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Improving quantum interferometry by using entanglement
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We address the use of entanglement to improve the precision of generalized quantum interferometry, i.e., of
binary measurements aimed to determine whether or not a perturbation has been applied by a given device. For
the most relevant operations in quantum optics, we evaluate the optimal detection strategy and the ultimate
bounds to the minimum detectable perturbation. Our results indicate that entanglement-assisted strategies
improve the discrimination in comparison with conventional schemes. Possible implementations of
entanglement-assisted schemes, in order to approach the performances of the optimal strategies, are also
suggested.
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I. INTRODUCTION

An interferometric setup is devised to reveal minute p
turbations to a given configuration. Such perturbations m
be induced by the environment or by the action of a giv
device. In an interferometer, the internal quantum opera
is monitored by probing the output state, which, in turn,
sults from the evolution of a given input. By suitably choo
ing the input signal and the detection stage one optimizes
interferometric measurement. Optimization has two m
goals:~i! to maximize the probability of revealing a pertu
bation, when it occurs, and~ii ! to minimize the value of the
smallest perturbation that can be effectively detected.

In essence, an interferometric scheme may be viewed
binary communication system@1,2#, with the perturbation
playing the role of the encoded information. In order to s
better this analogy let us consider the scheme shown in
1~a!. A sourceS of quantum states prepares the input sign
say%0, which travels along the interferometer, and it is eve
tually measured by some detector, denoted byD. The detec-
tor is described by the positive operator-valued meas
~POVM! P(x), with xPX, X being the manifold describing
the possible detection outcomes. Inside the interferomete
have a generic quantum device, which may or may not p
turb the signal, i.e., it performs the quantum operation
scribed by the positiveUl . If a perturbation occurs the sig
nal is modified and, at the output, we have the state%l

5Ul%0Ul
† . The aim of the detection stage is to discrimina

between%0 and its perturbed version%l . An optimized in-
terferometer is a device that is able to tell which%, for l as
small as possible. Posed in this way, interferometry is na
rally viewed as a binary decision problem, and the detec
stage can be described by a two-value POVM$P0 ,Pl[I
2P0%, whose realizations correspond to the two possi
inferences.

The main goal of the present paper is to demonstrate
benefit of entanglement in binary interferometry. We w
show that distinguishability of the two hypotheses (H0:
nothing happened andHl : a perturbation has occurred! can
be improved by:~i! using an input signal that is entangle
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with another subsystem, and~ii ! measuring the two system
jointly at the output of the interferometer@see Fig. 1~b!#.

In order to optimize the detection strategies, and to sh
the benefit of entanglement, we will make use of results a
methods from quantum detection theory applied to bin
decision@3,4#. This approach is particularly useful for ou
purposes, since it does not refer to any specific detec
scheme for the final stage of the interferometer, but rat
owing to its generality, it allows one to find the ultima
quantum limits to interferometry for specific classes of qua
tum signals.

In Sec. II, in order to establish notation, we briefly revie
the Neyman-Pearson approach to quantum binary decis
and state a lemma about minimum input-output overl
Then, in Sec. III, we apply these results to the interferome
detection of perturbations induced by the most relevant
erations in quantum optics such as displacement, squee
mixing, and phase shifting. As we will see, entangleme
assisted interferometers provide better discrimination t
conventional schemes. In Sec. IV, we analyze poss
implementations of entangled-assisted schemes, in orde
approach, for the quantum operations discussed in Sec
the ultimate bounds to precision. Finally, in Sec. V we clo
the paper with some concluding remarks.

FIG. 1. A generalized interferometer is a binary detecti
scheme aimed at checking whether or not a given quantum de
~the hexagon in the figure! has performed the quantum operatio
described by the unitary operatorUl . The signal employed as a
probe is prepared by the sourceS and then enters the device, whic
may or may not applyUl . The two hypotheses:H0 ~the signal is
unperturbed! and Hl (Ul has been applied! should be discrimi-
nated on the basis of the outcome of the detectorD. ~a! Simple
scheme involving a single-mode probe.~b! Scheme involving an
entangled probe.
©2002 The American Physical Society06-1
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II. QUANTUM BINARY DECISION IN THE NEYMAN-
PEARSON APPROACH

The problem that we are facing is to decide between
hypothesesH0 andH1 about the state of a system, which
described by a density operator% on the Hilbert space. To
each hypothesis it will correspond a different density ope
tor as follows:

H0 : the system is in the state%0 ,

Hl : the system is in the state%l . ~1!

Of course, there are many different measurements that
provide information about the state of the system: each
them, however, can be recast mathematically as a two-v
POVM, corresponding to the two possible inferencesH0 and
H1, namely,

P0 ,Pl>0, P01Pl5I. ~2!

One then needs an optimization strategy in order to de
mine the most reliable measurement discriminating betw
the two states. If%0 and %l are orthogonal, i.e.,%0%l

5%l%050 the solution is trivial, sinceP0 is the projection
into any subspace that contains the support of%0 and is
orthogonal to the support of%l , and Pl is simply the
complementPl5I2P0. In most cases of interest, howeve
the states are not orthogonal and one has to apply an op
a
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n
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zation strategy. Since interferometric schemes are freque
used for detecting low-rate events, we may want to look
a strategy that keeps a low-rate of false alarm, namely
wrong inference of perturbation occurrence. For this p
pose, it is suitable to adopt a so-called Neyman-Pearson~NP!
detection strategy, which consists in fixing a tolerable va
of the false-alarm probabilityQ0—the probability of infer-
ring that the state of the system is%l while it is actually
%0—and then maximizing the detection probabilityQl , i.e.,
the probability of a correct inference of hypothesisHl @5#. It
has been proved by Helstrom@3# and Holevo@4# that this
problem can be solved by diagonalizing the operator

%l2m%0 , ~3!

m playing the role of a Lagrange multiplier accounting f
the bound of fixed false-alarm probability. According to Re
@3# the optimal POVM is the one in whichPl is the projec-
tion onto the eigenspaces of~3! relative to positive eigenval-
ues andP05I2Pl . Unfortunately, the diagonalization o
~3! is generally not easy. However, when%05uc0&^c0u and
%l5ucl&^clu are pure states it can be easily solved anal
cally, by expandinguc0& anducl& on the eigenvectors of the
difference operator~3!. In this way one can evaluate bothQ0
andQl versusm, and after eliminatingm from their expres-
sions one obtains
Ql5H @AQ0uku21A~12Q0!~12uku2!#2 for 0<Q0<uku2,

1 for uku2,Q0<1,
~4!
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where uku25u^c0ucl&u25u^c0uUluc0&u2 is the overlap be-
tween the two states. The detection probability is a decre
ing function of the overlap—the smaller the overlap, t
easier the discrimination—since one can reach detec
probability 1 while keeping a low false-alarm probability. O
the contrary, when the overlap approaches 1, one is force
decrease the detection probability in order to keep the fa
alarm probability small.

The optimal choice of the probe that minimizes the ov
lap depends on the eigenvalues of the unitary operationUl .
In order to illustrate this, let us expandUl in terms of its
eigenvectorsUl5( je

iw j uw j&^w j u ~with integrals replacing
sums in case of continuous spectrum! and let us denote by
O(Ul)5mincu^cuUluc&u2 the minimum overlap between th
two possible outputs, as obtained by varying the probe s
Then we have the followingoverlap lemma@6,7#: the mini-
mum overlapO(Ul) is given by the distance from the origi
in the complex plane of the polygon whose vertexes are
eigenvalues ofUl . Therefore, the overlap is either zero~if
the polygon includes the origin! or it is given by

O~Ul!5cos2
Dw

2
, ~5!
s-

n

to
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-
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where Dw is the angular spread of the eigenvalues. Ze
overlap can be achieved with a probe state that is given b
superposition of at least three eigenvectors ofUl , corre-
sponding to eigenvalues that make a polygon that enclo
the origin~or, if they exist, by a superposition of two of them
corresponding to diametrically opposed eigenvalues!. In-
stead, if the minimum overlap is not zero, it is achieved
the optimal probe state given by

uc&5
1

A2
~ uw i&1uw j&), ~6!

with Dw5w i2w j .

III. ENTANGLEMENT IN BINARY INTERFEROMETRY

In this section we compare the performances of sing
mode@Fig. 1~a!# and entanglement-assisted binary interfe
metric schemes@Fig. 1~b!# in the detection of small pertur
bations induced by relevant quantum optical operations s
as displacement, squeezing, mixing, and phase shifting.
comparison is made in terms of the detection sensitiv
namely, upon parametrizing the ‘‘size’’ of the perturbation
6-2
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whence the corresponding output state—by a coupling
rameterl. In other words, the comparison is made in ter
of the minimum detectable valuelmin of l corresponding to
output states that can be effectively discriminated wh
keeping theacceptance ratiog* of the NP strategy large
namely,g* 8Ql /Q0@1. We will employ the quantitylmin
as a measure of the sensitivity of the interferometric sche
Using Eq.~4! the above condition can be written in terms
the overlap as follows:

uku2512L~Q0 ,g* !,
~7!

L~Q0 ,g* !5Q0@11g* ~122Q0!

22Ag* ~12Q0!~12g* Q0!#.

For each class of transformations, we will make some g
eral considerations and then focus our attention on sensit
bounds that can be achieved using probe signals that
feasible with current technology.

A. Perturbation made of a single-mode complex displacement

Let us first consider the case when the perturbation
imposed by the displacement operatorUa[D(a)5exp(aa†

2āa). In principle, in this case, the discrimination can
done exactly with single-mode probe. This can be seen
writing the displacement as Ua5exp(i2uauxu), xu
51/2(a†eiu1ae2ıu) being the quadrature operator, andu
5arg(a)1p/2. Since the spectrum of the quadrature co
cides with the real axis, the spectrum ofUa covers the whole
unit circle, and, therefore, the statesuc0& and uca&
5Uauc0& can be discriminated with certainty either b
choosinguc0& as the eigenstate of the conjugated quadra
xu1p/2 , or, according to the overlap lemma, as a superp
tion of at least two eigenstates of the quadraturexu . Unfor-
tunately, such optimal states are unphysical, since they
not normalizable and have infinite energy. Moreover, ev
though we approximate them with physical states with fin
energy, the identification of the optimal states would requ
the knowledge of the phase of the perturbation. In orde
see that, let us rewrite the eigenvectoru0&u1p/2 as the limit-
ing case of a squeezed vacuum,u0&u1p/25 limuzu→`uz&
5 limuzu→`S(z)u0&, whereu5arg(z)1p/2 is the argument
of the squeezing parameterz of the squeezing operator give
by

S~z!5exp@1/2~za122 z̄a2!#, ~8!

and u0& is the electromagnetic vacuum. Our squeez
vacuum has mean photon numberN5sinh2uzu. The overlap is
readily evaluated as

uku25u^zuD~a!uz&u2

5exp$2uau2@2N111AN~N11!cos 2d#%, ~9!

where d5arg(z)2arg(a). By inserting the overlap in Eq
~7! we obtain the minimum detectableuau2. However, Eq.~9!
shows a very strong dependence ofuaumin

2 on the phase pa
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rameterd, which makes the whole optimized scheme ve
unstable, namely, one should know the phase of perturba
very precisely in order to get a truly optimized detectio
Indeed, we have

uaumin
2 .

N@1

L~Q0 ,g* !/4N for d5p/2, ~10!

uaumin
2 .

N@1

4NL~Q0 ,g* ! for d50, ~11!

with the second expression that shows an asymptotically
vergent behavior inN.

Let us now consider an entanglement-assisted sche
where one has available a two-mode probe stateuc&& and
take the configurationUa5D(a) ^ I in which the displace-
ment perturbs one mode, saya, and the other mode is lef
unperturbed. At the probe state we consider the entan
state from parametric down-conversion of vacuum for fin
gain—the so-called ‘‘twin-beam’’ state

ux&&5A12x2(
n

xnunn&&, 0<x,1, ~12!

where unn&&5un&a^ un&b . The twin beam in Eq.~12! has
mean photon numberN52x2/(12x2) and it is achieved
starting from the vacuum via the unitary evolutionux&&
5exp@x(a†b†2ab)#u0&&. In order to evaluate the sensitivity
the main task is now to calculate the overlapuku2
5u^^xuUaux&&u2. We have

k5~12x2! (
m50

`

(
n50

`

xm1n^̂ mmuD~a! ^ Iunn&&

5~12x2! (
n50

`

x2n^nuD~a!un&

5~12x2!e2(1/2)uau2(
n50

`

x2nLn~ uau2!

5expF2
uau2

2

11x2

12x2G5expF2
uau2

2
~N11!G , ~13!

whereLn(x) is thenth Laguerre polynomial. Equation~13!
implies for uaumin

2 the scaling

uaumin
2 .

L~Q0 ,g* !

N11
, ~14!

which is independent on the phase of perturbation, and t
represents a robust bound to the sensitivity of a single-m
displacement.

B. Perturbation made of a single-mode squeezing
„phase-sensitive amplifier…

The second kind of perturbation that we analyze is
squeezing of a single radiation mode, which is described
the squeezing operatorS(z) in Eq. ~8!. Without loss of gen-
6-3
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erality we can considerz5 z̄5r as real and use the notatio
Ur to indicate the transformation, namely,Ur5exp@2irA#,
with A5 i /2(a122a2). The spectrum ofA is continuous@8#
and extends over the whole real axis. This means that
eigenvalues ofUr cover the whole unit circle. Therefore, it i
possible, in principle, to discriminate the perturbation e
actly, using as a probe either an eigenstate of the oper
conjugated toA, or using a superposition of two or mor
eigenstates ofA. However, analogously to the case of t
displacement, such probe states are not normalizable
have infinite energy, whence one must resort to physical
proximations of such states. For a coherent probe the ove
can be calculated through the overlap of the correspond
Wigner functions, giving as a result

u^auUr ua&u25expF2
2N cos2f~12coshr 2sinhr !2

11exp~2r !

2
2N sin2f~12coshr 1sinhr !2

11exp~22r ! G , ~15!
b
o

in
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whereN5uau25^aua†aua& is the mean number of photon
of the probe state. By expanding for smallr we have

u^auUr ua&u2.12Nr2, ~16!

and, therefore, the minimum detectable perturbation wo
be

r min.AL~Q0 ,g* !

N
. ~17!

For a squeezed vacuum probeS(z)u0& one has@9#

k5^0uS†~z!UrS~z!u0&

5@coshr 12i sinhuzucoshuzusinhr sinc#21/2, ~18!

wherec5arg(z) and correspondingly the minimum detec
able r is given by
r min55 lnS 1

12L~Q0 ,g* !
$12AL~Q0 ,g* !@22L~Q0 ,g* !#% D for sinc50,

AL~Q0 ,g* !

2

1

N sinc
otherwise,

~19!
with N5sinh2uzu. Again, the bound in Eq.~19! strongly de-
pends on the phase between the squeezing perturbation
the squeezing of the probe, and, therefore, cannot
achieved in practice without prior knowledge of the phase
the perturbation.

Let us now consider an entangled probe state in a tw
beam state of the form given by Eq.~12!. The input-output
overlap is calculated as follows:

k5 ^̂ xuUr ^ Iux&&5~12x2! (
n50

`

x2n^nuUr un&. ~20!

In order to calculate the matrix element^nuUr un& we use the
identities

Ur5e(1/2)tanh(r )a†
@cosh~r !#2a†a21/2e2(1/2)tanh(r )a

and

e21/2 tanh(r )aun&5 (
l 50

[n/2]
@2tanh~r !# l

2l l !
A n!

~n22l !!
un22l &,

~21!

where@m# indicates the integer part ofm, and finally we get
and
e
f

-

^nuUr un&5
n!

@cosh~r !# (n11/2) (
l 50

[n/2]
~21! l@sinh~r !#2l

4l~ l ! !2~n22l !!
.

~22!

Using Eq.~22! we calculatek by means of Eq.~20!,

k5~12x2! (
n50

`

x2n
n!

@cosh~r !# (n11/2) (
l 50

[n/2]
~21! l@sinh~r !#2l

4l~ l ! !2~n22l !!

5
~12x2!

@cosh~r !#1/2 (
l 50

` S 2
x4sinh2~r!

4 cosh2~r !
D l

2l !

l ! 2

3 (
n50

`
~n12l !!

n!2 l ! S x2

cosh~r !D n

5
~12x2!

@~x411!cosh~r !22x2#1/2
.

Inserting this expression in Eq.~7! we have forr min the
scaling law

r min.2A L~Q0 ,g* !

12L~Q0 ,g* !

1

AN212N12

.A L~Q0 ,g* !

12L~Q0 ,g* !

2

N
. ~23!
6-4
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The same result is obtained by varying the phase of
squeezing amplitudez, i.e., for complexr, thus confirming
the robustness of the bound~23! that is obtained using an
entangled probe.

C. Perturbation made of a two-mode phase shift

The third problem we address is that of a perturbat
induced by the two-modes phase-shift operatora†b1ab†,
characterizing a mixer~beam splitter! or a Mach-Zehnder
interferometer. This case differs from the previous ones
that the perturbation is represented by the two-modes un
operatorVf5exp$if(a†b1ab†)%. In this case the spectrum i
given by exp$imf%, with mPZ ~see, e.g., Ref.@10#!. There-
fore, if f5(q/p)p with qP2Z11 andpPZ ~but this is a
null-measure set of values off) then the optimal state is
given by a superposition of two eigenstates ofVf with ei-
genvalues differing byp. In the general case, the optim
state is any superposition of three or more eigenstates ofVf ,
such that the polygon of its eigenvalues on the unit cir
encloses the origin@7#. Such optimal states are entangle
since they are obtained from the eigenstatesun,d&& of a†a
2b†b,

~a†a2b†b!un,d&&5dun,d&&,

un,d&&5H un1d&un& for d>0,

un&un1udu& for d,0,
~24!

by the unitary transformation exp$2(p/4)(a†b2ab†)%. Ac-
tually, the optimal states are far from being practically re
izable. However, we have proved that they are entang
and this suggests to explore the possibility of performin
reliable discrimination by physically realizable entangl
states. For a twin beam we have

k5 ^̂ xuVfux&&5~1

2x2!^̂ 00uexabeig0a†be$(1/2)g1(a†a2b†b)%ei $g0ab†%exa†b†
u00&&,

~25!

where g05tanf and g152 ln(cos2f). After some algebra
we get

uku25
1

11
4x2sin2f

~12x2!2

5
1

11N~N12!sin2f
. ~26!

The minimum detectablef, according to Eq.~26!, is thus
given by

fmin5arcsinS L~Q0 ,g* !

AN~N12!
D .

L~Q0 ,g* !

N
. ~27!

The scaling in Eq.~27! does not depend on any parame
but the energy of the input state. This should be compa
with the sensitivity of the customary single-mode interfero
etry @11# based on squeezed states, where the same scal
achieved only for a very precise tuning of the phase of
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squeezing. This means that the entanglement-assisted
ferometry provides a much more reliable and easily tuna
scheme.

IV. IMPLEMENTATIONS OF ENTANGLEMENT-ASSISTED
INTERFEROMETRIC SCHEMES

In this section we suggest two concrete schemes for
nary decision based on an entangled probe. The scheme
feasible, at least in principle, and permit us to approach
ultimate precision bounds that have been obtained in the
ceding section.

A. Entanglement in difference-photocurrent interferometry

In Fig. 2 we show a schematic diagram of a differenc
photocurrent interferometer. The input state is the entang
twin-beam ux&& produced by a nondegenerate optical pa
metric amplifier. Such entangled probe is possibly subjec
to the action of the unitaryUl @Figs. 2~a! and 2~b! describe
the cases of a single mode and of a two-mode perturbat
respectively#. At the output the two beams are detected a
the difference photocurrentD5a†a2b†b is measured. If no
perturbation occurs, then the output state is still a twin be
and sinceux&& is an eigenstate ofD with zero eigenvalue we
have a constant zero outcome for the difference photo
rent. On the other hand, when a perturbation occurs the
put state is no longer an eigenstate ofD, and we detect fluc-
tuations, which signal the presence of the perturbation its
The false-alarm and the detection probabilities are given

Q05P~dÞ0uNOTUl![0, ~28!

Ql5P~dÞ0uUl!512P~d[0uUl!,
~29!

where the probability of observing zero counts at the outp
after the action ofUl , is given by

P~d[0uUl!5(
n

u ^̂ n,nuUlux&&u2, ~30!

FIG. 2. Difference-photocurrent interferometric scheme
achieve ultimate bounds on precision by means of an entan
probe. The NOPA generates a twin beam that may be subjecte
the action of the unitaryUl . At the output the beams are detecte
and the difference photocurrent is measured. For an unpertu
interferometer the output is again a twin-beam state, and the sch
is designed in order to obtain a constant zero difference photo
rent, whereas a perturbationUl would produce fluctuations in the
difference photocurrent.~a! Scheme for single-mode perturbatio
~b! scheme for two-mode perturbation.
6-5
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D’ARIANO, PARIS, AND PERINOTTI PHYSICAL REVIEW A65 062106
since the eigenvalued50 is degenerate. In this scheme t
false-alarm probability is zero and, therefore, it is not nec
sary to introduce an acceptance ratio. The scaling of
minimum detectable perturbation can be obtained directly
terms of the detection probabilityQl by Eqs.~29! and ~30!.
For the single-mode transformations considered in the
ceding section we have

P~d50uaÞ0!5exp@2uau2~11N!#I 0@ uau2AN~N12!#
~31!

for the displacement, whereI 0(x) is the zeroth modified
Bessel function, and

P~d50urÞ0!512r 2N1O~r 2!
AQl

N
~32!

for the squeezing. The minimum detectable perturbations
thus given by

uaumin
2 .

AQl

N
, r min.

AQl

N
. ~33!

For the two-mode phase-shift transformation we have

P~d50ufÞ0!512
1

2
f2N21O~f2! → fmin.

A2Ql

N
.

~34!

One can see that in all examples considered above, an i
ferometer based on a difference-photocurrent measurem
provides a precision that rescales with the energy in the s
way as the ultimate bounds obtained in the preceding
tion.

It is worth noticing that the experimental measurement
a modulated absorption based on entanglement-ass
difference-photocurrent detection has been already
formed using the entangled beam exiting an amplifier ab
threshold~optical parametric oscillator, OPO! @12#.

B. Effects of nonunit quantum efficiency

Since the setup analyzed in the preceding section is ai
for a possible implementation, it is worth analyzing the effe
of nonunit quantum efficiency in the detection stage. We w
consider the case of the estimation of a displacing amplitu
The other perturbations may be treated in an analogous

In case of nonunit quantum efficiency the statistics
each detector of Fig. 2 is described by the POVM

Ph~m!5 (
n5m

`

P~n!S n

mDhm~12h!n2m, ~35!

which is a Bernoullian convolution of the ideal POVM of
photocounterP(n)5un&^nu. This means that the probabilit
distribution of the outcomes for the difference photocurr
D is given by
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Ph~d!5H (
n

Tr@%Ph~n1d! ^ Ph~n!#, d>0,

(
n

Tr@%Ph~n! ^ Ph~n1d!#, d,0,

~36!

where% is the outgoing state~either %0 or %l). The main
effect of quantum efficiency is the occurrence of nonze
output also in the case of no perturbation, i.e., the appeara
of a false-alarm probability

Q0[P~dÞ0ua50!512 (
d.0

(
n

^̂ xuPh~n1d! ^ Ph~n!

1Ph~n! ^ Ph~n1d!ux&&, ~37!

whereas the detection probability is given by

Qa[12P~d50uaÞ0!

5(
n

^̂ xuD†~a!Ph~n! ^ Ph~n!D~a!ux&&. ~38!

Equation~37! would suggest a slight modification of the d
tection strategy, where the inference ofH0 is associated with
a difference photocurrent whose absolute value is unde
threshold valued* . We have numerically calculatedQ0 and
Qa for different ~integer! values of the threshold and ob
tained the plots in Fig. 3. The plots represent the charac
istics Qa(Q0) for different values of the entanglement p
rameterx for quantum efficiency equal toh50.9 and h
50.75, respectively. The perturbation intensity is given
uau50.7. Apart from the trivial pointQ05Qa51, corre-
sponding to a thresholdd* 50, for any value of the param
eter x we have a sequence of points, corresponding to
integer values of the thresholdd* ,d* PN. The highest value
of Qa corresponds to maximum entanglement, and to
thresholdd* 51, i.e., to our original strategy that associat
a perturbation to every outcomed different from zero. By
employing an acceptance ratio criterion, the optimal strat
is the one that has the highest detection probabilityQa , pro-
vided that the ratioQa /Q0 is higher than a fixed valueg* .
This criterion can be viewed in theQ0 ,Qa plane as looking
for the highest point lying over the lineQa5g* Q0.

In Fig. 3 the horizontal line corresponds to the value
Qa obtained for unentangled probe (x50). In this caseQ0
50 andQa can be analytically calculated through Eq.~29!.
A systematic analysis shows that in the quantum regime
small number of photons, the benefit of entanglement can
appreciated also in presence of nonunit quantum efficie
i.e., the minimum detectable perturbation scales almost a
the ideal case. On the other hand, in the semiclassical reg
of strong signal the scaling is degraded, as it happens
single-mode squeezed-assisted interferometry@13#. In this
case, the main advantage of an entangled scheme con
the stability with respect to phase fluctuations of the pert
bation.
6-6
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C. Benefit of entanglement in heterodyne interferometry

In this section, we analyze heterodynelike interferome
schemes, i.e., schemes where the detection stage consi
the measurement of the real and the imaginary part of
complex photocurrentZ5a1b†, a andb being modes of the
field. Such a measurement can be obtained by heterod
eight-port homodyne and six-port homodyne detectors.
sides being a possible implementation of entanglement-b
measurement, the analysis of this setup allows for a di
comparison with the analog unentangled scheme. In Fi
we show a schematic diagram of the detection setup~again,
we consider the case of a displacement perturbation!. Figure

FIG. 3. Characteristic curvesQa(Q0) for the threshold strategy
in difference-photocurrent interferometry.~a! Quantum efficiency
h50.9 and~b! h50.75. In both plots, the horizontal curve corr
sponds toQa for a not entangled input. The data are for avera
number of photons in the twin-beam given byN51 ~squares!, N
52.8 ~circles!, N55.2 ~triangles!, andN58.0 ~stars!.

FIG. 4. Schematic diagram of a heterodynelike interferomete
detect an amplitude perturbationD(a).
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4~a! describes the customary single-mode scheme to estim
an unknown amplitude with the vacuum as unperturbed
nal: actually this corresponds to the optimal single-mo
measurement according to quantum estimation theory@3#.
Figure 4~b! represents the scheme employing twin beam
input. Each heterodyne outcome consists of a pair of r
numbers for the photocurrentsX5(Z1Z†)/2 and Y5(Z
2Z†)/2i . The probability distribution for the complex out
come z5x1 iy is given by p1(zua)51/pu^zua&u2 in the
single-mode case and byp2(zua)51/pu ^̂ xuD†(a)uz&&u2

for the entanglement-based scheme, whereuz&&
5D(z)(pup&up&. Both probabilities are Gaussian and can
summarized as

p~zua!5
1

pDx
2

expH 2
uz2au2

Dx
2 J , Dx

25
12x

11x
1

12h

h
,

~39!

whereh is the quantum efficiency of the photodetectors
volved in the heterodyne~or multiport homodyne! detector
@by putting x50 in Eq. ~39! we easily recover the single
mode case#. A binary inference from heterodyne data can
obtained by a threshold strategy as follows:

e

o

FIG. 5. Characteristic curvesQa(Q0) for the threshold strategy
~40! in heterodyne interferometry.~a! Unit quantum efficiency and
~b! h50.75. Inboth plots the lower dashed curve corresponds t
not entangled input, whereas for increasing entanglement~from bot-
tom to topN50,1,2,3,4,5) we have improved characteristics. T
perturbing amplitude isuau50.5.
6-7
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FIG. 6. Monte Carlo simulation of entangled
assisted heterodyne interferometry to detect
amplitude perturbation. The simulated data a
reported as a function of an arbitrary rescal
time t (t51 corresponds to 1000 events! for an
initially unperturbed system that is subjected
an amplitude perturbationuau51 during a time
intervalDt515. We report the resulting outcom
for not entangled@~a! and ~c!# and entangled in-
put @~b! and ~d! N53.3] both for unit quantum
efficiency @~a! and ~b!# and forh50.75 @~c! and
~d!#.
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if uzu,L→ ‘‘no perturbation9

if uzu>L→ ‘‘perturbation9 ~40!

such that the false-alarm and the detection probability
given by

Q05E
uzu>L

d2zp~zu0!, Qa5E
uzu>L

d2zp~zua!. ~41!

By varying the thresholdL we parametrically obtain the
characteristicsQa(Q0) of the strategy~40!. In Fig. 5 we
reportQa versusQ0 for a small perturbing amplitude both i
the ideal case and for quantum efficiencyh50.75. The dif-
ferent curves correspond to different degrees of entan
ment at the input. As a matter of fact the characteristics
improved using entanglement, and the benefit of entan
ment is still present in case of an imperfect detection sta
Remarkably, in the latter case the characteristics saturat
increasing values ofx, which means that only a modera
entanglement is needed to achieve an optimal inference s
egy.

We also performed a Monte Carlo simulation of the who
detection scheme. In Fig. 6 we report the simulated data
function of an arbitrary rescaled timet (t51 means 1000
events! for an initially unperturbed system that is subject
to a tiny amplitude perturbation on a time intervalDt515.
We report the resulting outcome for entangled input and
entangled input both for unit quantum efficiency and forh
50.75. As it is apparent from the plots, using an entang
input results in a more distinguishable perturbation.
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V. SUMMARY AND CONCLUSIONS

In this paper we have analyzed the effect of entanglem
on the interferometric estimation of relevant quantum opti
parameters such as displacing and squeezing amplitude
interferometric phase shift. We have evaluated the minim
detectable perturbation according to the Neyman-Pearson
tection strategy, and have shown that entanglement impro
the detection in comparison with single-mode schemes
particular, for the case of estimation of the displacement
the squeezing amplitudes we have shown that the preci
of the apparatus that uses an entangled probe is indepen
of the phase of the perturbation, and is, therefore, m
stable and reliable than a simple scheme based on sin
mode probes. Similarly, the estimation of a two-mode ph
shift is more stable when we use a twin beam than wh
using squeezed states.

Since the Neyman-Pearson detection strategy does
correspond to a realistic detector, we also analyzed poss
implementations based on difference photocurrent and
erodyne interferometry using entangled twin beam. Rema
ably, these schemes improve precision also in presenc
nonunit quantum efficiency of the involved photodetecto
We conclude that the technology of entanglement can b
great help in improving precision and stability of quantu
interferometers.
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