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Protocols for entanglement transformations of bipartite pure states
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We present a general theoretical framework for both deterministic and probabilistic entanglement transfor-
mations of bipartite pure states achieved via local operations and classical communication. This framework
unifies and greatly simplifies previous works. A necessary condition for ‘‘pure contraction’’ transformations is
given. Finally, constructive protocols to achieve both probabilistic and deterministic entanglement transforma-
tions are presented.
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I. INTRODUCTION

The transformation of entangled states by means of lo
operations and classical communication~LOCC! is a key
issue in quantum-information processing@1#, for quantum
computation@2#, quantum teleportation@3#, and quantum
cryptography@4#. However, the detrimental effect of losse
and decoherence poses a serious problem for establis
entangled resources at distance or in a long computing
work, since in a realistic transmission or computation
entanglement can be considerably degraded, thus preven
for example, successful teleportation or dense coding.
this reason, the use of transformations which can increase
available entanglement by means of LOCC—although w
some probability—is crucial for practical purposes. Mo
generally, understanding entanglement transformations
are allowed by LOCC provides more insight in the structu
and property of nonlocality, the most prominent characte
quantum mechanics.

On entanglement transformations via LOCC there are
main results. The first is the seminal work by Nielsen@5# on
deterministic transformations, which introduces majorizat
theory in this context. The second is the work by Vidal@6#,
which addresses the more general problem of probabil
transformations. Such work is based on the approach ofen-
tanglement monotones, and gives conditions equivalent t
weak majorization relations. The two approaches are c
pletely disconnected, and for practical applications of
theory, a unified framework would be needed, especially
consideration that the more general treatment by Vida
more abstract and less constructive than the Nielsen
proach, which, however, is limited only to determinist
transformations. Furthermore, from the Vidal approach i
very difficult to recover the Nielsen treatment as a spe
case, and it is quite surprising that such approach ends u
a weak-majorization condition, without essentially using m
jorization theory. This motivates a derivation of the gene
nondeterministic LOCC transformations of pure states w
an approach completely based on majorization theory, g
eralizing the Nielsen work@5#.

In this paper, we present a general framework for
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tanglement transformations of bipartite pure states by me
of LOCC. In Sec. II, we give a short and very simple pro
of the theorem of Lo and Popescu@7#, which is at the basis
of the theory of all LOCC, and which states that given tw
separate parties, say Alice and Bob, all LOCC transform
tions on a pure bipartite state can be reduced to a contrac
by Alice and a unitary transformation by Bob. We includ
our derivation of this theorem, since it is particularly simp
and is based on a useful technique for operator transposi
In Sec. III, we derive the main theorem, which gives a ne
essary and sufficient condition for all entanglement trans
mations of pure states in terms of supermajorization con
tions, generalizing the Nielsen approach, and recovering
result of Vidal. Here, we also provide a necessary condit
for ‘‘pure contraction’’ transformations, namely, those LOC
transformations in which the target state is achieved just
a singleoutcome of Alice measurement and a correspond
unitary on Bob side. Such a condition is written in terms
submajorization relation. In Sec. IV, explicit protocols
achieve pure, deterministic, and probabilistic transformati
are given, using a method that gives the Alice contraction
the LOCC in terms of the Moore-Penrose pseudoinverse
the matrix of the entangled state. Section V concludes
paper summarizing the results.

II. THE LO-POPESCU THEOREM

For later convenience, we introduce here the main no
tion used in the paper. Given a linear operatorO, we denote
its Hermitian conjugate byO†. On a fixed basis, we write the
complex conjugate and the transpose ofO as O* and Ot,
respectively, so thatO†5(O* )t. With the notationO‡, we
denote the Moore-Penrose inverse ofO. We recall that the
Moore-Penrose inverseO‡ is the unique matrix that satisfie

OO‡O5O, O‡OO‡5O‡,

OO‡ and O‡O Hermitian. ~1!

From Eq. ~1!, it immediately follows that bothOO‡ and
O‡O are orthogonal projectors, in particular,OO‡[PO is
the orthogonal projector over the range ofO Rng(O),
whereasO‡O[PO† is the orthogonal projector over the su
©2003 The American Physical Society12-1
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port of O Supp(O)8Ker(O)'[Rng(O†). We write the sin-
gular value decomposition~SVD! of O as follows:

O5XOSOYO , ~2!

whereSO denotes the diagonal matrix whose entries are
singular valuess i(O) of O taken in a decreasing order, an
XO ,YO are unitary. The Moore-Penrose inverseO‡ then
writes

O‡5YO
† SO

‡ XO
† , ~3!

whereSO
‡ is diagonal with entriess i(O)21 for s i(O)Þ0,

and zero entries fors i(O)50.
We remember that a quantum measurement~with discrete

spectrum! is generally described by a positive operato
valued measurement~POVM!, namely, by a resolution of the
identity (lMl

†Ml51, where eachl corresponds to a pos
sible outcome. Each operatorMl acts on the input states an
is necessarily acontraction, namely, it satisfiesiMli<1,
wherei . . . i denotes the usual operator norm.

For bipartite pure states on the Hilbert spaceH1^ H2, we
use the following notation@8#

uA&&[(
i , j

ai j u i &1^ u j &2 , ~4!

where$u i &1% and$u j &2% are two chosen orthonormal bases f
H1 andH2, respectively. Eq.~4! introduces an isomorphism
between vectors inH1^ H2 andn3m matrices, wheren and
m are the dimensions ofH1 andH2. One can easily check
the relation

A^ BuC&&5uACBt&&, ~5!

where the transposition is defined with respect to the ort
normal basis$u j &2%. Finally, we use the notationAaB for
Hermitian operatorsA andB to denote the vector majoriza
tion relation@9# eigv(A)aeigv(B), and in the same manne
we will write AawB and AawB for supermajorization and
submajorization, respectively.

In the last part of this section, we provide a very sh
proof of the following theorem@7#.

Theorem 1. All LOCC on a pure bipartite stateuC&& can
be reduced to a contraction by Alice and a unitary trans
mation by Bob. This resorts to the equivalence of any B
contractionM with the Alice contractionN assisted by Bob
unitary transformationU as follows:

I ^ M uC&&5N^ UuC&&, ~6!

where

N5KMCtMKC , U5KMCt
† KC

† , ~7!

andKO is the unitary operator achieving the transposition
the operatorO, namely,

Ot5KOOKO* . ~8!
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Proof. To prove that every LOCC can be reduced to
Alice contraction and a Bob unitary transformation, it is su
ficient to prove the equivalence~6!, since ~a! all possible
elementary LOCC in a sequence will be reduced to an A
contraction and a Bob unitary;~b! the product of two con-
tractions is a contraction;~c! unitary transformations are par
ticular cases of contraction.

Notice that given the SVD of any linear operatorO as in
Eq. ~2!, one has

Ot5YO
t SOXO

t 5~YO
t XO

† !O~YO
t XO

† !* [KOOKO* , ~9!

with KO5YO
t XO

† . Using Eq.~5!, Eq. ~6! rewrites as follows:

CM t5NCUt. ~10!

Then, from Eq.~9! one has

CM t5~MCt!t

5KMCt~MCt!KMCt*

5KMCtMKCCKC* KMCt* , ~11!

which is just Eq.~6! with N andU given as in Eq.~7!. j

III. LOCC TRANSFORMATIONS FOR PURE STATES

In this section, we will use the following useful lemma
Lemma 1.If xawy, then for somev: xav andv>y.
Proof. If xawy one has for 2< l<N,

(
i 5 l

N

xi>(
i 5 l

N

yi ~12!

and

q[(
i 51

N

xi.(
i 51

N

yi[p. ~13!

Upon defining

v5~q2p1y1 ,y2 , . . . ,yN!, ~14!

clearly, one hasv>y, and

(
i 51

l

xi5q2 (
i 5 l 11

N

xi<q2 (
i 5 l 11

N

yi

5q2p1(
i 51

l

yi5(
i 51

l

v i , ; l , ~15!

namely,xav. j

Lemma 2.If for someu x>u anduay, thenxawy.
Proof. One has
2-2
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(
i 5 l

N

xi>(
i 5 l

N

ui5(
i 51

N

ui2(
i 51

l 21

ui>(
i 51

N

yi2(
i 51

l 21

yi

5(
i 5 l

N

yi , ; l , ~16!

namely,xawy. j
We notice that both the above lemmas hold also in

reverse direction~for a proof, see Ref.@10#, pp. 11 and 123!.
Moreover, we will make extensive use of the followin

theorem.
Theorem 2 (Uhlmann). For Hermitian operators A and B

one hasAaB if and only if there are probabilitiesql and
unitary operatorsWl such that

A5(
l

qlWl
†BWl . ~17!

Proof. See Ref.@1#, p. 575. j
Theorem 2 relates majorization between Hermitian ope

tors with a particular form of completely positive map
namely, those achievable through a random unitary ev
tion. In the terminology of quantum-information channe
such maps correspond to external-random-field channels
are a subclass of bistochastic channels~which send the iden-
tity operator into itself!. For a qubit system (H5C 2), the set
of bistochastic and external-random-field channels coinc
@11#.

In the following, we derive the necessary and sufficie
condition for all entanglement transformations of pure sta
in terms of supermajorization conditions. The theorem g
eralizes Nielsen approach@5# and recovers the result of Vida
probabilistic transformations@6#. Moreover, we provide a
necessary condition for ‘‘pure contraction’’ transformation
namely, those LOCC transformations in which the tar
state is achieved just for asingleoutcome of Alice measure
ment and a corresponding unitary on Bob side. In the pro
a relevant role is played by the intermediate state~denoted in
the following byuQ&&). In a transformation fromuA&& to uB&&,
the stateuQ&& will be reached fromuA&& deterministically,
whereas the final probabilistic transformationuQ&&→uB&& will
be obtained through a pure contraction~for deterministic
transformations one hasQ[B).

We are now ready to prove the following.
Theorem 3. The state transformationuA&&→uB&& is pos-

sible by LOCC iff

AA†awpBB†, ~18!

wherep<1 is the probability of achieving the transform
tion.

A necessary condition to be satisfied is rank(A)
>rank(B).

In particular, the transformation is deterministic (p51)
iff AA†aBB†.

Finally, if there is a pure LOCC that achieves the st
transformation with probabilityp, we must have

pBB†awAA†. ~19!
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Proof. Assume thatAA†awpBB†. From Lemma 2 there
is an operatorQ with SQ

2 >pSB
2 andAA†aQQ†. The state

uQ&& represents the intermediate state that can be achie
deterministically fromuA&&. In fact, Uhlmann Theorem 2
guarantees the existence of a set of unitariesWl and prob-
abilities ql such that

AA†5(
l

qlWl
†QQ†Wl . ~20!

Now, define the Alice measurement$Ml% such that

MlAAA†5AqlQQ†Wl , ~21!

namely,

MlAA†Ml
†5qlQQ†, ;l. ~22!

We can always chooseMl such that Supp(Ml)#Rng(A),
and show thatMl is a contraction, since

AAA†(
l

Ml
†MlAAA†5AA†, ~23!

and so(lMl
†Ml5PA<I . Then, there exists a set of unitar

operatorsUl such thatMlAUl
t 5AqlQ, namely,

Ml ^ UluA&&5AqluQ&&, ~24!

so that the transformation fromuA&&→uQ&& can be achieved
deterministically. Now, sinceSQ

2 >pSB
2 , one can define the

contraction

Ñ5Ap(
l

s l~B!

s l~Q!
u l &^ l u, ~25!

so that

ÑSQ
2 Ñ†5pSB

2 . ~26!

By using the SVD of bothQ and B, Eq. ~26! rewrites as
follows:

ÑXQ
† QQ†XQÑ†5pXB

†BB†XB , ~27!

which means that there exists a unitary transformationV
such that

NQVt5ApB, ~28!

where N5XBÑXQ
† . Equation~28! is equivalent to the en-

tanglement transformation

N^ VuQ&&5ApuB&&, ~29!

namely, there is a pure LOCC occurring with probabilityp,
which transforms the stateuQ&& into uB&&. As we have seen
before, the transformationuA&&→uQ&& can be achieved deter
ministically, whence we conclude thatuA&&→uB&& can be
achieved with probabilityp, namely, the statement of the firs
part of the theorem.
2-3
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Reversely, assume that the transformationuA&&→uB&& can
be achieved via LOCC with probabilityp. According to
Theorem 1, every LOCC is equivalent to a measurem
performed by Alice followed by a conditional unitary b
Bob. Therefore, the joint Alice-Bob stateR will evolve as
follows:

R→(
l

Ml ^ UlRMl
†

^ Ul
† , ~30!

where

(
l

Ml
†Ml5I . ~31!

If the stateuA&& goes touB&&, we must have for a subset S o
the possible outcomesl,

Ml ^ UluA&&5ApluB&&, ; lPS, ~32!

where (lPSpl5p denotes the overall probability of th
transformationuA&&→uB&&. From Eq.~32!, we need to have

MlAUl
t 5AplB, ;lPS, ~33!

and, therefore, each probabilitypl is given by

iMlAUl
t i2

25iMlAi2
25pl , ~34!

whereiOi25ATr@O†O# denotes the usual Frobenius norm
The condition ~33! can be satisfied only if rank(A)
>rank(B), i.e., we can only decrease the Schmidt numbe
the entangled state.

From Eq.~32!, one has; lPS,

MlAA†Ml
†5plBB†, ~35!

namely, by polar decomposition

MlAAA†5AMlAA†Ml
†Vl5AplBB†Vl . ~36!

From Eq.~31!, we have

1

p
AA†5

1

p
AAA†(

l
Ml

†MlAAA†

>
1

p
AAA†(

lPS
Ml

†MlAAA†, ~37!

and using Eq.~36!, we obtain

1

p
AA†> (

lPS

pl

p
Vl

†BB†Vl[QQ†. ~38!

By Uhlmann Theorem 2, we have

QQ†aBB†, ~39!

and from Lemma 1 we get the statement, namely,AA†

awpBB†.
04231
nt
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We now prove the last part of the theorem, regarding
pure LOCC case. In a pure contraction transformation,
target state is achieved just for asingle outcome of Alice
measurement and a unitary performed by Bob. Such a tr
formation that occurs with probabilityp is given by

M ^ UuA&&5ApuB&&, ~40!

and we need to have

MAUt5ApB, ~41!

iMAUti2
25iMAi2

25p. ~42!

Again, this is possible if rank(A)>rank(B). Using the SVD
of A and B as in Eq.~2!, Eq. ~41! rewrites in terms of the
diagonal matricesSA andSB as follows:

M̃SAŨ5ApSB , ~43!

with

M̃5XB
†MXA , Ũ5YAUtYB

† . ~44!

Equation~43! leads to

M̃SA
2M̃†5pSB

2 , ~45!

namely,

(
k

Sklsk
2~A!5ps l

2~B!, ~46!

whereSkl8u^ l uM̃ uk&u2 is a substochastic matrix@10#, since

(
k

Skl5^ l uM̃ M̃†u l &<iM†i2<1 ~47!

and

(
l

Skl5^kuM̃†M̃ uk&<iM i2<1. ~48!

Since Eq.~46! with S substochastic is equivalent@10# to
ps2(B)aws2(A), namely pBB†awAA†, we have proved
that Eq.~19! is a necessary condition for the LOCC transfo
mation ~40!, namely the last statement of the theorem.j

IV. EXPLICIT PROTOCOLS

A. Pure transformation

Pure LOCC transformations are achieved by a single c
traction on Alice side, assisted by a unitary by Bob. The
are the most general one-way LOCC operations. In this c
we have the following theorem

Theorem 4. The transformation uA&&→uB&& can be
achieved with probabilityp by a pure LOCC transformation
iff one can find a unitary operatorU and linear operatorN
such that
2-4
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M5ApBU* A‡1N~ I 2AA‡! ~49!

is a contraction. The transformation is then obtained as

M ^ UuA&&5ApuB&&. ~50!

Proof. Notice that Eq.~50! is equivalent to the identity

MA5ApBU* . ~51!

Since both sides of the identity must have the same kerne
follows that

MA5ApBU* A‡A, ~52!

and multiplying both sides byA‡, we have

M PA5ApBU* A‡AA‡5ApBU* A‡PA5ApBU* A‡.
~53!

The general solution of the last equation is

M5ApBU* A‡PA1N~ I 2PA! ~54!

with arbitraryN and, in fact, one can easily check that

MA5ApBU* A‡A5ApBU* . ~55!

The unitaryU and the operatorN should be taken such tha
M is a contraction. This is not always possible. Howeve
sufficient condition is

pSB
2<SA

2 . ~56!

In fact, by taking N50 and U5YB
TYA* , one has M

5ApXBSBSA
‡XA

† , and then, for Eq.~56!, iM i5ApiSBSA
‡ i

<1. j

B. Deterministic transformation

In the entanglement transformations, the first part of
protocol is a deterministic transformation fromuA&& to uQ&&.
The majorization relationAA†aQQ† implies Theorem 2,
namely, the existence of a set of unitariesWl and probabili-
ties ql such that

AA†5(
l

qlWl
†QQ†Wl . ~57!

In order to construct explicitly the protocol, one needs to fi
contractionsMl and unitariesUl versus the unitary opera
tors Wl that appear in Eq.~57! such that one has

Ml ^ UluA&&5AqluQ&&. ~58!

We have seen that the general form of the solution of
~58! is given by

Ml5AqlQUl* A‡1Nl~12AA‡!. ~59!

We have now the following theorem.
Theorem 5. In Eq. ~59!, we can always take
04231
it
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e

d

.

Nl50, Ul* 5YQ
† XQ

† WlXAYA , ~60!

whereXO ,YO are the operators defined in Eq.~2! such that
Ml is a contraction and Eq.~58! is satisfied.

Proof. Substituting Eq.~60! in Eq. ~59!, one has

(
l

Ml
†Ml5(

l
ql~A‡!†Ul

t Q†QUl* A‡

5(
l

ql~A‡!†YA
†XA

†Wl
†XQYQ

3Q†QYQ
† XQ

† WlXAYAA‡

5(
l

ql~A‡!†YA
†XA

†Wl
†QQ†WlXAYAA‡,

~61!

and using Eq.~57!, one has

(
l

Ml
†Ml5~A‡!†YA

†XA
†AA†XAYAA‡

5~A‡!†A†AA‡

5~AA‡!†AA‡5AA‡5PA<I . ~62!

Hence,Ml are contractions. The completeness of the m
surement can be guaranteed by the further contraction

M05V~ I 2AA‡!, ~63!

whereV is an arbitrary unitary operator.
For any outcomel on Alice side, Bob performs the uni

tary Ul . Using Eqs.~59! and ~60!, one has

MlAUl
t 5AqlQYQ

† XQ
† WlXAYAA‡AYA

†XA
†Wl

†XQYQ

5AqlQYQ
† XQ

† WlAA‡Wl
†XQYQ . ~64!

From Eq.~57!, it follows that

Rng~Wl
†QQ†Wl!#Rng~AA†![Rng~A!,

namely,

PA5PAA†>Wl
†PQQ†Wl , ;l. ~65!

Hence, by multiplying both sides of Eq.~65! on the left by
YQ

† XQ
† Wl and on the right byWl

†XQYQ , one obtains

YQ
† XQ

† WlPAWl
†XQYQ>YQ

† XQ
† PQQ†XQYQ5PQ†Q5PQ†.

~66!

The projector on Rng(Q†) coincides with the projector on
Ker(Q)'[Supp(Q). So Eq.~64! gives

MlAUl
t5AqlQ, ~67!

which is equivalent to Eq.~58!. j
According to our derivation, given explicitly in Eq.~57!,

one can perform the contractionsMl and the unitariesUl to
achieve the transformationuA&&→uQ&&. The problem of look-
ing for a POVM with minimum number of outcomes~thus,
2-5
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minimizing the amount of classical information sent to Bo!
is reduced to find the transformation~57! with minimum
number of unitaries.

One can resort to a constructive algorithm to find a bis
chastic matrixD that relates the vectorss2(A) ands2(Q) of
the singular values ofA andQ, namely,

s2~A!5Ds2~Q!. ~68!

Then the Birkhoff theorem@10# allows one to writeD as a
convex combination of permutation matrices,

D5(
l

qlPl . ~69!

In terms ofSA andSQ , one has

SA
25(

l
qlPl

†SQ
2 Pl , ~70!

wherePl5( l u l &^Pl( l )u. In this way, one obtains Eq.~57!,
with Wl5XQPlXA

† . Using the corresponding expressio
for the contractionsMl and unitariesUl , one recovers the
result of Ref.@12#. Notice that Caratheodory’s theorem a
ways allows one to reduce the number of permutations in
~70! to (d21)211, for d-dimensional Alice Hilbert space.

C. Probabilistic transformation

The second part of the protocol, namely, the contract
that provides the stateuB&& from uQ&&, is needed only for
probabilistic transformations. It is a pure contraction giv
by

N^ VuQ&&5uNQVt&&5ApuB&& ~71!

with

N5ApXBSBSQ
‡ XQ

† ~72!

and

Vt5YQ
† YB . ~73!
-

, a

A

04231
-
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n

In fact, for Lemma 1, one hasSQ
2 >pSB

2 , which implies that
SBSQ

‡ SQ5SB . Then

NQVt5ApXBSBSQ
‡ SQYB

5ApXBSBYB5ApB. ~74!

V. CONCLUSIONS

In this paper, we presented a general theoretical fra
work for both deterministic and probabilistic entangleme
transformations of bipartite pure states achieved via LO
transformations. We have generalized Nielsen work based
majorization theory@5# in order to include the more genera
results by Vidal@6#, which were based on the approach of t
entanglement monotones. The main theorem gives an if
only if condition for all entanglement transformations
pure states in terms of supermajorization conditions. We a
provided a necessary submajorization condition for p
transformations, which allows to write each contraction
terms of the Moore-Penrose pseudoinverse of the matrix
the entangled state. This led to explicit protocols to achie
pure, deterministic, and probabilistic LOCC.

We notice that all theorems have been derived in fin
dimensions, but they can be easily extended to infinite
mensions for contractions that are compact operators and
normalized entangled states corresponding to Hilb
Schmidt operators. Thus, our results also apply to continu
variables.
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