some relevant concepts in the scope
of OPTs. Given an OPT �, Sys(�) will denote the set of
the systems of the theory. We will denote by roman letters
A, B, . . . ∈ Sys(�) the systems, and by E = {Ex}x∈X the
tests, where each Ex for x ∈ X is a possible event that can
occur in the test. Given a test E , each possible event Ex

is a map from an input system A to an output system B
and corresponds to the outcome x. Whenever the output of
a test E1 = {Ex}x∈X coincides with the input of another test
E2 = {Ey}y∈Y, the sequential composition E2 ◦ E1 := E2E1 ≡
{EyEx}(y,x)∈Y×X of the two tests can be defined, being an
allowed test for the theory. Thus, physical systems define the
connection rules for tests. In an OPT, two important classes
of tests are those of preparations and observations, i.e., tests
with no input or no output system, respectively. Accordingly,
preparations ρ and observations a, where A is, respectively,
the output or the input system, are conveniently denoted by
using the Dirac-like notation |ρ)A and (a|A. Given some
arbitrary preparation event |ρi )A, event Ex from system A to
system B, and observation event (ak|B, the purpose of an OPT
is to compute joint probabilities of the form

p(i, x, k |ρ,E , a) := (ak|BEx|ρi )A. (1)

Two events from a system X to a system Y are equivalent if
all their joint probabilities of the form (1), given the same set
of other events appearing in Eq. (1), are equal. We call equiv-
alent classes of preparation and observation events states and
effects, respectively. Besides, equivalent classes of arbitrary
events from A to B will be called transformations. Notice that
states and effects will be considered special cases of transfor-
mations. This can be done simply by introducing the notion of
trivial system I, defined as their, respectively, input and output
system. For every A, B ∈ Sys(�), St(A), Transf(A→B),
and Eff(B) will denote, respectively, the sets of states of A,
of transformations from A to B, and of effects of B. Clearly,
every event Ex ∈ Transf(A→B) is a map from St(A) to
St(B), or, dually, from Eff(B) to Eff(A). According to the
above definitions, effects are separating for states, i.e., given
two states |ρ1)A �= |ρ2)A, there exists (a|A ∈ Eff(A) such that
(a|ρ1)A �= (a|ρ2)A. Similarly, an effect is the equivalence
class of those observation events that give the same probabil-
ities for every state, and thus states are separating for effects.

Within an operational perspective, an agent is allowed to
perform a test—say with outcome space X—disregarding the

1For a thorough presentation of the OPT framework, we refer the
interested reader to Refs. [3,8–10].

single outcomes within a subset Y ⊆ X , and then merging
events in Y into a single event: this possibility is captured
by the notion of coarse-graining. According to probability
theory, the probability of the coarse-grained event Y amounts
to the sum of the probabilities of all the outcomes in the subset
Y . Then, for each test {Ex}x∈X ⊆ Transf(A→B) and every
subset Y ⊆ X , the coarse-grained event is symbolically given
by

∑
y∈Y Ey, where sequential composition distributes over

sums. The converse procedure of a coarse-graining is called a
refinement. An event with trivial refinement, i.e., which cannot
be further refined modulo a rescaling by a probability, is called
atomic. Being framework probabilistic, one may also want
to consider convex combinations of states, transformations,
and effects, corresponding to a randomization, i.e., a statistical
mixture of events.

In general, states, transformations, and effects can be
thought of as embedded in convex spaces. However, in general
the set of states of a system might not be convex. Then, one
can conveniently remind two important notions from conic
and convex analysis, i.e., those of atomic and extremal points.
Let St(A) be the set of states of a system A. The null state
|ε)A, which occurs with null probability in every context,
is always included in St(A). Given |x1), |x2) ∈ St(A) and
p ∈ (0, 1), a state |x) ∈ St(A) is called atomic if the condi-
tion |x) = |x1) + |x2) implies |x1) ∝ |x2), while it is called
extremal if the condition |x) = p|x1) + (1 − p)|x2) implies
|x1) = |x2). In the case where St(A) is a convex cone for
every system A, the theory is called convex. CT and QT are
both convex theories. Let now ConvH(A) denote the convex
hull of St(A). It might happen that a state is not atomic
in St(A), whereas it is in ConvH(A). We will denote by
ExtSt(A) the set of extremal points of ConvH(A). Notice that
ExtSt(A) contains the null state |ε)A. The event associated
with a singleton test—namely a test where the outcome space
is a singleton, i.e., having a single outcome—is called deter-
ministic. The interpretation of a deterministic event is that the
physical process considered happens with certainty, i.e., with
probability 1. For instance, a state is deterministic if and only
if it gives probability 1 on every deterministic effect, or, in
other words, if and only if it is normalized. The deterministic
extremal states are historically called pure states. Finally, the
mixed states are all states that are not proportional to some
extremal state.

It is often convenient to consider the real span of sets of
states St(A), which is a linear space denoted by StR(A) :=
SpanRSt(A). The null state |ε)A is represented in StR(A)
by the null vector 0. Every system A is then associated with
a quantity DA := dim StR(A), which is called the dimen-
sion of the system A. Since effects are separating for states
and viceversa, one has that dim StR(A) = dim EffR(A). As
usual throughout the literature, we consider finite-dimensional
OPTs, namely, theories where DA < +∞ for all systems A ∈
Sys(�). The latter assumption means that we are considering
systems whose states can be completely probed via the statis-
tics of a finite number of experiments. In CT, for instance, DA

is the number of perfectly distinguishable states of a system
A, while in QT one has DA = d2

A, where dA is the dimension
of the Hilbert space associated with the system A.

We conclude the present review by considering a funda-
mental structure of operational theories: parallel composition.
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Indeed, the last piece of information one needs to character-
ize an OPT is a recipe to form compounds out of systems
and events available to local experimenters. We denote par-
allel composition by the symbol �, writing, for two arbi-
trary tests E1 = {Ex}x∈X and E2 = {Ey}y∈Y, E1 � E2 ≡ {Ex �
Ey}(x,y)∈X×Y. The latter, from a probabilistic point of view,
represent uncorrelated tests. The main property of parallel
composition is the following:

(A � B) ◦ (C � D ) = (A ◦ C ) � (B ◦ D ). (2)

Property (2) states that the two operations of sequential and
parallel composition commute. Also parallel composition dis-
tributes over sums. In the case of systems, states, and effects,
we use the following notation: AB := A � B, |ρ)A|σ )B :=
|ρ)A � |σ )B, and (a|A(b|B := (a|A � (b|B. One has then to
specify, for all transformations Ex ∈ Transf(A→B) and Dy ∈
Transf(C→D), how the composite event Ex � Dy embeds
into the total space of transformations Transf(AC→BD).
In QT, for instance, this operation is given by the standard
tensor product ⊗. Notice that both the sequential and the
parallel composition of two deterministic transformations are
deterministic. However, in principle, the property of atomicity
may be not preserved under both kinds of composition.

III. PARALLEL COMPOSITION AND PRESENCE
OF ENTANGLED STATES IN ARBITRARY

OPERATIONAL PROBABILISTIC THEORIES

The existence of parallel composition entails a prescription
to assign a dimension to a composite system AB as a function
of the dimensions DA and DB of the local systems A, B.
St(AB) contains at least the parallel composition of the states
of A and B, which can be composed independently. By virtue
of property (2), for every OPT � one has the following
inequality (see e.g., Ref. [11]):

DAB � DA DB ∀ A, B ∈ Sys(�). (3)

This leads us to introduce an “excess dimension” of the
composite system AB as follows:

�
(2)
AB := DAB − DA DB ∀ A, B ∈ Sys(�).

From Eq. (3), one can see that �
(2)
AB is in general a non-

negative integer for all systems A, B. In both CT and QT one
has �

(2)
AB = 0. We then see how this relates to the degree of

holism required in the task of state discrimination.
Property 1: n-local discriminability [11]. Let n � m. The

effects obtained as a conic combination of the parallel com-
positions of effects a1, a2, . . . , al , where a j is k j partite with
k j � n for all values of j, are separating for m-partite states.

In the simplest case where n = 1, the property is called
local discriminability. In both CT and QT, the parallel com-
positions of local effects are separating for multipartite states;
namely, both theories satisfy local discriminability. The next
result, whose proof can be found in Ref. [3], characterizes
the composition rules for the dimensions of local systems in
theories satisfying local discriminability.

Proposition 1. Let � be an OPT, then � satisfies local
discriminability if and only if the following rule holds:

DAB = DA DB ∀ A, B ∈ Sys(�). (4)

As a consequence of the previous result, if a theory � does
not satisfy local discriminability, then there exist two systems
A, B ∈ Sys(�) such that �

(2)
AB > 0. Another important fea-

ture shared by both CT and QT is the following:
Property 2: atomicity of state composition.2 The parallel

composition of two atomic states is atomic.
In this work, we relate the properties of local discrim-

inability and atomicity of state composition to the presence
of entangled states. We now recall the definition of separable
and entangled states. Given two systems A, B, the separable
states of the bipartite system AB are those of the form

|σ )AB =
∑

i∈I

|αi )A|βi )B, (5)

with St(A) � |αi )A �= |ε)A, St(B) � |βi )B �= |ε)B for every
i ∈ I . This set of states contains all states that can be pre-
pared using only local operations and classical communica-
tion (LOCC)—but is generally larger than the set of LOCC
states. In CT and QT the converse is also true. By negation,
entangled states are those states that are nonseparable. The
two following results hold for arbitrary OPTs:

Proposition 2. Let � be an OPT. If � does not satisfy local
discriminability, then it admits entangled states.

Proof. By hypothesis, from Eqs. (3) and (4), we have
that there exist A, B ∈ Sys(�) such that DAB > DADB. Since
product states generate a subspace of StR(AB) of dimension
DADB, containing all separable states, St(AB) must contain at
least one state that is not separable. Then � admits entangled
states. �

Proposition 3. Let � be an OPT. If � does not satisfy
atomicity of state composition, then it admits entangled states.

Proof. By hypothesis, there exist two systems A, B and two
atomic states |ρ)A, |τ )B whose parallel composition |σ )AB =
|ρ)A|τ )B is not atomic. By contradiction, suppose that the
states of the composite system AB are all separable, namely
of the form (5). By hypothesis, |σ )AB is not atomic and then
admits a decomposition of the form

|σ )AB =
p∑

i=1

|αi )A|βi )B, (6)

where there are two indices 1 � l < k � p such that
|αl )A|βl )B �∝ |αk )A|βk )B. This implies that |αl )A �∝ |αk )A or
|βl )B �∝ |βk )B—say the former without loss of generality.
Now, since the decomposition in Eq. (6) can be taken such that
|βi )B �= |ε)B for every 1 � i � p without loss of generality,
then for every 1 � i � p there must exist a deterministic
effect (ẽi|B such that (ẽi|βi )B > 0. Let us now choose one
of the deterministic effects (ẽ j |B. Let also |τ̃ )B be such that

2One may argue that the property of atomicity of state composition
should be renamed purity of state composition. However, as opposed
to the notion of atomicity (from conic analysis) and extremality
(from convex analysis), the notion of purity is a historical one
introduced only for extremal deterministic states. In causal theories
(see Property 4 in Sec. IV), where every state is proportional to a
deterministic one, there is no need for a distinction between atomicity
and purity. With a slight abuse of terminology, in several situations,
purity is used as a synonym of atomicity.
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{|τ )B, |τ̃ )B} is a test. Then

(ẽ j |B|σ )AB + (ẽ j |τ̃ )B|ρ)A

= (ẽ j |τ )B|ρ)A + (ẽ j |τ̃ )B|ρ)A = |ρ)A

=
p∑

i=1

(ẽ j |βi )B|αi )A + (ẽ j |τ̃ )B|ρ)A.

For a fixed choice of j, the term (ẽ j |β j )B|α j )A is non-null,
and by the atomicity of |ρ)A, one must then have |α j )A ∝
|ρ)A. Since this is true for every 1 � j � p, we come to
a contradiction with the hypothesis that |αl )A �∝ |αk )A. This
implies that there exists a state of AB which is not separable,
namely � admits entangled states. �

A counterexample to the converse of both Propositions 2
and 3 is simply given by QT, which contains entangled states
and also satisfies both local discriminability and atomicity of
state composition.

IV. ENTANGLEMENT IN SIMPLICIAL THEORIES

In the present section, we characterize simplicial theories
from the point of view of the admissibility of entangled states,
finding that the converse of Proposition 2 holds in general for
this family of theories, whereas the converse of Proposition
3 holds in the case of simplicial theories satisfying n-local
discriminability for some positive integer n.

Definition 1: simplicial theory. A simplicial theory � is
a finite-dimensional OPT where the extremal states of every
system A ∈ Sys(�) are the vertices of a DA simplex.

Notice that a DA simplex is the convex hull of DA + 1
vertices, which in the present context are the elements of
ExtSt(A) [including also the null state |ε)A]. The property
of simpliciality for an OPT � implies that, for every system
A ∈ Sys(�): (i) A has exactly DA non-null extremal states,
and (ii) every state of A has a unique decomposition as a
convex combination of non-null extremal states. We make
extensive use of the two previous properties in the remainder
of the paper.

Property 3: joint perfect discriminability. Let � be an OPT
and A ∈ Sys(�). A set of states {|ρi )A}n

i=1 is jointly perfectly
discriminable if there exists an observation test {(ai|A}n

i=1 such
that

(ai|ρ j )A = δi j ∀i, j ∈ {0, 1, . . . , n}.
As has been recalled, classical theories are those simplicial

theories where the pure states satisfy Property 3. On the other
hand, CT is a simplicial theory satisfying convexity, local
discriminability, and joint perfect discriminability of pure
states for every system. Furthermore, the following property,
i.e., causality, is usually also assumed for CT.

Property 4: causality. An OPT is causal if every system
admits a unique deterministic effect.

The above definition of causality is in fact equivalently
formulated in a more intuitive way as follows: A theory is
causal if the probabilities of the outcomes of preparations are
independent of the choice of the observations connected at
their output. The latter statement, indeed, can be recognized
as the most popular formulation of the notion of causality
in a physical theory. However, its content is equivalent to

Property 4 (for a proof, see Ref. [3]). We now prove that the
property of causality is in fact intrinsic to that of simpliciality,
thus establishing that all simplicial theories—CT included—
are indeed inherently causal.

Theorem 1. Simplicial theories are causal.
Proof. Let � be a simplicial theory, A ∈ Sys(�), and |i)A

be an extremal and non-null state. Suppose that |i)A is not
deterministic: then it can be completed to a deterministic one;
namely, there exists a non-null state |σ )A such that |ρ)A =
|i)A + |σ )A is deterministic. Now, let (b j |A for j = 1, . . . , DA

be the linear functionals such that (b j | j′)A = δ j j′ for every
non-null extremal state | j′)A: this implies, by simpliciality,
that 0 � (b j |τ )A � 1 for all |τ )A ∈ St(A) and all j. One then
has

(bi|ρ)A = (bi|i)A + (bi|σ )A = 1 + (bi|σ )A � 1;

namely, (bi|σ ) = 0 and (bi|ρ) = 1. Then, posing
ExtSt(A) := {|k)A}DA

k=0, with |0)A := |ε)A, one has the
following:

|σ )A =
DA∑

k=0

pk|k)A, pk � 0 ∀ k, pi = 0,

DA∑

k=0

pk � 1.

Let us now pose

(e|A :=
DA∑

j=1

(b j |A.

Clearly 0 � (e|τ )A � 1 for all |τ )A ∈ St(A), and (e|i)A = 1,
implying (e|σ )A = 0, i.e., pk = 0 ∀ k �= 0. This shows that |i)
is deterministic. Being independent of i, the above argument
proves that all non-null extremal states are deterministic.
Extending then the above argument to arbitrary convex com-
binations of non-null extremal states of the form

∑DA
k=0 pk|k)A,

it is easy to see that a state is deterministic if and only if∑DA
k=1 pk = 1. In other words, the set of deterministic states

coincides with the convex hull of extremal non-null states.
Now, the effect (e|A amounts to unity on all deterministic
states, hence it is deterministic. Since the non-null extremal
states of a simplicial theory are complete and linearly inde-
pendent, there exists a unique effect (ẽ|A such that (ẽ| j)A = 1
for all extremal non-null states | j)A. Thus the deterministic
effect (e|A is unique. �

Now we show that, for any simplicial theory, the converse
of Proposition 2 is also true.

Theorem 2. Let � be a simplicial theory. Then � admits
entangled states if and only if it does not satisfy local discrim-
inability.

Proof. (⇐) The implication holds true by Proposition 2.
(⇒) By hypothesis, the theory � is simplicial. Let us denote
the non-null extremal states of a system X by |l )X, for l =
1, . . . , DX. As a straightforward consequence of Theorem 1,
such states are also deterministic. Then, for all A, B ∈
Sys(�) and all non-null |i)A ∈ ExtSt(A), | j)B ∈ ExtSt(B),
there exists a nonempty set Ii j ⊆ {1, . . . , } such that

|i)A| j)B =
∑

k∈Ii j

pi j
k |k)AB, (7)
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with pi j
k > 0 for k ∈ Ii j and

∑
k∈Ii j

pi j
k = 1. Let (e|A ∈ Eff(A)

be the (unique) deterministic effect of A. Since for all k ∈
{1, . . . , DAB}, (e|A|k)AB ∈ St(B) is deterministic, it is also
nonvanishing for all k. Moreover, let us suppose that there
exist two different pairs of indices (ĩ, j̃), (ĩ′, j̃′) such that
J̃ := Iĩ j̃ ∩ Iĩ′ j̃′ �= ∅. Without loss of generality, we can as-
sume j̃ �= j̃′. Choose k̃ ∈ J̃: being the convex decomposition
into non-null extremal states unique by simpliciality, from
Eq. (7) we conclude that (e|A|k̃)AB = | j̃)B = | j̃′)B, which
is absurd. Thus Ii j ∩ Ii′ j′ = ∅ for every different pair of in-
dices. Now, let us suppose that � satisfies local discrim-
inability. Then, by Proposition 1, Eq. (4) holds, and Ii j ⊆
{1, 2, . . . , DADB} ∀ i, j. By conditions Ii j �= ∅ and Ii j ∩ Ii′ j′ =
∅, every set Ii j must be a singleton. This implies that, for
every pair i, j, there exists |k)AB such that |k)AB = |i)A| j)B;
namely, the parallel composition of non-null extremal states is
a non-null extremal state. Accordingly, Eq. (4) implies that the
states of the form |i)A| j)B exhaust the set of non-null extremal
states of the composite system AB. As a consequence, � does
not admit entangled states. �

Next, we prove that, for a simplicial theory satisfying n-
local discriminability for some positive integer n, the converse
of Proposition 3 is also true. To do this, we need the following
result, which is proved in Appendix A:

Proposition 4. Let � be a simplicial OPT satisfying n-
local discriminability for some positive integer n. For every
pair of systems A, B ∈ Sys(�), every non-null extremal state
|λ)AB ∈ ExtSt(AB) convexly refines the parallel composition
of some pair of pure states |ρ)A|σ )B ∈ St(AB).

We are now in position to prove the following theorem:
Theorem 3. Let � be a simplicial theory satisfying n-local

discriminability for some positive integer n. Then � admits
entangled states if and only if it does not satisfy atomicity of
state composition.

Proof. (⇐) The implication holds true by Proposition 3.
(⇒) According to Proposition 4, under the hypothesis of the
theorem every non-null extremal state of a bipartite system
refines some parallel composition of extremal states. Since by
hypothesis the theory admits entangled states, by Theorem 2
and Proposition 1 there exists a pair of systems A, B ∈
Sys(�) such that DAB > DADB. Then, there are more non-
null extremal states of the composite system than parallel
compositions of (non-null) extremal states. Thus, there must
be a parallel composition of extremal states |i)A| j)B that
is refined by more than one non-null extremal states, i.e.,
|i)A| j)B = ∑

k∈Ii j
pi j

k |k)AB, namely atomicity of state compo-
sition does not hold. �

The following lemma provides a characterization of the
parallel composition of states in simplicial theories satisfying
n-local discriminability for some positive integer n:

Lemma 1. Let � be a simplicial theory satisfying n-local
discriminability for some positive integer n. Then, for all
systems A, B ∈ Sys(�) and non-null extremal states |k)AB ∈
ExtSt(AB), there exists a unique product of non-null extremal
states |ik jk )AB = |ik )A| jk )B such that |k)AB convexly refines
|ik jk )AB.

Proof. Existence is provided by Proposition 4, and unique-
ness has been proved in the proof of Theorem 2. �

Notice that the map k �→ ik jk of the above lemma is not
injective in general. In particular, the map is not injective
as long as the theory does not satisfy atomicity of state
composition. As a straightforward consequence of Lemma 1,
we are now in position to provide a general classification of
the composite-state spaces in simplicial theories satisfying
n-local discriminability for some integer n.

Theorem 4: classification of composite-state spaces in sim-
plicial theories. Let � be a simplicial theory satisfying n-local
discriminability for some integer n. For every pair of systems
A, B ∈ Sys(�), the state-space St(AB) is classified by the
following: (i) a choice of the dimension of the composite sys-
tem DAB; (ii) an unambiguous labeling for the pure states of
AB as |(i j)k )AB—for i ∈ {1, . . . , DA}, j ∈ {1, . . . , DB}, and k
in finite sets Ii j—and a choice of probability distributions pi j

k ,
such that

|i)A| j)B =
∑

k∈Ii j

pi j
k |(i j)k )AB, (8)

with pi j
k > 0 and

∑
k∈Ii j

pi j
k = 1 for all non-null extremal

states |i)A ∈ ExtSt(A), | j)B ∈ ExtSt(B).
Notice that not all the choices of the coefficients pi j

k in
Eq. (8) necessarily lead to a consistent theory. However, there
are cases of classical theories beyond CT, proving that a
consistent choice of pi j

k is possible [12].
We conclude our investigation on simplicial theories by

proving that these theories, whereas they may admit of entan-
gled states, cannot admit of superposition (in an operational
sense), or purification (under the hypothesis of n-local dis-
criminability for some positive integer n). We formulate the
superposition principle in three possible ways.

Property 5: superposition principle. Let D = {|ρi )A}d
i=1,

with d � 2, be any maximal set of jointly perfectly discrim-
inable pure states of a system A. Let A = {(ai|}d

i=1 denote
an observation such that (ai|ρ j ) = δi j for all i, j ∈ {1, . . . , d},
p = {pi}d

i=1 a probability distribution, and |σ )A a pure state
of A.

(i) Ultraweak: For every choice of p, there exist A and
|σ )A such that the following holds:

pi = (ai|σ )A ∀ i = 1, . . . , d. (9)

(ii) Weak: For every choice of p and A , there exists |σ )A

such that Eq. (9) holds.
(iii) Strong: For every choice of p, there exists |σ )A such

that, for every choice of A , Eq. (9) holds.
Property 6: purification principle. Let |ρ)A be a determin-

istic state. Then there exists a system B, a pure state |�ρ )AB,
and a deterministic effect (eρ |B, such that

|ρ)A = (eρ |B|�ρ )AB.

Both the ultraweak superposition and the purification princi-
ples are satisfied by QT—but, clearly, not by CT. Interestingly,
a simplicial or classical theory where the states of every
system are exhausted by the pure ones—e.g., this is the case of
deterministic classical theory (DCT) [13]—trivially satisfies
the purification principle, since all states are pure.

Theorem 5: no superposition for simplicial theories. Let
� be an OPT. If � is simplicial, then there is no system in �
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satisfying the weak formulation of the superposition principle.
If � is classical, then there is no system in � satisfying any
formulation of the superposition principle.

Proof. Let � be a simplicial theory, and A a system of �.
First, we notice that, if there does not exist a set D = {|i)A}d

i=1
of jointly perfectly discriminable pure states with d � 2,
Property 5 is empty. Accordingly, we assume that D exists,
that it is maximal, and, as a necessary condition, that DA � 2.
Let us pose I := {1, . . . , d} and K := {d + 1, . . . , DA}. Let
{( fl |A}l∈I∪K be the set of linear functionals such that ( fl | j)A =
δl j for all non-null extremal states | j)A ∈ ExtSt(A) and all
l ∈ I ∪ K . Then, every observation A = {(ai|}i∈I such that
(ai|i′) = δii′ for all i, i′ ∈ I has the following form:

(ai|A = ( fi|A +
∑

k∈K

qi
k ( fk|A, (10)

with qi
k � 0 and

∑
i′∈I qi′

k = 1 for all i ∈ I, k ∈ K , since it
must be

∑
i′∈I (ai′ |A = (e|A ≡ ∑

l∈I∪K ( fl |A. If the theory �

is not classical, then |I| ≡ d < DA and |K| � 1. Being the
number of pure states finite, for every choice of A = {(ai|}i∈I

of the form (10), Eq. (9) might be satisfied only for a finite
number of choices of probability distributions p = {pi}i∈I ,
namely, those with pi = δii0 and i0 ∈ I or those with pi = qi

k
for k ∈ K . Therefore, no simplicial theory satisfies the weak
formulation (ii) of Property 5. If the theory � is classical, then
|I| ≡ d = DA and K = ∅ by definition. This means that an
observation A of the form (10) is unique—in particular, A =
{( fi|}i∈I . Accordingly, Eq. (9) can be satisfied for a unique
(modulo permutations of the indices) choice of probability
distribution p = {pi}d

i=1, namely, pi = δii0 for some i0 ∈ I
and all i ∈ I \ {i0}. Therefore no classical theory satisfies the
ultraweak formulation (i) of Property 5. �

Theorem 6: no purification for simplicial theories with n-
local discriminability. Let � be a simplicial theory satisfying
n-local discriminability for some n. Then, there is no mixed
state in � having a purification.

Proof. By Theorem 4, every pure state of a composite
system convexly refines the parallel composition |i)A| j)B

of two extremal states. In particular, denoting the (unique)
deterministic effect of B by |e)B, by direct inspection of
Eq. (8) one concludes that, for any pure state |(i j)k )AB, it must
be (e|B|(i j)k )AB = |i)A, since the convex decomposition into
non-null extremal states is unique by simpliciality. Accord-
ingly, any marginal state of a pure state is pure, implying that
no mixed stated can be purified in �. �

V. DISCUSSION AND CONCLUSIONS

In Propositions 2 and 3 we showed that, in arbitrary prob-
abilistic theories, the presence of entangled states is a con-
sequence of the failure of local discriminability or, indepen-
dently, of atomicity of state composition. Then we specialized
to simplicial theories, proving the converse of Propositions 2
and 3 for this class of theories. In particular, Theorem 2 asserts
that a simplicial theory admits entangled states if and only if
it does not satisfy local discriminability. Theorems 3 and 4 are
proved under the hypothesis of n-local discriminability for
some integer n. On the one hand, a simplicial theory with
n-local discriminability contains entangled states if and only if
it does not satisfy atomicity of state composition. This implies

that there exists at least one pair of systems A, B such that at
least a product of pure states of A and B is not pure. On the
other hand, Theorem 4 provides a simple classification of the
parallel composition rule for such theories, as a consequence
of the failure of atomicity of composition. Equation (8), in
turn, implies that the marginal state of a pure entangled state
in a simplicial theory with n-local discriminability is always
pure.

As far as classical theories are concerned, on the one hand,
the above results entail that the usual notion of classicality
does not prevent the presence of entanglement in a physical
theory. Indeed, CT is the only classical theory without en-
tanglement.3 On the other hand, Theorem 1 asserts that the
notion of classicality given by the simplicial structure of states
constrains a theory to be necessarily causal. Interestingly, in
the above sense, this means that the notion of causality is
inherent to that of classicality, representing a no-go theorem
for conceiving noncausal classical theories.

Finally, Theorems 5 and 6 highlight two relevant properties
that every simplicial theory shares with CT: superposition is
not admitted, and no mixed state has a purification if n-local
discriminability holds for some n. Interestingly, at this stage it
cannot be excluded that there might exist nonclassical simpli-
cial theories satisfying the ultraweak operational formulation
of the superposition principle (see Property 5). Besides, we
notice that Theorem 6 has a different content from the no-go
theorem proven in Ref. [14], although the latter holds for
convex discrete theories—which strictly include the simplicial
ones. Indeed, the no-go theorem of Ref. [14] states that, in a
convex discrete theory, for every system only a finite number
of (mixed) states may possibly have a purification. However,
our Theorem 6 generalizes the latter in the case of simplicial
theories with n-local discriminability, stating that not a single
(mixed) state admits a purification.

The general results of the present work do not rely on any
additional structure—such as, convexity, the no-restriction
hypothesis [3,15], or other properties—beyond the simplicial
one. If a theory is simplicial, there is no complementarity—
and it is thus impossible to violate Bell’s inequalities.4 More-
over, in the presence of local discriminability, the converse
is also true [16]. While the nonviolation of any probability
bound means that every single correlation of the theory can
be described by a local realistic hidden-variable model, this
in principle does not imply that there exists a coherent and
complete ontological model [17] describing the theory as a
whole in a local realistic fashion. Then, an interesting open
question is whether there exist a convenient ontological model
for such theories.

All simplicial theories with entanglement contain states
with non-null discord (see Ref. [18]), despite being simplicial.
Furthermore, as shown in Ref. [13], simplicial theories are

3More precisely, CT is the only classical theory that is (i) without
entanglement, (ii) convex, and (iii) such that every transformation
which is compatible with simpliciality, convexity, and local discrim-
inability is allowed.

4Indeed, if there is no complementarity, there exists a joint prob-
ability distribution for the outcomes of any pair of measurements,
which then excludes a violation of any probability bound.
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the only ones where full information can be extracted by
measurements that do not disturb the measured system—and
this in particular holds despite the presence of entanglement.
Moreover, simplicial theories with entanglement feature hy-
persignaling [19], since for such theories one has DAB >

DADB for at least a pair of systems A, B. At this stage, it is
not possible to compare simplicial theories exhibiting entan-
glement with results on broadcasting [5] or teleportation [20]
in arbitrary probabilistic theories, since local discriminability
was therein assumed.

It is interesting to notice that all classical theories have
no dimension mismatch [21], while in the case of simplicial
theories the problem is open. Interestingly, simplicial theories
satisfy both information causality (IC) [22] and the informa-
tion content principle (ICP) [23]. This is a consequence of the
fact that, in a simplicial theory, the mixing entropy satisfies
the sufficient properties guaranteeing that IC and ICP hold in
a general simplicial theory [23–25]. In particular, IC and ICP
cannot single out CT among arbitrary classical theories.

More generally, are there device-independent princi-
ples [26,27] ruling out simplicial theories with entanglement?
An explicit construction of a simplicial theory with entangle-
ment, complete with the set of transformations, would allow
one to study the simplicial scenario as far as, for example,
communication complexity [28] is concerned. One could also
examine the relation between simplicial theories with entan-
glement and the so-called epistemically restricted (or “epire-
stricted”) theories—such as Spekkens toy theory [29]—or
consider them in the light of the literature on the notion
of classicality (e.g., see Refs. [17,30,31]). We conclude by
pointing out that our results highlight the relevance of the
notion of compositionality [32] in the scope of probabilistic
theories. Indeed, our results strongly rely on the general
properties of the parallel composition of systems in a theory.
It would be interesting to investigate the applicability of the
methods exploited to broader contexts, e.g., extending them
to theories where the sets of states are quantum, or even to
post-quantum theories.
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APPENDIX: PROOF OF PROPOSITION 4

We here recall that, in the main text, we proved that (i) any
simplicial theory is causal (see Theorem 1), and (ii) the non-
null extremal states of a simplicial theory are deterministic
(see proof of Theorem 1). We make use of the above results
in the present Appendix. We also introduce the definition of
separable state for an arbitrary number of systems, which will
be of crucial relevance in the remainder. Let S = S1S2 · · · Sn ∈
Sys(�), and |ρ) ∈ St(S). We say that |ρ) is separable if there
exist (finitely many) disjoint nontrivial bipartitions Sa

0 :=
{ia

1, ia
2, . . . , ıa

k}, Sa
1 := { ja

1 , ja
2 , . . . , ja

N−k} of {1, 2, . . . , n} such

that

|ρ) =
∑

a∈A

pa|σ )Sa
0
|τ )Sa

1
,

with pa > 0 for all a ∈ A.
Lemma 2. Let � be a simplicial OPT satisfying n-local

discriminability for some positive integer n. For all (n +
1)-partite system S = S1S2 · · · Sn+1 ∈ Sys(�), every state
|ρ) ∈ St(S1S2 · · · Sn+1) admits a convex decomposition into
states each of which convexly refines some separable state of
S1S2 · · · Sn+1.

Proof. Take the subset E ⊆ ExtSt(S1 · · · Sn+1) of all non-
null extremal states of St(S1 · · · Sn+1) which convexly refine
some separable state. Since � satisfies n-local discriminabil-
ity, this is a spanning set for the space StR(S1 · · · Sn+1).
Moreover, since � is simplicial, the elements of E are
linearly independent. As a consequence, the dimension of
StR(S1 · · · Sn+1) amounts to the cardinality of E , which is
then, by simpliciality, a complete set of states convexly
generating every state |ρ) ∈ St(S1 · · · Sn+1). Equivalently,
ExtSt(S1 · · · Sn+1) = {|ε)} ∪ E . �

Lemma 3. Let � be a simplicial OPT. Let |π ) ∈
St(S1 · · · Sn) with n � 2, so that |π ) = |πI )|πJ ), for some
states |πI ) ∈ SI, |πJ ) ∈ SJ with I ∪ J = {1, . . . , n}, I, J �= ∅,
I ∩ J = ∅, and SK = Sk1 Sk2 · · · Skl for every l-tuple K ⊆
{1, . . . , n}.

Let |φ) ∈ ExtSt(S1 · · · Sn) be a non-null extremal state that
convexly refines |π ). Finally, given i ∈ I and j ∈ J , let (eKi j |
denote the deterministic effect on SKij with Ki j = {1, . . . , n} \
{i, j}. Then (eKi j |π ) is a product state, and (eKi j |φ) ∈ St(SiSj)
is a physical state that convexly refines (eKi j |π ).

Proof. The case n = 2 is trivially true, and we then assume
n � 3 in the following. By hypothesis, we can pose |π ) =
p|φ) + (1 − p)|σ ), where |σ ) is a deterministic state and p ∈
(0, 1]. By construction we have that

(eKi j |π ) = p(eKi j |φ) + (1 − p)(eKi j |σ ) ∈ St(SiSj), (A1)

and clearly both (eKi j |φ) and (eKi j |σ ) are deterministic states
of SiSj. Moreover, by causality, (eKi j | = (eI\{i}|(eJ\{ j}|, then
(eKi j |π ) is a product state of SiSj. Since the convex decompo-
sition into non-null extremal states is unique by simpliciality,
from Eq. (A1) we conclude that (eKi j |φ)—that is non-null,
although it may possibly be nonextremal—convexly refines
(eKi j |π ). �

Proposition 4. Let � be a simplicial OPT satisfying n-
local discriminability for some positive integer n. For every
pair of systems A, B ∈ Sys(�), every non-null extremal state
|λ)AB ∈ ExtSt(AB) convexly refines the parallel composition
of some pair of non-null extremal states |ρ)A|σ )B ∈ St(AB).

Proof. By contradiction, let us suppose that there exists a
pair of systems A, B ∈ Sys(�) and an extremal state |λ)AB ∈
ExtSt(AB) that does not convexly refine any state of the
form |ρ)A|σ )B ∈ St(AB) with |ρ)A and |σ )B non-null and
extremal. Let us denote

|λ)AB := . (A2)

The theory � satisfies n-local discriminability. The case
n = 1 is trivial, since all states are separable (see Theorem 2
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in the main text) and |λ)AB must be vanishing. In the following
we assume n � 2.

Let us now define the following (n + 1)-partite state:

|Ψ) :=

...

...

∈ St((A1 · · ·An) B1 · · ·Bn), (A3)

where the systems Am and Bm′ are copies of, respectively, A
and B for every m, m′ ∈ {1, . . . , n}. By Lemma 2, the state
|�) must be in the convex hull of some states refining the
separable states |�) of (A1 · · · An)B1 · · · Bn. The latter must
be of one of the following two types:

|Λ) =

...

...

,
...

...

...

, (A4)

where in the first case (A1 · · · An) is factorized from B1 · · · Bn,
while in the second case there must exists a state of some
proper subsystem of B1 · · · Bn that is factorized. Then there

exist coefficients αi ∈ [0, 1] such that

|�) =
∑

i

αi|φi), (A5)

where the |φi ) are non-null extremal states in the convex
refinement of some separable state |�) of one of the two types
in Eq. (A4).

By construction, in both cases we can always find at least
a subsystem S = A jB j of A1 · · · AnB1 · · · Bn (now consid-
ered as a 2n-partite system) such that the marginal state
(eS̄|�) (where S̄ is the complementary subsystem of S in
A1 · · · AnB1 · · · Bn) is a product state of A jB j . On the other
hand the marginal state of |�) on S is (eS̄|� ) = |λ)A j B j . For
each term on the right-hand side in Eq. (A5), one can then
find the above-mentioned subsystem S and apply (eS̄| to both
sides. This gives an equation of the form

|λ)A j B j = αi|χi )A j B j + |ωi)A j B j , (A6)

where |χi )A j B j is in the convex refinement of some product
state by Lemma 3, and |ωi )A j B j is a physical state. Since
|λ)A j B j is an extremal point of a simplex, its convex decom-
position must be trivial, and then either αi = 0 or

|λ)A j B j = |χi)A j B j . (A7)

Finally, either αi = 0 holds for every i, and then by di-
rect inspection of the definitions (A2) and (A3) |λ)AB is
vanishing, or identity (A7) holds for some i, which is a
contradiction. �
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