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Fine Structure of Thresholds in a Micromaser Pumped with Atom Clusters
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We present the first quantum microscopic study of a micromaser with many atoms in the cavity.
Excited atoms are injected in clusters with average number N up to 100. The stationary state of
radiation is evaluated by means of a novel Green-function Monte Carlo technique. For N < Nu, (Nex
being the number of excited atoms entering the cavity in a photon lifetime) the system behaves similarly
to the one-atom maser. At N = N,, a transition occurs to a novel cluster behavior, where a fine structure

of thresholds emerges.
PACS numbers: 42.50.Dv, 42.50.Ar, 42.52.+x

In recent years the micromaser [1,2] has been exten-
sively studied both experimentally and theoretically. At-
tention has been focused on the high-Q cavity one-atom
maser, with interest devoted to fundamental issues related
to the quantum mechanics of radiation in interaction with
single atoms [3]. In this context the one-atom maser rep-
resents a fortunate situation, because analytical methods
can be used [4] and the system can be realized experimen-
tally [1]. Recently, theoretical descriptions of masers with
few atoms simultaneously in the cavity have been faced—
however, for no more than two atoms [5—7]. There, apart
from the disappearance of trapping states [5,6], the main
features of radiation remain similar to those of the one-
atom case, whereas at the semiclassical level there are in-
dications of new cooperative chaotic phenomena [7].

The availability of novel Monte Carlo techniques for
simulating the master equation [8,9] now allows the study
of the micromaser also for quite large numbers of atoms
in the cavity, in a physical situation approaching the or-
dinary macroscopic maser. With the aim of studying the
stationary state of radiation, in this paper we extend the
quantum jump method of Refs. [8,9] in order to evaluate
the reduced Green operator for the field. After calculat-
ing the Green operator, the stationary state is obtained
as the eigenvector corresponding to unit eigenvalue. We
will see that new features of the field arise for large mean
number of atoms N = N,,: in particular, a fine structure
of thresholds is exhibited.

Before analyzing the Green operator Monte Carlo
method, let us first describe the pump model considered
here. Atoms from a monoenergetic beam are excited
to the upper masing level by means of a periodically
pulsed laser. Then they cross the micromaser cavity that
is resonant with an atomic transition to a lower lying
masing level; we suppose that the ground state atoms
are far out of resonance, thus atoms not excited by the
laser pulse do not affect the cavity field. Each laser
pulse excites a cluster of atoms. The pulse is sufficiently
short so that each cluster can be considered pointlike
with respect to the cavity length. The number N of
excited atoms per cluster is given by a Poisson distribution
with average number N. For a pulsing period T, the
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injection rate of excited atoms is » = N/T. For fixed
r, in the limit N — 0, T — 0 one recovers the original
one-atom Poisson-injected maser of Refs. [1,2]. We are
interested in the stationary properties of the field, which
in this context is considered at stroboscopic times ¢; = ;T
(j=0,1,...,%), namely at the injection times of clusters
in the cavity. We fix for simplicity 7 = 7;,, where 7i,
is the interaction time of each cluster in the resonator.
The evolution of the joint radiation-atom density matrix R
between two consecutive times ¢;, t;+ is described by the
following master equation in the interaction picture:

dR i

— = LyR = —=[Hy,R] + LR . 1
. N ﬁ[ ~-R] 7 (1
In Eq. (1) Hy is the Hamiltonian describing the interac-
tion between radiation and a N-atom cluster—in the ro-
tating wave approximation—namely

()

N
Hy = —iliga Y oi + Hec., )
j=1

whereas Ly is the free field Liouvillian, such that

LR =— %(n,, + 1)(ataR + Ra'a — 2aRa")
— %nb(aaTR + Raa' — 2a*Ra) . 3)

In Egs. (2) and (3) a and a' are the annihilation and
creation operators of the field mode, a(tj) = (o(x" ) +
ia(yj )) /2 are the Pauli matrices describing the two masing
levels of the jth atom in the cluster, g is the atom-
radiation coupling constant, y~! is the photon lifetime,
and n, is the number of thermal photons in the cavity (in
the present paper we set n;, = 0).

When the cluster exits the cavity—immediately before
that another one enters it—the radiation state is obtained
upon tracing the joint density matrix R over atomic
variables. We denote by p; the radiation state at r = 1;,
immediately before a N-atom cluster enters the cavity. At
t = t;4+ the field density matrix is

pi+un = Trg [exp(LyTin)p; ® | Dyl 1]
= Gwpj €))
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where | Dy n (I | denotes the state of the N-atom cluster
entering the resonator with all atoms in the upper mas-
ing level. In Eq. (4) both the density matrix p;.;» and
the reduced Green operator of the field Gy are condi-
tioned by N. In this way, one describes the stroboscopic
field dynamics for a particular sequence of clusters. We
are interested in the field dynamics averaged on all pos-
sible sequences of clusters: this corresponds to consider
unconditioned quantities, which are obtained upon aver-
aging over the probability distribution of N, namely

pi+1 = G p; ()
where Gy = >y pn Gy, and
_ NV
PN = exp(~N)7v—! . (6)

After m clusters, with number of atoms N{,Ns,...,N,,
have crossed the cavity, the conditioned field state at
t = tj+m is obtained multiplying p; by the sequence of
Green operators Gy, - - - Gn, Glv,.  Since the cluster beam
is Markovian—the number of atoms of the ith cluster
is independent on that of the jth cluster—the average is
factorized as follows:

Giv, - Giv, Giv, = Giv - @)

Hence, the average Green operator G|y describes the
whole stroboscopic dynamics. In particular, the stationary
field is given by the eigenvector of Gy corresponding
to unit eigenvalue (which is not degenerate). Because
of the trace over atomic variables in Eq. (4), a diagonal
field state p; remains diagonal under the evolution and
the (unique) stationary state is itself diagonal. Thus
we restrict Eq. (5) to the number probability distribution
p;i(n) = (nlp;ln). In matrix form we have

pi+1(n) = D Gnln,mp;(m), @®)

m=0

where Giy(n,m) represents the average Green operator
connecting diagonal states.

It is now easy to envisage a method for evaluating
the matrix Giy(n,m) based on the quantum-jump Monte
Carlo technique of Refs. [8,9]. With this method, the
evolution of R in Eq. (1) is simulated through an ensemble
average over many trajectories, that start from pure states
[m)Yml| ® | Dy n(t |. Quantum jumps occur randomly on
each trajectory, simulating the nonunitary evolution due to
the lossy term L;R. For a fixed N-atom cluster, the mth
row of the conditioned matrix Gy (n, m) is evaluated upon
tracing the joint matrix exp(Ly7m)lm)m| ® | Dyn (|
on atomic variables. Then, Gy(n,m) is obtained by
ranging over m. Actually, N is a random number, and
the matrix G|y(n, m) averaged over N is directly obtained
using a random N [distributed according to Eq. (6)] for
each trajectory [10]. This procedure could be used also
for averaging over other random parameters, like, for
example, the cluster velocity. As a test of the present
Green-function Monte Carlo method, the stationary pho-

ton distribution p(n) has been simulated for the regularly
injected one-atom maser, reproducing results from direct
numerical evaluation of the Green function [11] within
statistical errors of a few percent.

Now we present the results for the cluster micromaser.
The system is completely specified by four parameters:
v, & r, and T = 7. Upon considering the photon
lifetime y~! as the time unit, only three dimensionless
parameters are left: g/v, y7in, and the mean number of
excited atoms crossing the cavity during a photon lifetime
Nex = r/vy. Notice that in terms of these parameters the
average number N of atoms per cluster is

N = rT = Ny Y Tine - 9)

In the one-atom maser at steady state a general scaling
law for the mean photon number (n) and normalized
fluctuations o = /{An2)/(n) holds around the maximum
of (n) (for sufficiently high N, > 1 and small numbers of
thermal photons n, << Ng). In particular, the maximum
of (n) occurs for a fixed value of the pumping parameter
0 = gTin/Nex = 7/2, where the values of (n)/Ne and
o are almost independent of all physical parameters and
of atomic pump statistics. The Monte Carlo simulation
shows that such scaling also holds for many atoms in
the cavity, provided that N < N.,. This can be seen in
Fig. 1, where (n)/N.x and o are plotted versus N (which
is normalized to N¢y) for 6 = 7 /2. (For fixed N., we
vary N by increasing y7iy; correspondingly g/ must
decrease, in order to keep g7in fixed.) One can notice
that in the range 0 < N < N, the variation of (n) is less
than 5%, whereas o is almost constant, namely the scaling
law still holds true.

Figure 1 also shows that for N = N,, the normalized
variance o increases abruptly with N, and correspond-
ingly (n) decreases in a sizeable way. The sudden change
of o vs N signals a dramatic modification of the cavity
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FIG. 1. Normalized mean photon number {(n)/N., (open sym-
bols) and normalized variance o (full symbols) at § = 7 /2
VS N/Ne. [Ne = 16 (circles), N., = 8 (triangles), N, = 4
(squares). Error bars, when not visible, are contained in the
plotted symbols.]
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field as compared to the one-atom maser. To illustrate
this point more generally, we consider the behavior of
the mean photon number as function of the Rabi angle.
In Fig. 2, (n)/N¢ is plotted versus g7y, for Ne = 10
and for different values of the parameter g/y. Apart
from the disappearance of trapping states, for g/y = 2.4
the same quantitative behavior of the one-atom maser is
found. This feature is almost unchanged for larger values
of g/v. On the contrary, for decreasing g/y the behav-
ior of (n) becomes very different, in the same fixed in-
terval of gri,. Indeed, (n) exhibits an increasing number
of maxima, namely, a fine structure of the first threshold
emerges (Fig. 1 monitors the small shift of the first peak).
Correspondingly, the normalized variance o exhibits an
analogous splitting, as shown in Fig. 3. After considering
the values of the mean number of atoms per cluster N in
Figs. 2 and 3, one concludes that for N < N., the clus-
ter micromaser behaves similarly to the one-atom maser,
even for N > 1; new features due to cluster injection be-
come apparent only for N > Ney.

A more precise illustration of mechanisms underlying
the fine structure of thresholds is given by analyzing
the photon probability histograms at steady state, that

<n>/N.,

&€Tint

FIG. 2. Normalized mean photon number (n)/N.x Vs g7, for

Nex = 10. Curves corresponding to different values of g/y
are vertically shifted by 0.5. From the bottom to the top:
g/y = 24,096, 0.72,0.48, 0.24. At grine = 0497 (0 = 7/2)
the average numbers of atoms per cluster are N = 2.07, 5.17,
6.90, 10.35, 20.7; at g7i,, = 2, N = 8.33, 20.83, 27.78, 41.67,
83.33. Error bars, when not visible, are contained in the plotted
symbols.
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FIG. 3. Normalized photon fluctuations o vs g7, for the

same parameters in Fig. 2.

are given in Fig. 4 (for Nox = 10 and g/y = 0.24) at
different values of the Rabi angles corresponding to
local minima and maxima of (n). One can see that
the photon distributions at minima are monotonically
decreasing with n, resembling thermal probabilities (o is
slightly larger than the thermal value corresponding to the
same mean photon number, and the peak at n = 0 is more
pronounced). On the other hand, at the maxima of (n),
p(n) exhibits a peak for nonvanishing n, with a behavior
more similar to a Poisson distribution (o is slightly greater
than unity). These general features of p(n) near maxima
and minima of (n) do not appreciably depend on the value
of g/v if g/v < 1. For increasing g/ the distribution
around minima become less chaotic and more similar to
the typical one-atom maser distributions. At maxima, the
shapes of p(n) slightly deviate from the Poisson in all
cases. Notice that for all histograms the value of p(n) at
n = 0 is always exceptionally high, both for thermal- and
Poisson-like distributions.

To illustrate the conditions leading to the fine structure
of thresholds, we emphasize the physical meaning of
all parameters involved in the present model. For fixed
values of g/y and N, an increasing gy, corresponds
to larger numbers of atoms N. Physically this means that
when slower atoms are selected, the laser pulsing period is
simultaneously increased. On the other hand, decreasing
g/y with fixed g7j,, and N., corresponds to either one
of the following setup modifications: (i) g and 7, are
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FIG. 4. Stationary photon probability distributions at

Nex = 10 and g/y = 0.24 for different values of g7i, = 0.78,
0.93, 1.17, 1.29 (from the bottom to the top). For fixed g/v,
an increase of gri, corresponds to a rise of N [see Eq. (9)]:
The corresponding average numbers of atoms N per cluster
are N = 32.5, 38.75, 48.75, 53.75. The mean photon numbers
and normalized variances are (n) = 3.8 = 0.12, 6.18 = 0.07,
27 =0.1, 352 +0.06; o =236=0.04, 133 =*0.02,
1.88 = 0.03, 1.43 = 0.02.

fixed, and the interaction takes place in a “worse” cavity
(larger y), with a higher injection rate to maintain the
same Nex = r/v; (i) 7i is increased for fixed r, with a
weaker coupling g to radiation in a cavity with the same
photon lifetime y~!. In situation (i) the mean number
of excited atoms per cluster N becomes larger due to the
increase of r; in case (ii) N increases due to the increase
of 7in. Thus, the fine structure of the cluster-injected
maser could be observed either with “large injection rate
in a bad cavity,” or with “weak coupling lasting for a long
interaction time.”

In conclusion, we presented the first numerical results
on a many-—atom micromaser at zero temperature, based
on a Green-function Monte Carlo simulation. Clusters
of N excited atoms (with N Poisson distributed) are
periodically injected in the cavity. We focused attention
on regimes with many atoms per cluster. The scaling
law of the maximum radiation intensity and fluctuations
still holds for more than one atom in the cavity. At 6 =

7 /2, deviations from the one-atom maserlike behavior are
found for N = N,, where a transition occurs toward a
novel cluster behavior. More generally, for any value
of the pumping parameter 6, the transition from one-
atom to cluster maser occurs when the average number
of excited atoms per cluster exceeds the mean number of
excited atoms entering the resonator in a photon lifetime.
In this situation a fine structure emerges for the first
threshold, with the appearance of multiple peaks for (n)
and o as functions of the Rabi angle. Even for zero
temperature, at minima of (n) the stationary radiation
tends to thermal-like distributions, as if the atomic beam
in presence of losses played the role of a thermal bath
[12]. At maxima of (n) the photon distribution is Poisson-
like. This alternance of thermal and Poisson radiation,
before and after thresholds—as in the customary laser—
is a consequence of the competition between gain and loss
mechanisms.
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