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Abstract. Linear optical multi-port couplers are used in implementing
interferometers with M paths. We show that they provide a phase
sensitivity that re-scales as Ap o M ™! versus the number of paths.

Linear optical couplers are the simplest devices that one can use to couple different
modes of the radiation field. The beam splitter is the lowest dimensional example,
yet it allows to show a number of interesting features of nonclassical states of
light [1). Recently, novel nonclassical effects have been investigated and higher
dimensional Bell-type experiments have been suggested that involve multi-port
linear couplers [2]. Here we will analyze higher dimensional interference from such
multi-port couplers, for application in high sensitive interferometry [3]. We will
show that an interferometer with M paths shows a phase sensitivity that re-scales
as Ap cx M1, even when the interferometer is supplied with customary coherent

laser light.

In conventional Mach-Zehnder interferometers, impinged with coherent light, sen-
sitivity in monitoring phase-shifts is limited by the shot-noise fluctuations Ap «
N=12, N being the mean photon number of the incoming beam. This allows to
measure minute variations of the optical path of a light beam, corresponding to
tiny shifts. However, in recent applications—as for detecting gravitational waves—
extremely accurate measurements are needed. Many efforts have been made in
order to optimize the quantum state at the input of the interferometer {4, 5, 6, 7],
improving sensitivity up to the ultimate limit Ap « N~! of quantum estimation
theory [9, 10]. Indeed, it has been recently shown that such sensitivity can be
reached in heterodyne interferometry (8], upon suitable preparation of the two-
mode (signal + idler) input state. The approaches of Refs. [4, 5, 6, 7, 8] provide
nice and powerful examples on how manipulate and redirect quantum fluctuations:
however, they still suffer stability problems, as it is still difficult to retain the
required quantum correlation within the decoherence time, which has to be com-
pared with the relevant time scale of the phenomena under study (the period of a
gravitational wave 7.~ 10~3sec., as an example). ;
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Here we deal with a different approach to the interferometry problem. We consider
a multipath arrangement where a coherent input signal is split into many beams by
a 2M-port multi-splitter. As it will be shown in the following, interference among
an increased number M of available paths leads to an improvement of the phase
gensitivity of a factor M~1.

Multipath interferometers can be built by commercial optical components, and our
result on sensitivity has been already checked for the lowest case M = 3 [14]. In this
paper we briefly describe the operation of the general M case: readers interested
in a detailed analysis are addressed to Ref. [3]. First we deal with optical M-

: .Figure 1: How to implement the lowest dimensional multi-splitter M = 3,4 by
suitable configuration of beam slitter and phase shifter. For the tritters we need
@1 = arccos(1/3) and g = p2/2 whereas the quarter requires ¢ = x/2.

port couplers. These are generalizations of the customary lossless beam splitter,
which connect a set of M input modes a = (ay, .. aps) to a new set of output
‘modes b = (by,...,bu) by a linear transformation. Quantum mechanics imposes
that such transformations belong to the matrix group SU(M) [the beam splitter is
described by the SU(2) group]. The further requirement of full symmetry among
input modes leads to the canonical unitary matrix for the multi-splitter

= e [pe-ng-n] e @
This mathematical description: has a very profitable physical corisequence. In fact,

a SU(M) transformation can always' be decomposed into the product of SU(2)
transformations and U(1) phase shifts [12] (the decomposition being not unique).
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This means that a multi-splitter can be built as a suitable setup of beam splitters
and phase shifters: In Fig.1 we report the schematic diagrams of the lowest dimen-
sional cases for M = 3 and 4, realized by symmetric beam splitters and suitable
phase shifters. Tritter couplers have been recently implemented also by optical
fiber technology [14], whereas quarters are well known in quantum optics in form
of eight-port homodyne detectors [11], and have been experimentally used for an
operational definition of the quantum phase [10, 13]. A multipath interferometer can
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Figure 2: Schematic diagram of a multipath interferometer experimental setup.

be implemented by two multi-splitters, generalizing the customary Mach-Zehnder
interferometer. A schematic diagram of the experimental setup is reported in Fig.
2. In the first. part of the device a coherent beam provided by a stable laser source
is symmetrically split into M modes. Each of these modes undergoes a differ-
ent phase shift exp{ifixdi} due to a different optical path, n; being the photon
number operator of the considered mode, Modes are then recombined by a second
multi-splitter, and subsequently detected by M identical photodetectors. The whole
device is described by an unitary matrix T whose elements are given by

M

Tt = 3y e {ifoe Fa-neei-al} . o

i=1

As input state of the interferometer we consider a coherent state entering the first
port [¥) = |a); ®, |0}, a being the amplitude of the laser beam. This leads to
a straightforward evaluation of the output probability distribution, which can be
written as product of independent Poisson distributions for each photocurrent as
follows :

s o, i i R R ;
Pl ) = T2 B o
- k=1 A 3 .
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with |8e]? = (Ik) = (AI}) = |a]|Tik(b1, .., éar)|°. We now focus on a special
configuration, that corresponds to monitor the same fixed phase shift ¢ among
contiguous pairs of modes, i. e. (¢r41 — i) =, k =1,..., M — 1. The relevant
matrix elements are now given by

e

where 8, = %(k = 1), k=1,..., M. Any perturbation of ¢ will produce changes
in the output distribution of photocurrents. The ability in resolving these changes
depends on both the functional dependence versus ¢ of the mean value, and the
fluctuations of the photocurrents themselves. In formulas, one has
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Clearly, the actual sensitivity strongly depends on the value ¢ of the phase shift.
Hence, an optimization procedure is in-order, to find the best working point ¢,
of the interferometer. The functional dependence versus ¢ is identical for all pho-
tocurrents, with just additional shifts ,. We now optimize only one particular
photocurrent: optimization could be obviously repeated for each current (however,
the final result would be just a set of M equivalent opiimal configurations). For
two and three-path interferometers the minimization procedure can be carried out
analytically, and the result agrees with the known results for the Mach-Zehnder
interferometer and the tritter in Ref. [14]. In the general case M > 4 the op-
timization procedure is easily performed numerically. The absolute minimum of

sensitivity Awpas in Eq. (5) is given by

A 1 A—-2
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where A is a numerical constant (from a best fit in the range 4 < M < 1000 we
obtained A =~ 4.27).
We now illustrate this result on the basis of numerically simulated experiments, The
corresponding plots of the I) photocurrent outcomes are reported in Fig. 3. We
consider three different multipath interferometers, with M = 3, 30, 60, all of them
fed by a laser beam of mean photon number |a|? = 100 (a quite low intensity) each
operating at the best working point. In a time interval {; ~ ¢; (very large relative
to the duration of each measurement shot) some perturbation is "switched on™,
changing the phase shift between neighboring paths from @y, to pu, + 10 %rad.
Correspondingly, the statistics at the output is changed, and the benefit from the
increasing number of paths becomes apparent. For a three-path interferometer the
distribution of I; outcomes is slightly changed (the same perturbation would be
utterly undetectable in a conventional Mach-Zehnder interferometer supplied by the
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same laser intensity): in this case, a careful analysis would be needed, in order to
distinguish an actual perturbation from a false alarm. For M = 30 and M = €0
the phase shift becomes detectable very easily, and this is well evident in Fig. 3.
In conclusion, a high sensitive interferometric scheme based on multi-splitter linear

Figure 3: Numerical simulations of real trial experiments. The outcome of photo-
current I; are reported for three different multipath interferometers M = 3, 30, 60
subjected, in the time interval (f — ¢;) to the same shift of 10~?rad from their re-
spective working point. The intensity of the incoming coherent beam is Ja|? = 100
and the photocurrent outcomes are reported in unit of a2

couplers has been presented. It can be implemented either as an all-fiber device, or
by discrete optical components (beam splitters and phase shifters). The increasing
number M of paths makes the interferometer more sensitive, with sensitivity linearly
improving versus M. Thus, the present proposed scheme provides a way to achieve
arbitrary precision at fixed amount of energy impinged into the apparatus.
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