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Protocols for entanglement transformations of bipartite pure states
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We present a general theoretical framework for both deterministic and probabilistic entanglement transfor-
mations of bipartite pure states achieved via local operations and classical communication. This framework
unifies and greatly simplifies previous works. A necessary condition for “pure contraction” transformations is
given. Finally, constructive protocols to achieve both probabilistic and deterministic entanglement transforma-
tions are presented.
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[. INTRODUCTION tanglement transformations of bipartite pure states by means
of LOCC. In Sec. Il, we give a short and very simple proof

The transformation of entangled states by means of locadf the theorem of Lo and Popesgd], which is at the basis

operations and classical communicatidrOCC) is a key of the theory of all LOCC, and which states that given two
issue in quantum-information processifiy, for quantum separate parties, say Alice and Bob, all LOCC transforma-
computation[2], quantum teleportatiofi3], and quantum tions on a pure bipartite state can be reduced to a contraction
cryptography{4]. However, the detrimental effect of losses by Alice and a unitary transformation by Bob. We include
and decoherence poses a serious problem for establishir derivation of this theorem, since it is particularly simple
entangled resources at distance or in a long computing ne@nd is based on a useful technique for operator transposition.
work, since in a realistic transmission or computation theln Sec. lll, we derive the main theorem, which gives a nec-
entanglement can be considerably degraded, thus preventirﬁ‘ﬁsary and sufficient condition for all entanglement transfor-
for example, successful teleportation or dense coding. Fonations of pure states in terms of supermajorization condi-
this reason, the use of transformations which can increase th#®ns, generalizing the Nielsen approach, and recovering the
available entanglement by means of LOCC—although withresult of Vidal. Here, we also provide a necessary condition
some probab”ity_is crucial for practica| purposes. Morefor “pure contraction” transformations, namely, those LOCC
generally, understanding entanglement transformations thétansformations in which the target state is achieved just for
are allowed by LOCC provides more insight in the structure singleoutcome of Alice measurement and a corresponding
and property of nonlocality, the most prominent character ot/hitary on Bob side. Such a condition is written in terms of
quantum mechanics. submajorization relation. In Sec. IV, explicit protocols to

On entanglement transformations via LOCC there are tw@chieve pure, deterministic, and probabilistic transformations

main results. The first is the seminal work by Niel§ghon  are given, using a method that gives the Alice contraction of
deterministic transformations, which introduces majorizationthe LOCC in terms of the Moore-Penrose pseudoinverse of
theory in this context. The second is the work by Vifg),  the matrix of the entangled state. Section V concludes the
which addresses the more general problem of probabilistifaper summarizing the results.

transformations. Such work is based on the approadmnef

tangleme_nt _mo.notonea.nd gives conditions equivalent to Il. THE LO-POPESCU THEOREM

weak majorization relations. The two approaches are com-

pletely disconnected, and for practical applications of the For later convenience, we introduce here the main nota-
theory, a unified framework would be needed, especially irtion used in the paper. Given a linear opera®mwe denote
consideration that the more general treatment by Vidal ists Hermitian conjugate b@'. On a fixed basis, we write the
more abstract and less constructive than the Nielsen amomplex conjugate and the transpose(fis O* and O7,
proach, which, however, is limited only to deterministic respectively, so tha®'=(0*)". With the notationO*, we
transformations. Furthermore, from the Vidal approach it isdenote the Moore-Penrose inverse@fWe recall that the
very difficult to recover the Nielsen treatment as a speciaMoore-Penrose invers@* is the unique matrix that satisfies
case, and it is quite surprising that such approach ends up as

a weak-majorization condition, without essentially using ma- 00*0=0, o*o0*f=0",

jorization theory. This motivates a derivation of the general
nondeterministic LOCC transformations of pure states with
an approach completely based on majorization theory, gen-
eralizing the Nielsen work5].

In this paper, we present a general framework for enFrom Eq. (1), it immediately follows that bottDO* and
O*O are orthogonal projectors, in particul@O*=Pg is
the orthogonal projector over the range @f Rng(O),

*URL: http://www.qubit.it whereasD*O= P, is the orthogonal projector over the sup-

OO* and O*O Hermitian. )
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port of O Supp©)=Ker(0)*=Rng(O"). We write the sin- Proof. To prove that every LOCC can be reduced to an

gular value decompositio(8VD) of O as follows: Alice contraction and a Bob unitary transformation, it is suf-
ficient to prove the equivalence), since(a) all possible

0=Xo02%0oYo, (2)  elementary LOCC in a sequence will be reduced to an Alice

contraction and a Bob unitaryb) the product of two con-

whereZq denotes the diagonal matrix whose entries are theractions is a contractiorig) unitary transformations are par-
singular valuesr;(O) of O taken in a decreasing order, and ticular cases of contraction.

Xo.Yo are unitary. The Moore-Penrose inver€e then Notice that given the SVD of any linear operafras in
writes Eq. (2), one has
f_ytsiyt
O*=Y(36Xo, 3 07=Y53 o X5=(YEXL)O(YEXE)* =KoOKE,  (9)

whereEé is diagonal with entriesr;(0) ! for ¢;(0)+0,
and zero entries foo;(O)=0.

We remember that a quantum measurenteith discrete
spectrum is generally described by a positive operator- YMT=NVU" (10
valued measuremefPOVM), namely, by a resolution of the
identity =,MIM, =1, where each corresponds to a pos- Then, from Eq.(9) one has
sible outcome. Each operatht, acts on the input states and

with KO=Y6X8. Using Eq.(5), Eq. (6) rewrites as follows:

is necessarily aontraction namely, it satisfiegM,|<1, YM7'=(M¥")"
where| .. .| denotes the usual operator norm. o
For bipartite pure states on the Hilbert spa&tg H,, we =Kmy(MP)Ky .y
se the following notatioh8
! wing notatiof8] — Ky MK WKEKS (11)
|A>>Ei2j aj[i)1®]j)2, (4 which is just Eq.(6) with N andU given as in Eq(7). W
where{[i),1} and{|j),} are two chosen orthonormal bases for  |II. LOCC TRANSFORMATIONS FOR PURE STATES

'H, and’H,, respectively. Eq(4) introduces an isomorphism
between vectors ift{; ® H, andnxX m matrices, wher@ and
m are the dimensions df{; and H,. One can easily check
the relation

In this section, we will use the following useful lemmas.
Lemma 1If x<"y, then for soma: x<v andv=y.
Proof. If x<™y one has for ZI<N,

Az B|C))=|ACB"), (5)

M=z
X

\Y
M =
<

(12

where the transposition is defined with respect to the ortho-
normal basig|j),}. Finally, we use the notatioA<B for
Hermitian operatorg\ and B to denote the vector majoriza- and
tion relation[9] eigv(A)<eigv(B), and in the same manner
we will write A<"B and A< B for supermajorization and N N
submajorization, respectively. q=2, x> 2, Vi=p. (13
In the last part of this section, we provide a very short
proof of the following theoreni7]. -
Theorem 1All LOCC on a pure bipartite statgl)) can Upon defining
be reduced to a contraction by Alice and a unitary transfor-

mation by Bob. This resorts to the equivalence of any Bob v=(0=pP+y1.Y2, - YN, (14)
contractionM with the Alice contractiorN assisted by Bob
unitary transformatiorJ as follows: clearly, one hag =y, and
[O@M|TH=N@U|P)), (6) | N N
_2 Xi=q—. Xisq— E Yi
where i=1 i=l+1 i=l+1
| [
- _ T t

N=Kyy MKy, U=Kyy, Ky, (@) :q_p+i§1 yi=i§10i, vl, (15)
andKg is the unitary operator achieving the transposition of
the operato©O, namely, namely,x<uv. L

Lemma 2If for someu x=u andu<y, thenx<"y.

O0"=KpOK§. (8) Proof. One has
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-1 N -1 Proof. Assume thaAAT<"“pBB'. From Lemma 2 there
uizE ui—z uiaz yi—z i is an operatoQ with 22>p2§ andAAT<QQ*. The state
st e et |Q) represents the intermediate state that can be achieved
deterministically from|A). In fact, Uhlmann Theorem 2
yi, VI, (16) guarantees the existence of a set of unitavigsand prob-
abilities g, such that

\Y
M =z

Xi

Il
M =

namely,x<"y. | R
We notice that both the above lemmas hold also in the AAT=2 q,WIQQ'W, . (20)
reverse directiorifor a proof, see Ref.10], pp. 11 and 128 »

Moreover, we will make extensive use of the following now define the Alice measuremefil,} such that
theorem. '

Theorem 2 _(Uhlmanm):_or Hermitian operat_o_r_s A and B, MA‘/AAT= ’/QAQQTW)H (21)
one hasA<B if and only if there are probabilitieg, and
unitary operatordV, such that namely,
M, AATMT=0,QQ", V. (22
A= qW BW,. (17) » Mo
A We can always chooskl, such that Suppd,) CRng(A),
Proof. See Ref[1], p. 575. - and show thaM, is a contraction, since
Theorem 2 relates majorization between Hermitian opera-
tors with a particular form of completely positive maps, VAA 2}\: MIMM/AA =AAT, (23

namely, those achievable through a random unitary evolu-
tion. In the terminology of quantum-information channels,
such maps correspond to external-random-field channels th i
are a subclass of bistochastic chanrfelkich send the iden- ©Peratorsu, such thatM, AUy = Vo,Q. namely,
tity operator into itself. For a qubit system¥=C?), the set

of bistochastic and external-random-field channels coincide My@U,\|A)= @|Q»’ (24

[11]. _ _ __ so that the transformation frofA)—|QY can be achieved
In the following, we derive the necessary and SUfflCle”tdeterministically. Now, sincéé? pS3, one can define the
condition for all entanglement transformations of pure stateg.,iraction

in terms of supermajorization conditions. The theorem gen-

eralizes Nielsen approa¢h] and recovers the result of Vidal - o(B)

probabilistic transformation$§6]. Moreover, we provide a NZ\/BE a(Q)|l><I|’ (25)
necessary condition for “pure contraction” transformations, L

namely, those LOCC transformations in which the targelgg that

state is achieved just forsingleoutcome of Alice measure-

ment and a corresponding unitary on Bob side. In the proof, NEéNT= ps2. (26)
a relevant role is played by the intermediate std&noted in

the following by|Q)). In a transformation fromA)) to |B)), By using the SVD of bothQ and B, Eq. (26) rewrites as
the state|Q)) will be reached from|A)) deterministically, follows:

whereas the final probabilistic transformatié)— |B)) will

gpd soEAMIMA: P,=<I. Then, there exists a set of unitary

be obtained through a pure contractidior deterministic NXEQQMXNT=pXEBB X5, (27)
transformations one ha3=B).
We are now ready to prove the following. which means that there exists a unitary transformatbn

Theorem 3 The state transformatiopA)—|B)) is pos-  such that
sible by LOCC iff
NQV'=\pB, (28)
AAT<YpBB', (18 _
where N=XgNXJ,. Equation(28) is equivalent to the en-
wherep=<1 is the probability of achieving the transforma- tanglement transformation

tion.

A necessary condition to be satisfied is rafk( NeV|QY)=p|B)), (29
=rank(B).

In particular, the transformation is deterministip=£1)  namely, there is a pure LOCC occurring with probability
iff AAT<BB' which transforms the staf®)) into |B)). As we have seen

Finally, if there is a pure LOCC that achieves the statebefore, the transformatiof\))—|Q)) can be achieved deter-
transformation with probabilityp, we must have ministically, whence we conclude tha#)—|B)) can be

achieved with probabilityp, namely, the statement of the first
pBB'<,AA. (19)  part of the theorem.
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Reversely, assume that the transformatiah)— |B)) can
be achieved via LOCC with probabilitp. According to

PHYSICAL REVIEW A 67, 042312 (2003

We now prove the last part of the theorem, regarding the
pure LOCC case. In a pure contraction transformation, the

Theorem 1, every LOCC is equivalent to a measurementarget state is achieved just forsingle outcome of Alice
performed by Alice followed by a conditional unitary by measurement and a unitary performed by Bob. Such a trans-

Bob. Therefore, the joint Alice-Bob staf will evolve as
follows:

R—>, M,®U,RMIeU], (30)
A

where

(31)

If the state|A)) goes to|B)), we must have for a subset S of

the possible outcomes,

M\ @U,|A)=1p,|B), V AeS, (32

where X, _gp,=p denotes the overall probability of the
transformation A)—|B)). From Eq.(32), we need to have

M,AU = p,B, VA €S, (33)
and, therefore, each probabilipy is given by

IM\AUI3=IM)AlZ=p (34)

where||O|,= JTr[O'O] denotes the usual Frobenius norm.

The condition (33) can be satisfied only if rank)

=rank(B), i.e., we can only decrease the Schmidt number of

the entangled state.
From Eq.(32), one hasv A €S,

M,AATM!=p,BB', (35)
namely, by polar decomposition
M, VAAT= M, AATM ]V, = /p,BBTV,.  (36)
From Eq.(31), we have
1 1 ;
EAAT=E\/AATE MM, VAA
A
1 T
> B\/AATE MM, VAAT, (37)
AeS
and using Eq(36), we obtain
LAt Prytept t
—AAT=> —=VIBB'V,=QQ". (39
p AeS p
By Uhlmann Theorem 2, we have
QQ'<BB', (39

and from Lemma 1 we get the statement, namelp’
<“pBB'.

formation that occurs with probability is given by

M®U|A)=1p|B)), (40)

and we need to have
MAU™= \/pB, (41)
IMAUTZ=[MA|Z=p. (42)

Again, this is possible if rank)=rank(B). Using the SVD
of A andB as in Eq.(2), Eq. (41) rewrites in terms of the
diagonal matrice& 5, andXy as follows:

M2A0=pSsg, (43
with
M=XIMX,, U=Y,U7YL. (44)
Equation(43) leads to
MSaMT=px3, (45)
namely,
2. Syoi(A)=pof(B), (46)

whereS,,=|(1|M|k)|? is a substochastic matrf20], since

§ Sq=(IIMMTly<|MT|><1 (47)

and

2| Su=(kIM™M|k)<|Mm]|]><1. (48)

Since Eg.(46) with S substochastic is equivalepl0Q] to
pa?(B)<,,0%(A), namely pBB'<,AA", we have proved
that Eq.(19) is a necessary condition for the LOCC transfor-
mation (40), namely the last statement of the theoremil

IV. EXPLICIT PROTOCOLS
A. Pure transformation

Pure LOCC transformations are achieved by a single con-
traction on Alice side, assisted by a unitary by Bob. These
are the most general one-way LOCC operations. In this case,
we have the following theorem

Theorem 4 The transformation|A)—|B)) can be
achieved with probabilityp by a pure LOCC transformation
iff one can find a unitary operatdd and linear operatoN
such that
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M = pBU* A*+N(I —AA¥) (49) Ny=0, U¥=Y{XEW,\XaYa, (60)

is a contraction. The transformation is then obtained as  whereXq,Yo are the operators defined in E&) such that
M, is a contraction and Eq58) is satisfied.
M&U|A)= p|B). (50 Proof. Substituting Eq(60) in Eg. (59), one has

Proof. Notice that Eq.50) is equivalent to the identity 3 MIM}\IE g, (AHUTQTQUE AY
A A

MA=pBU*. (51)
Since both sides of the identity must have the same kernel, it =2 a(AHTYIXIWI XY
follows that »
MA=pBU*A*A, (52) X QTQYQXQWAXAY AT
and multiplying both sides bp*, we have :; A (AH)TYAXAWI QQTW, XY AAY,
MP,=\pBU*A*AA*= [pBU* A*P,= \/BBU*A*C.(SS) (61)

and using Eq(57), one has
The general solution of the last equation is

M. = (AH YT X T A AT ¥
M= pBU*A*P,+N(I—Pp) (54) 2 MIMy = (ADTYDGAATXAY 4A
with arbitraryN and, in fact, one can easily check that =(AHTATAAF
MA=\pBU*A*A=pBU*. (55) =(AAHTAAF=AAT=P,<I. (62

The unitaryU and the operatoN should be taken such that Hence,M, are contractions. The completeness of the mea-
M is a contraction. This is not always possible. However, ésurement can be guaranteed by the further contraction
sufficient condition is Mo=V(I - AAY), 63
2 2
PEE=2j. (56) whereV is an arbitrary unitary operator.
For any outcome. on Alice side, Bob performs the uni-

; _ —vyTy*
In fact, by taking N=0 and U=YgzY:, one hasM tary U, . Using Eqs.(59) and (60), one has

= pXgSSiXL, and then, for Eq(56), [[M| = Vp||ZsSAl
<1. L M)AUS = V0, Q YEXEW, XA Y AATAYAXAWI X0 Y g

B. Deterministic transformation =a,Q YZSXBW)\AAiWIXQYQ - (64)

In the entanglement transformations, the first part of thecrom Eq.(57), it follows that
protocol is a deterministic transformation frg)) to |Q). fo ;
The majorization relatioPAAT<QQ" implies Theorem 2, RngW,QQ'W,)CRng AA")=RngA),
namely, the existence of a set of unitari&s and probabili-
. namely,
ties g, such that
Pa=Paat=W]PootW,, VA. (65)

o toot
AA _; HWAQQW, . (57) Hence, by multiplying both sides of E¢65) on the left by
. ' YBXBW)\ and on the right byN}:XQYQ, one obtains
In order to construct explicitly the protocol, one needs to find ot + f ot
contractionsM, and unitariesJ, versus the unitary opera- YXQWiPaW\ XY o= Y XqPaqtXqY o= Pafe=Pqr-

tors W, that appear in Eq57) such that one has (66)

The projector on Rndd") coincides with the projector on
M, @ U, A)=1a,|Q). (58 Ker(Q):=Supp@). So Eq.(64) gives
We have seen that the general form of the solution of Eq. M,AU, = q,Q, (67)
(58) is given by

which is equivalent to Eq(58). |

M, =0, QUX A¥+ N, (1 AA¥). (59 According to our derivation, given explicitly in E457),

one can perform the contractiohs, and the unitariet), to
We have now the following theorem. achieve the transformatidi))— |Q)). The problem of look-

Theorem 5In Eq. (59), we can always take ing for a POVM with minimum number of outcométhus,

042312-5



G. M. D’ARIANO AND M. F. SACCHI PHYSICAL REVIEW A 67, 042312 (2003

minimizing the amount of classical information sent to Bob In fact, for Lemma 1, one ha%éz pEZ , Which implies that
is reduced to find the transformatig®7) with minimum szézszB, Then
number of unitaries.

One can resort to a constructive algorithm to find a bisto-

_ 1
chastic matrixD that relates the vectoes?(A) ando?(Q) of NQV'=pXsZsZ3qYs
the singular values oA andQ, namely, _ \/BXBEBYB: \/EB- (74)
a’(A)=Dd?(Q). (68)
Then the Birkhoff theoreni10] allows one to writeD as a V. CONCLUSIONS

convex combination of permutation matrices, In this paper, we presented a general theoretical frame-

work for both deterministic and probabilistic entanglement
D=, q,lI,. (690  transformations of bipartite pure states achieved via LOCC
A transformations. We have generalized Nielsen work based on
majorization theoryf5] in order to include the more general
results by Vidal[6], which were based on the approach of the
entanglement monotones. The main theorem gives an if and
33=2> qIs30, (700 only if condition for all entanglement transformations of
A pure states in terms of supermajorization conditions. We also

wherelI, ==, |1 )(II,(1)]. In this way, one obtains EG57), provided a necessary submajorization condition for pure

with WX=XQH>\XL. Using the corresponding expressions:ransfor;nt?]tmnMs, WhIFC>h allows to V(\j’”.te each c;otr;]tractlﬁr! |nf
for the contractionsvl, and unitariedJ, , one recovers the erms ot the vioore-F-enrose pseudoinverse of the matrix o

result of Ref.[12]. Notice that Caratheodory’s theorem al- the entangled state. This led to explicit protocols to achieve

; ; re, deterministic, and probabilistic LOCC.
ways allows one to reduce the number of permutations in ch.)u ' i ' . .
(70) to (d— 1)2+1, for d-dimensional Alice Hilbert space. We notice that all theorems have been derived in finite

dimensions, but they can be easily extended to infinite di-

mensions for contractions that are compact operators and for

normalized entangled states corresponding to Hilbert-
The second part of the protocol, namely, the contractiorSchmidt operators. Thus, our results also apply to continuous

that provides the statfB)) from |Q)), is needed only for variables.

probabilistic transformations. It is a pure contraction given

by

In terms of%, andXq, one has

C. Probabilistic transformation
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