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Abstract. A feedback assisted phase detection scheme based on in-
dependent measurements of conjugated quadratures is presented. It is
shown that the feedback works very effectively, achieving the best sen-
sitivity in a few measurement steps. The influence of nonunit quantum
efficiency at detectors is taken into account.

1 Introduction

Homodyne detection is the most commonly adopted scheme for measuring phase
shifts. This is due to the fact that it combines experimental simplicity with op-
timal sensitivity [1]. However, the optimum powerlaw d¢ ~ (72)~! is degraded by
non-unit quantum. efficiency at detectors. A way to overcome this difficulty is to
consider novel phase detection schemes that are based on couples of independent
homodyne measurements of conjugated quadratures of the field. This means that
every measurement is performed on the field prepared in the same input state
before every detection step, not on the state after reduction from the preceding
measurement. This situation is very common in actual experiments: in practice
the whole sequence of measurements is performed on a stable radiation source, well
within the stability time of the source. This is what happens, for example, in quan-
tumn tomography experiments [2], where up to 104 = 10° homodyne measurements
at different reference phases with respect to the local oscillator (LO) are performed
within the étaibilit.y time of the source.

In this paper we will analyze this two-quadrature scheme, showing numerically that
it allows to achieve high sensitivities for a large range of the involved parameters.
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The paper is organized as follows. In the first part we describe the detection
scheme and we explain how a sequence of conjugated guadratures measurements
is requested in order to extract informations about the phase. Then we illustrate
our results on the basis of a Monte Carlo simulation of real experiments. The last
part is devoted to some concluding remarks.

2 Detection Scheme

The homodyne detector is schematically depicted in Fig. 1. The input field a

fD

Figure 1: Scheme of a homodyne detector.

undergoes an unknown phase shift ¢, then it impinges into a 50-50 beam split-
ter together with a local oscillator (LO) b. The LO has the same frequency, is
synchronous and has a stable phase difference with respect to a. The two output
beams follow two different paths and are finally recombined to detect the differ-
ence photocurrent Ip = fiy — 0y at zevo frequency. If the LO is prepared i a
highly excited colierent state |z) with |z] 3> 1, the reduced photocurrent Ip/2|z|
approaches a quadrature &, = 1(ae™ 4 al€'?) of the field. The phase ¢ with
respect to the local oscillator can be adjusted at will by changing the path lengths.
The homodyne output probability distribution when measuring the quadrature &,
for input state p will be denoted as follows

pla; ) = o(zlple)y (2.1)

where |z), denotes the cigenvector of &, corresponding to eigenvalue @, namely
£o)2)p = #|2)p. In the following, we will consider a fixed reference state p which
undergoes an unknown phase shift ¢. Tn such case, the quadrature probability
distribution is given by

w(-”’l"lfqﬁa*&ﬁe_wﬁtﬂw)w = p-p(2lplee—p = plaip — ) . (2.2)
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The scheme that we suggest consists of two independent measurements of &4,
and &4, -, adjusting the phase @ relative to the LO alternatively as ¢ = ¢.0
and ¢ = ¢ — 2. Noticeably, this scheme docs not suffer the 3 dB noise [4]
added by a joint measurement, however at the expense of doubling the number
of measurements. The probability distribution P(z,y;¢re — ¢) for the couple
of outputs (z,y) is factorized into the two independent homodyne distributions

pz; 00 — ¢ — £) and p(y; Lo — @) as follows
Pz, %610 — ¢) = p(2;bro — ¢ — 5)P(Y; o — &) (2.3)

It has been shown [1] that the narrowest P(z,y;dro — ) is obtained for input
weakly squeezed states with principal squeezing axes parallel to the two quadra-
tures, and that phase sensitivity depends dramatically on the phase difference
(pro — @) [3]. Thus, for the shifted input we choose weakly squeezed states |, ()
with amplitude o = |a|e'? and squeezing parameter { = re*2?. For such states, the
probabilities in Eq. (2.3) are Gaussians, with average values given by

7 =|alcos(@ra — @), = lalsin(¢io —¢), (2.4)

and variances

: 1 L=
A2 = —l[cosh{ﬁr) + sinh(2r) cos(2¢ .o — 26)] + e L
f n
1. ‘ = i [ 1 =Sl =
Al = E[cosh[‘zr) — ginh(2r) cos(2¢,0 — 2¢)] + e } , (2.5)

where the smearing effect of non unit quantum efficiency n has been taken into
account. For each event (z,y), we define an ouput phase as [ollows

‘-’;f)* = ff-"r,o — arctan (g) | (2{)]

where arctan is evaluated in [—m, 7], taking into account the individual signs of
2 and y. Moreover, from Bgs. (2.3) and (2.5), we see that, when the direction
of the local oscillator ¢.o coincides with the input phase shift ¢, the probability
distribution in the complex plane corresponds to the generalized Wigner function
W,(z + iy, @ — iy) for s = 1 — 7' [5], and one has

L LR

P(x,¥¢10 — @) = E‘rhi\.l_ﬁnﬁl_ﬁ exp [# (= 2_3[3 ) = Qg;jjl ; (2.7)
where A2 and &; are evaluated in ¢ = ¢, [for np = L, Eq. (2.7) becomes the usual
Wigner function W(z+iy, 2—iy)]. But ¢ is just the value that we want to measure,
and thus it is necessary to adjust ¢, after every couple of measurements in order
to reach the optimum working point. The linear map describing the feedback action
is given by

$ro — (1 = A)dro + Ads , (2.8)

where A € [0,2] is the coupling parameter. This feedback does not influence the
input mode, because it only acts on the path length of the LO. After a sufficiently
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high number of steps, this mechanism is expected to drive ¢., towards the opti-
mum value ¢,, = ¢. Moreover it is expected to add some noise to the stationary
probability distributien for ¢,, with respect to the ideal case ¢, = ¢, due to
statistical diffusion of ¢, around the desired value ¢. However, our Monte Carlo
simulation has shown that this process is negligible in a large range of the cou-
pling parameter A, and this feedback assisted measurement scheme allows reaching
sensitivities that approach the ideal power-law é¢ ~ (n)~1.

3 Monte Carlo experiments

In our Monte Carlo simulations of a real experiment, we set the local oscillator
phase ¢, initially at random, due to our ignorance aboutl the real value of ¢.
The feedback gradually centers ¢, around the “true” value ¢, thus improving the
sensitivity of the apparatus. The iterative relation between the ¢, 5 diztribution at
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Figure 2: Marginal distribution m{ds;dro — ¢) [rom a Monte Carlo simulation with 10?
collected data in each step. On the left: step N = 2, on the right: step N = 64 with a
superimposed Gaussian function, In both the plots A = 0.6,n =1, ¢ = 0, (i) = 1000, and
the number of squeezing photons is the 5 percent of the total. Notice the non Gaussian
shape of the histopram after only 2 steps and the very narrow Gaussian after 64 steps
(scales on the plot are different).
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the N-th step pU%(¢10; @) and pi's " (¢L0; @) at the preceding step can be written
in terms of the marginal m(¢.; ¢Lo — ¢) of the joint prebability Plz,y;¢r0 — 9),

”'l(frfl’*iﬁf’LD —¢)= j; dpp P{PCUS(‘?&LO =t @w)s psin{¢ye — @) bro — (9) . (3-9)

In this way, we can derive the expression for the probability distribution Pt (. ¢)
of the outputs ¢. at the N-th step

ptm(ﬁ?ﬁr;d’) = do o mide; ¢ro — ¢'} P(L"E)}(‘?ﬁ:.o; ¢} (3.10]
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I'igure 3: On the left: Semi-log plot of the r.m.s. width of P (puy @) for n = 1 versus
the number of Teedback steps N for two different values of A. The simulation is performed
on a state with ¢ = 0, (it) = 10 and a 3.4 percentage of squeezing photons. On the right:
function ¥ of the phase sensitivity power-law §¢. ~ (i1)77 vs the quantum efficiency .

An example of two successive steps of the evolution of p™(¢y; @) is given in Fig,
2, where the value of ¢ is set equal to zero [(every step consists of a couple of
measurements). The input squeezed state has a total number of photons (A) =
1000, a small fraction of which is for squeezing; the quantum efficiency of the
detectors is equal to 1, and the coupling parameter is X = 0.6. As at the beginning
dro 18 chosen at random, the distribution of ¢. after the first steps is very broad.
Then it gradually shrinks, approaching the marginal of W (z-+iy, 2—iy) (fory = 1),
and evolving towards a stationary Gaussian of r.m.s. width d¢. ~ (A},
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Depending on the value of the parameters, some aspects of the evolution towards
the stationary value change. In particular, if the feedback parameter XA increases,
the number of measurement steps which are requested to reach the stationary
state decreases, but the phase sensitivity decreases. In I'ig. 3 on the left, we
give the evolution of §¢. versus the number of steps, for n = 1, and for two
different values of the feedback parameter. In the limit of A approaching zero, the
r.m.s. width of the outputs probability distribution p'™(¢.; ¢) reaches the optimum
value é¢. = (2(n))~!, but for larger and larger number of measurement steps.
Regarding the effect of non unit quantum efficiency, this degrades phase sensitivity,
but for numbers (n} of input photons up to thousands, the degradation is smoother
than in the usual single homodyne measurement. In particular, for input squeezed
states with number of photons which is less or equal to [@epe(1 — )]}, where
tepe = sinh” r/{n}) is the optimum fraction of squeezing photons, the sensitivity
follows the law 8¢, ~ (7)™, where the exponent v is a function of . On the
other hand, for higher numbers of input photons, the sensitivity approaches the
shot noise limit. In Fig. 3, we report the exponent v as a function of 5 in the low
(f) region.

4 Conclusions

In this paper we have analyzed a feedback assisted phase detection scheme based
on couples of independent measurements of conjugated quadratures. In particular,
we have studied numerically the measurement scheme, for weakly squeezed inpuf
states. We have shown that the feedback is very effective and phase sensitivity
tends to the ideal one d¢ ~ (R)~" for a large range of the feedback parameter,
and for numbers of input photons {(#) up to 10% it is not completely spoiled by
non-unit quantum efficiency.
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