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Abstract
We address the problem of the optimal quantum estimation of the coupling
parameter of a bilinear interaction, such as the transmittivity of a
beamsplitter or the internal phase-shift of an interferometer. The optimal
measurement scheme confirms Heisenberg scaling of precision versus the
total energy as an unsurpassable bound, but with a largely reduced
multiplicative constant.
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1. Introduction

How effectively may we estimate the strength of a simple
interaction such as the transmittivity of a beamsplitter or the
phase-shift imposed in the internal arms of an interferometer?
The Hamiltonian describing the bilinear coupling between two
bosonic modes has the form

H = κ(a†b + b†a), (1)

where κ depends on the specific interaction under
consideration. By using the Schwinger representation of the
SU(2) Lie algebra, with generators

Jx = 1

2
(a†b + b†a),

Jy = 1

2i
(a†b − b†a),

Jz = 1

2
(a†a − b†b), (2)

we can rewrite the Hamiltonian asH = 2κJx and the evolution
operator as

Uψ = exp(−iJxψ), (3)

where the global coupling constant ψ is equal to 2κ�t ,
�t being the effective interaction time. The evolution in
equation (3) describes, for example, the interaction of two light
modes in a beamsplitter with transmittivity τ = cos2 ψ [1], or,
apart from a fixed rotation, the evolution of the arm modes in a
Mach-Zehnder interferometer, with ψ representing the phase-
shift between arms [2, 3]. If the initial preparation of the two

modes is described by the density matrix ρ0 the evolved state
in the interaction picture is given by

ρψ = exp(−iJxψ)ρ0 exp(iJxψ). (4)

In this paper we devote our attention to the estimation of
ψ through measurements performed on ρψ . We denote
the generic probability operator-valued measure (POVM) for
the estimation process by dν(φ), so that the results of the
measurement are distributed according to

p(φ|ψ)dφ = Tr[ρψdν(φ)], (5)

where p(φ|ψ) represents the conditional probability of
registering the outcome φ when the true value of the parameter
is ψ .

Our objective is to find the best strategy, i.e. the POVM that
provides the optimal estimation of the parameter ψ [5]. Since
ψ is manifestly a phase-shift, we can use general results from
the phase estimation theory, which provides the optimal POVM
to estimate the phase-shift induced by a phase generator, i.e. a
self-adjoint operator with a discrete, equally spaced, spectrum.
The optimality criterion is given in terms of the minimization
of the mean value of a cost function [5] that assesses the quality
of the strategy, i.e. it weights the errors in the estimates. Since
a phase-shift is a 2π -periodic parameter, the cost function
must be a 2π -periodic even function of (ψ − φ), i.e. it
has Fourier expansion with cosines only. The appropriate
concavity properties of the cost function are reflected by
expansion coefficients which are all negative apart from the
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irrelevant additive constant. A cost function with such Fourier
expansion was first considered by Holevo [4], and for this
reason it is usually referred to as belonging to Holevo’s class.
Notice that the optimal POVM for a given state ρ0 is the
same for every cost function in this class. A more general
quantum estimation approach for different kinds of phase-shift
and general quantum system is given in [6]. There, it is also
shown that the kind of problem we are presently dealing with
is, in a certain sense, the best situation, since the spectrum
of our phase generator contains the whole set of integers Z,
including the negative ones. In this case, there is an optimal
orthogonal projective POVM, which can be regarded as the
spectral resolution of a self-adjoint phase operator. However,
if the estimation is performed with the constraint of bounded
or fixed energy, the optimal POVM and the optimal input
state ρ0 do not correspond to a canonical quantum observable
scheme [7]. Moreover, in general, the optimal POVM depends
on the input state and the optimal POVM of [4, 5] holds only
for pure states, whereas a generalization to a class of mixed
states, the so-called phase-pure states, have been considered
in [6, 8].

The optimal POVM, in the sense described above,
provides an unbiased estimation of ψ for preparation ρ0 of
the two modes, in formula

〈φ〉 = ψ with 〈φ〉 =
∫ 2π

0
φTr[ρψdν(φ)] ∀ρψ = Uψρ0U

†
ψ .

On the other hand, we also want to find the optimal state ρ0

for the estimation of ψ according to the cost function, which
quantifies the noise of the estimation. The customary root
mean square is not a good choice for a cost function, since the
function (φ − ψ)2 is not 2π -periodic. A good definition for
the precision of the measurement is given by the average of
the cost functionC(φ−ψ) = 4 sin2(

φ−ψ

2 ), i.e. a ‘periodicized
variance’, which obviously belongs to Holevo’s class. If the
estimates occur within a small interval around the true value of
the parameterψ , one has approximatelyC(φ−ψ) � (φ−ψ)2,
where δψ = √

C can be assumed as a reasonable measure of
the precision of the measurement.

2. Optimal estimation of the coupling parameter

In order to solve our estimation problem, let us consider the
following unitary transformation

U = exp
{
−π

4
(a†b − b†a)

}
= exp

{
−i

π

2
Jy

}
. (6)

Using equation (6) we may rewrite equation (5) in the more
familiar form of rotation along the z-axis

p(φ|ψ)dφ = Tr
[
UρψU†Udν(φ)U†

]
= Tr

[
exp(−iJzψ)Uρ0U† exp(iJzψ)Udν(φ)U†

]
= Tr

[
exp(−iJzψ)R0 exp(iJzψ) dµ(φ)

]
, (7)

where we used the identity UJxU† = Jz. Equation (7) shows
that the problem of estimating the shift generated by Jx on
the state ρ0 is equivalent to that of estimating the same shift
generated byJz on the rotated stateR0 = Uρ0U†. In particular,

any POVM dν(φ) to estimate the Jx-induced shift can be
written as dν(φ) = U†dµ(φ)U , where dµ(φ) is a POVM
for the Jz-induced shift estimation.

For pure states R0 = |ψ0〉〉〈〈ψ0| (in the following we use
double brackets for two-mode vectors) the degeneration of the
spectrum of a†a − b†b can be treated using the technique
introduced in [6], and the optimal POVM for cost functions in
Holevo’s class [4] is proved to be of the form

dµ(φ) = dφ

2π
|Eφ〉〉〈〈Eφ| (8)

with the vectors |Eφ〉〉 given by

|Eφ〉〉 =
∑
d∈Z

eidφ|d〉〉. (9)

The vectors |d〉〉 are certain eigenvectors of D = a†a − b†b
built by picking up, in every eigenspace Hd of the eigenvalue
d, the normalized vector parallel to the projection of |ψ0〉〉 on
Hd . In order to be more specific, let us consider an input state
of the form

|ψ0〉〉 =
∞∑
n=0

ψ(0)
n |n, 0〉〉

+
∞∑
n=0

∞∑
d=1

[
ψ(d)
n |n, d〉〉 + ψ(−d)

n |n,−d〉〉] , (10)

where |n, d〉〉 is given by

|n, d〉〉 ≡
{ |n + d〉a|n〉b if d � 0

|n〉a|n − d〉b if d < 0
. (11)

The projection of |ψ0〉〉 in Hd is equal to

∞∑
n=0

ψ(d)
n |n, d〉〉, (12)

such that the eigenvector |d〉〉 reads as follows

|d〉〉 =
∑∞

n=0 ψ
(d)
n |n, d〉〉√∑∞

n=0

∣∣∣ψ(d)
n

∣∣∣2
, (13)

and the input state can be rewritten as

|ψ0〉〉 =
∑
d∈Z

γd |d〉〉 γd =
√√√√ ∞∑

n=0

∣∣∣ψ(d)
n

∣∣∣2.
Notice that the dependence of the POVM on the state |ψ0〉〉 is
contained in the vectors |Eφ〉〉.

By adopting C(φ−ψ) as a cost function the average cost
of the strategy corresponds to the expectation value of the cost
operator C = 2 − E+ − E−, where the raising and lowering
operators E+ and E− are given by

E+ =
∑
d∈Z

|d + 1〉〉〈〈d| E− = E†
+

(with the vectors |d〉〉 defined as above).
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The optimization problem is that of minimizing the
average cost of the strategy

C̄ =
∫ 2π

0

dψ

2π

∫ 2π

0

dφ

2π
C(φ − ψ) p(φ|ψ)

= Tr [R0 C] ≡ 〈〈ψ0|2 − E+ − E−|ψ0〉〉, (14)

with the constraint that the solution is a normalized state. The
Lagrange function is given by

L = C̄ − λ〈〈ψ0|ψ0〉〉, (15)

with λ being the Lagrange multiplier for the normalization
constraint. The solution of this problem is a state with infinite
mean energy N = 〈〈ψ0|a†a + b†b|ψ0〉〉. Indeed, these states
are unitarily connected to the eigenstates of the relative-phase
operator [9] through the transformation of equation (6). In
order to find physical states, one must impose a constraint on
N too, and the Lagrange function becomes

L = C̄ − µ〈〈ψ0|a†a + b†b|ψ0〉〉 − λ〈〈ψ0|ψ0〉〉, (16)

µ being the Lagrange multiplier for the mean energy. It is
useful, in order to calculate the solution of this equation, to
write the generic state |ψ0〉〉 in the following way

|ψ0〉〉 =
∑
d∈Z

ψd

∞∑
n=0

cn,d |n, d〉〉. (17)

The coefficients cn,d determine the normalized projection
of |ψ〉〉 into the eigenspace Hd , whereas the ψd ’s are the
coefficients which combine those projections.

Using equation (17), the Lagrange function (16) explicitly
shows terms accounting for the normalization of the vectors∑∞

n=0 cn,d |n, d〉〉 in each Hd , with ν(d) denoting Lagrange
multipliers for the normalization of projections, and rewrites
as

L =
∑
d∈Z

{
2|ψd |2

∞∑
n=0

|cn,d |2

−
(
ψ̄d

∞∑
n=0

|cn,d |2
)(

ψd−1

∞∑
m=0

|cm,d−1|2
)

+

−
(
ψ̄d

∞∑
n=0

|cn,d |2
)(

ψd+1

∞∑
m=0

|cm,d+1|2
)

+

−µ|ψd |2
∞∑
n=0

|cn,d |2(2n + |d|)

−λ|ψd |2
∞∑
n=0

|cn,d |2 − ν(d)
∞∑
n=0

|cn,d |2
}
. (18)

By taking derivatives of the Lagrange function with respect to
c∗
n,d and ψ∗

d with the constraints

∞∑
n=0

|cn,d |2 = 1
∑
d∈Z

|ψd |2 = 1

∑
d∈Z

∞∑
n=0

|ψd |2|cn,d |2(2n + |d|) = N, (19)

and by rephasing the |d〉〉’s we arrive at the system


(2 − λ)ψd − ψd−1 − ψd+1

−µ
∑∞

n=0(2n + |d|)|cn,d |2ψd = 0[
(2 − λ)ψ2

d − 2(ψdψd−1 + ψd+1ψd)

−µψ2
d (2n + |d|) − ν(d)

]
cn,d = 0

(20)

The second equation in (20) implies that for a fixed d only one
coefficient cn,d can be different from zero, say for the value n̄,
and in this case |cn̄,d | = 1 4.

The first equation of (20) can therefore be rewritten as

(2 − λ)ψd − ψd−1 − ψd+1 − µ(2n(d) + |d|)ψd = 0, (21)

which allows us to obtain from the second one

ν(d) = −ψd(ψd+1 + ψd−1) . (22)

The solutions of equation (22) give local minima for the
average cost C̄, and one should solve the equation (21) for
arbitrary choices of n(d), looking for the optimal one. In the
case n(d) = 0 we have

2(λ′ + |d|)
2
µ′

ψd = ψd−1 + ψd+1 , (23)

where µ′ = −µ and λ′ = 2−λ
µ′ . Equation 23 is the recursion

equation for Bessel functions, with solution given by

ψd = N −1/2(µ′, λ′)Jλ′+|d|

(
2

µ′

)
, (24)

with N (µ′, λ′) = ∑
d∈Z

J 2
λ′+|d|

(
2
µ′

)
and with the boundary

conditions J ′
λ′(2/µ′) = 0, i.e. Jλ′+1 = Jλ′−1. Finally, to obtain

the optimal state ρ0 one has to rotate R0 = |ψ0〉〉〈〈ψ0| by the
unitary transformation (6).

In order to obtain the behaviour of the average cost versus
the energy we numerically solved equation (21) withn(d) = 0.
This problem can be rewritten as the eigenvalue problem
Aψ = λψ for the matrix A with elements given by

(A)m,n = (2 − µ|m|)δm,n − δm,n+1 − δm,n−1. (25)

Numerical diagonalization gives the power-law C̄ � γ

N2 in
the range 0 � N � 1000 with γ � 0.1. This behaviour
is plotted in figure 1, where other solutions of equation (21)
corresponding to local minima of the average cost are also
shown. Since the phase distribution of the optimal state is
singly peaked we may also write δψ �

√
C̄ � γ 1/2/N , which

means that the optimal states derived here are at the so-called
Heisenberg limit of phase variance.

3. Conclusions

In conclusion, we dealt with the problem of estimating the
coupling constant of a bilinear interaction. In our approach
the coupling constant, which appears in the exponent of

4 Indeed, let us suppose cn,d �= 0 for two values n1 = m and n2 = p. Then
we must have (2−λ)ψ2

d −2(ψdψd−1 +ψd+1ψd)−µψ2
d (2p + |d|)−ν(d) = 0

which implies 2µ(m−p)ψd = 0. Since the case µ = 0 is not interesting and
ψd = 0 would imply that the choice of the cn,d is completely arbitrary and
irrelevant, the only possibility is m = p.
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Figure 1. Average cost C̄ as a function of the energy N for the
optimal states (dashed line). The solid line is the function 1/N2.
The points above the solid line are other solutions of equation (21)
corresponding to local minima of the cost, distributed over lines
characterized by a fixed value of the Lagrange parameter µ (a single
dotted line is plotted, connecting points for different µ and
increasing N ).

the time evolution operator, has been treated as a phase
parameter. The optimal POVM has been derived according
to the theory of quantum phase estimation [4–6, 8]. As
noted in [2] this resorts to an SU(2) estimation problem
with the Schwinger two-mode boson realization. However,
the representation is not irreducible, and a more complicated
problem is faced. In this sense our results generalize those
of [2], where the estimation of SU(2) phase-shifts has been
analysed in irreducible subspaces: indeed we found an
improved scaling of phase variance versus the total energy.
The degeneracy of the spectrum of the the Hamiltonian can
be treated using the technique of [6] and, in this way, the
problem is reduced to a nondegenerate one with spectrum
Z for the phase-shift operator. The δφ ∝ N−1 scaling in
interferometry has also been found for specific classes of input
states such as optimized squeezed states [10] and number states
[11]. Our analysis confirms such an unsurpassable bound,
and provides the optimal states which, compared to states
of [10, 11], show a largely reduced multiplicative constant.

It is important to remark that the optimal POVM depends
on the preparation state. This is true for every kind of phase
estimation problem, but in the presence of degeneracy the
dependence is crucial. In fact, one has to define the optimal
POVM as a block-diagonal operator, where the invariant
subspaces are spanned by projections of the input state into the
eigenspaces of the generator. From a practical point of view
this means that optimal estimation of the phase-shift imposed
to a state needs a measuring device which is adapted to the
shifted state. We then optimized the input state by minimizing
the average cost for fixed input energy and found a power law
δψ � γ /N in a range 0 � N � 1000.

Notice that the law N−1 is the same as in the optimal
phase estimation with only one mode [12], but with a much
smaller constant γ (γ � 0.1 instead of γ � 1.36). We think
that this phenomenon of improvement of phase sensitivity by
increasing the number of modes is the same as that considered
in [13], where an exponential improvement versus the number
of modes has been estimated when increasing the number of
modes and the number of photons per mode, jointly in the same
proportion.
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