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We review some applications of entanglement to improve quantum measurements and communication, with
the main focus on the optical implementation of quantum information processing. The evolution of continuos
variable entangled states in active optical fibers is also analyzed.

1 Introduction

Quantum information theory has developed dramatically over the past few years, driven by the prospects
of quantum-enhanced communication, measurements and computation systems. Most of these concepts
were initially developed for discrete quantum variables, in particular quantum bits, which have become the
symbol of quantum information theory. Recently, however, much attention has been devoted to investigating
the use of continuous variables (CV) in quantum information processing. Continuous-spectrum quantum
variables may be easier to manipulate than quantum bits in order to perform various quantum information
processes [1]. This is the case of Gaussian state of light, e.g. squeezed beams, by means of linear optical
circuits [2]. Using CV one may carry out quantum teleportation [3] and quantum error correction. The
concepts of quantum cloning and entanglement purification [4] have also been extended to CV, and secure
quantum communication protocols have been proposed [5].

The key ingredients of quantum information is entanglement, which has become the essential resource
for quantum computing, teleportation, and cryptographic protocols. Recently, entanglement has been proved
as a valuable resource for improving optical resolution [6], spectroscopy [7], quantum interferometry [8],
and has shown to be a crucial ingredient for making the tomography of a quantum device [9].

In this paper we review some applications of CV entangled states to improve quantum measurements [10]
and communication in the optical implementation of quantum information processing. In Sect. 2 we analyze
the estimation of a displacing amplitude, also in presence of noise, and the case of binary discrimination
between two unitary operations. In Sect. 3 we study the role of entanglement in improving interferometric
measurements, and show that an optimized two-mode interferometer requires an entangled input state, with
ultimate scaling that may be achieved using twin-beam in a Mach-Zehnder interferometer. In Sect. 4, a secret
key quantum criptographic scheme based on entangled twin beam and heterodyne detection is analyzed
and shown to be effective both for binary quantum key distribution and as complex alphabet trasmission
channel. Finally, in Sect. 5 we study the evolution of entangled twin-beam of light in a pair of active optical
fibers, in order to evaluate the degradation rate of entanglement and determine a threshold value for the
interaction time, above which the state become separable. Sect. 6 closes the paper summarizing results.
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2 Entanglement in quantum measurements

The measurement problem we are going to consider is the following: suppose one is given a quantum device,
which perform an unknown unitary transformation chosen from a given set, and wants to discriminate which
transformation (within the set) has been actually performed. The unitaries are labelled by a parameter, such
that the discrimination is equivalent to the estimation of the value of the parameter. The inference strategy
is that of preparing an input probe state and then measuring the outgoing signal, such to discriminate among
the possible output states. In order to achieve the most accurate discrimination one has to optimize over
the possible input signals and the possible output detection schemes. The question we want to answer is
whether or not entanglement is convenient in such discrimination, i.e. if it is better to use single-mode probe,
or to place the device such to act on a subsystem of a bipartite entangled systems, and then allowing for a
measurement on both the modes. In the following we consider the estimation of a displacing amplitude, also
in presence of noise, and the case of binary discrimination, i.e. when our device may perform a transformation
chosen from a binary set {U1, U2}.

2.1 Estimation of amplitude

Let us consider the problem of estimating the amplitude of a displacement applied to a mode of the radiation
field in the phase space, i. e. the parameter α ∈ C of the transformation ρ → ρα = D(α)ρD†(α), where
D(α) = exp(αa† − αa). This transformation can be easily accomplished by a high trasmittivity beam
splitter and an intense laser beam. For unentangled ρ, the estimation of α isotropic on the complex plane is
equivalent to the optimal joint measurement of position and momentum, which, as well known, is affected by
a unavoidable minimum noise of 3dB [11]. Here, the optimal state (for fixed minimum energy) is the vacuum,
and the corresponding conditional probability of measuring z given α is p(z|α) = π−1 exp

[−|z − α|2].
Now, consider the case in which the estimation is made with D(α) acting on the entangled state |x〉〉 =√

1 − x2
∑
p x

p|p〉|p〉, i.e. the twin-beam state obtained by parametric downconversion of the vacuum,
with x ≤ 1 (without loss of generality we may assume x as real) and number of photons given by N =
2x2/(1 − x2). In this case, the optimal measurement is described by the POVM |z〉〉〈〈z| of eigenvectors
|z〉〉 = Dj(z)

∑
p |p〉|p〉 (j may be either a or b) of Z = a+ b† with eigenvalue z (this is just a heterodyne

measurement), now achieving p(z|α) = (π∆2
x)

−1 exp
[−∆−2

x |z − α|2], with variance ∆2
x = 1−x

1+x that, in
principle, can be decreased at will with the state |x〉〉 approaching a state an eigenstate of Z (by increasing
the gain of the downconverter).

Remarkably, measurement strategies employing entanglement are robust against decoherence induced by
noise, i.e. they remain convenient also when the estimation is performed with the channel, before and after the
unknown transformation, affected by noise. Let us reconsider the problem of estimating the displacement in

the case of Gaussian noise, which maps states as followsρ → Γn(ρ)
.=
∫
C

d2
γ

πn exp
[−|γ|2/n]D(γ)ρD†(γ).

The variance n of the noise is usually referred to as “mean thermal photon number”. The case of Gaus-
sian noise is simple, since one has the composition law Γn ◦ Γm = Γn+m, and Γn

[
D(α)ρD†(α)

]
=

D(α)Γn(ρ)D†(α). Therefore, if the measurement is made on the entangled state |x〉〉 one can easily derive
a Gaussian probability distribution with variance σ2

2 = ∆2
x + 2nT , where nT is the total Gaussian noise

before and after the displacement D(α), and the noise is doubled since it acts indenpently on the two
entangled beams. On the other hand, in the measurement scheme with unentangled input (remind that the
optimal probe is the vacuum), one has σ2

1 = 1 + nT . One concludes that the entangled input is no longer
convenient if σ2

2 < σ2
1 , i.e. above one thermal photon nT = 1 of noise. This is exactly the threshold of

noise above which the entanglement is totally degraded to a separable state [12], and therefore the quantum
capacity of the noisy channel vanishes. Since at optical frequencies n̄T is a small quantity we conclude that
entanglement is convenient also in presence of decoherence induced by noise.
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Fig. 1 r is the minimum distance between the origin and the polygon K.

2.2 Binary discrimination

Let us suppose that we have to distinguish among two unitaries U1 and U2. Given an input state |ψ〉, one
optimizes over the possible measurements, and the minimum error probability in discriminating U1|ψ〉 and
U1|ψ〉 [13] is given, in a Bayesian approach, by

PE = 1
2

[
1 −

√
1 − |〈ψ|U†

2U1|ψ〉|2
]
, (1)

so that one has to minimize the overlap |〈ψ|U†
2U1|ψ〉| with a suitable choice of |ψ〉. Chosing as a basis the

eigenvectors {|j〉} of U†
2U1, and writing |ψ〉 =

∑
j ψj |j〉, we define zψ

.= 〈ψ|U†
2U1|ψ〉 =

∑
j |ψj |2 eiγj ,

where eiγj are the eigenvalues of U†
2U1. The normalization condition for |ψ〉 is

∑
j |ψj |2 = 1, so that the

subset K(U†
2U1) ⊂ C described by zψ for varying |ψ〉 is the convex polygon having the points eiγj as

vertices. The minimum overlap r(U†
2U1)

.= min||ψ||=1 |〈ψ|U†
2U1|ψ〉| is the distance of K(U†

2U1) from
z = 0. This geometrical picture indicates in a simple way what is the best one can do in discriminating U1
and U2: if K contains the origin then the two unitaries can be exactly discriminated, otherwise one has to
find the point ofK nearest to the origin, and the minimum probability of error is related to its distance from
the origin [10]. Once the optimal point in K is found, the optimal states ψ are those corresponding to that
point through the expression of PE . If ∆(U†

2U1) is the angular spread of the eigenvalues of U†
2U1 (referring

to Fig.1, it is ∆ = γ+ − γ−), from Eq. (1) for ∆ < π one has PE = (1 −
√

1 − cos4 ∆
2 )/2 whereas for

∆ ≥ π one hasPE = 0 and the discrimination is exact. Given a pairU1 andU2 of non exactly discriminable
unitaries, one is interested in understanding whether or not an entangled input state could be of some use. The
answer is at first negative. In fact, using entanglement translates the problem into the one of distinguishing
between U1 ⊗ I and U2 ⊗ I , thus one has to analyze of the polygonK(U†

2U1 ⊗ I). Since U†
2U1 ⊗ I has the

same eigenvalues asU†
2U1, the polygonsK(U†

2U1⊗I) andK(U†
2U1) are exactly the same, so that they lead

to the same minimum probability of errror. The situation changes dramatically if N copies of the unitary
transformation are used (multiple use of the channel). In this case one has to compare the “performance”
of K(U†

2U1) to the one of K((U†
2U1)⊗N ). Since ∆((U†

2U1)⊗N ) = min{N × ∆(U†
2U1), 2π}, it is clear

that there will be an N̄ such that U⊗N
1 and U⊗N

2 will be exactly discriminable, i.e. entanglement makes
possible the exact discrimation of any pair of unitary transformation.

3 Entanglement in quantum interferometry

In this section we want to emphasize the role of entanglement in improving interferometric measurements.
In particular, we show that an optimized two-mode interferometer requires an entangled input state, and that
the ultimate scaling may be achieved using feasible CV entangled states ( i.e. twin-beam) in a Mach-Zehnder
interferometer.

A general interferometric scheme consists of a source which prepares a state �0, an intermediate apparatus
which may or may not act a perturbation, and a detector described by a generic POVM Π. In a Mach-Zehnder-
like interferometer the perturbation is described by the unitary operatorUφ = exp{iφJx}, where we used the
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Schwinger representation J+ = a†b , J− = ab† , Jz = 1
2 (a†a − b†b) , [Jz, J±] = ±J± , [J+, J−] = 2Jz

in terms of two modes of the interferometer. The two possible interferometric outputs are thus given by
�0, if no perturbation occurs, and �φ = Uφ �0U

†
φ, in case of perturbation. Depending on the outcome of

the measurement one decides for the most probable hypothesis on the state of the system. Interferometry
is thus equivalent to a binary decision problem, and the corresponding POVM is binary, i.e. the possible
outcomes are two [14]. Optimization of both the input signal and the detection scheme has two main goals:
i) to maximize the probability of revealing a perturbation, when it occurs, and ii) to minimize the value of
the smallest perturbation that can be effectively detected. If �0 and �φ are orthogonal the discrimination is
trivial. In general, however, the states are not orthogonal and one has to apply an optimization scheme. Since
interferometric schemes are frequently used for detecting low-rate events, we use, rather than Bayesian, the
so-called Neyman-Pearson (NP) detection strategy [15], which consists in fixing the false-alarm probability
Q0—the probability of inferring that the state of the system is�φwhile it is actually�0—and then maximizing
the detection probabilityQφ, i.e. the probability of a correct inference of the state �φ. The problem is solved
by diagonalizing the operator �φ − µ�0, µ (real) playing the role of a Lagrange multiplier accounting for
the bound of fixed false alarm probability. The optimal POVM is the one in which Πφ is the projection
onto the eigenspaces of �φ − µ�0 relative to positive eigenvalues and Π0 = I − Πφ. If �0 = |ψ0〉〈ψ0| and

�φ = |ψφ〉〈ψφ| are pure states we have Qφ =
[√

Q0|κ|2 +
√

(1 −Q0)(1 − |κ|2)
]2

(if 0 ≤ Q0 ≤ |κ|2,

Qφ=1, otherwise) where |κ|2 = |〈ψ0|ψφ〉|2 = |〈ψ0|Uφ|ψ0〉|2 is the overlap between the two states. The
smaller is the overlap, the easier the discrimination. On the contrary, when the overlap approaches 1 one is
forced to decrease the detection probability in order to keep the false alarm probability small.

After having determined the optimal POVM, i.e. the optimal detection scheme, the whole setup can be
furtherly optimized looking for the best input state, that is a state for which |κ| assumes its minimum value
|κ|min. As we saw in Sect. 2.2, the value |κ|min depends on the eigenvalues of the unitary operator Uφ. Since
the spectrum of Jx is the set of relative integers, the spectrum ofUφ is the discrete subset {eimφ , m ∈ Z} of
the unit circle in the complex plane. Apart from the null measure set Φ = {(q/p)π , q ∈ 2Z + 1 , p ∈ Z}
of values of φ, the spectrum of Uφ is dense in the unit circle and its convex hull contains the origin of the
complex plane, although there is no couple of diametrically opposed eigenvalues. If φ ∈ Φ then the optimal
state is given by a superposition of two eigenstates of Vφ with eigenvalues differing by a factor eiπ [16].
In the general case, the optimal state is any superposition of three or more eigenstates of Uφ, such that the
polygon with vertices on their eigenvalues encloses the origin of the complex plane. Since Jx = W †JzW
withW = exp

{
iπ2 Jy

}
, the eigenvectors of Uφ are entangled. In fact they are obtained from the eigenstates

of a†a−b†b (nonclassical states) by the beam-splitter-like transformationW † = exp{−π
4 (a†b−ab†)} [19].

Actually, these optimal states are far from being practically realizable. However, we have proved that they are
entangled, and this suggests to explore the possibility of performing a reliable discrimination by physically
realizable entangled states, e.g. twin-beams |x〉〉 [8]. The overlap for the probe prepared in a twin-beam state
is given by κ = 〈〈x|Uφ|x〉〉. After minor algebra we get

|κ|2 =

(
1 +

4x2 sin2 φ

(1 − x2)2

)−1

=
[
1 +N(N + 2) sin2 φ

]−1
.

This value is not zero but it can be arbitrarily small depending on the mean photon number of the input
state. The sensitivity of the interferometer corresponds to the minimum detectable value φmin, which is the
minimum value of φ such thatQφ/Q0 = γ∗ � 1/p, where p is the a priori probability of the perturbation.
The value of γ∗ is fixed by the experimenter and is called acceptance ratio. In order to understand its
meaning we notice that, if the setup detects a perturbation, the probability that this inference is true is
P (p, φ) = pQφ/

[
pQφ + (1 − p)Q0

]
= pγ∗/ [pγ∗ + (1 − p)]. Therefore, the greater is γ∗, the nearer is

this probability to one. In terms of |κ| the conditionQφ/Q0 = γ∗ � 1/p reads as |κ|2 = 1−g(Q0, γ
�) with

g(Q0, γ
�) = Q0

[
1 + γ�(1 − 2Q0) − 2

√
γ�(1 −Q0)(1 − γ�Q0)

]
where |κ|2 parametrically depends on
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φ. Accordingly, the minimum detectable φ is given by

φmin = arcsin



√

Λ(Q0, γ�)
1 − Λ(Q0, γ∗)

1√
N(N + 2)


 �

√
Λ(Q0, γ�)

1 − Λ(Q0, γ∗)
1
N
. (2)

Now, we consider twin-beam as input signal of the usual Mach-Zehnder interferometer, where the detection
stage consists of a difference photocurrent measurement. The scheme should be feasible, at least in principle,
and, as we will see, would approach the ultimate sensitivity bound that has been obtained for the ideal
detection. After preparation, the twin-beam enters the interferometer, where is possibly subjected to the
action of the unitary Uφ. At the output the two beams are detected and the difference photocurrent D =
a†a− b†b is measured. If no perturbation occurs, then the output state is still a twin-beam, and since |x〉〉 is
an eigenstate of D with zero eigenvalue we have a constant zero outcome for the difference photocurrent.
On the other hand, when a perturbation occurs the output state is no longer an eigenstate of D, and we
detect fluctuations which reveals the perturbation. The false-alarm and the detection probabilities are given
by Q0 = P (d 
= 0|not Uφ) ≡ 0 and Qφ = P (d 
= 0|Uφ) = 1 − P (d ≡ 0|Uφ), where the probability of

observing zero counts at the output, after the action ofUφ, is given by P (d ≡ 0|Uφ) =
∑
n

∣∣〈〈n, n|Uφ|x〉〉
∣∣2

since the eigenvalue d = 0 is degenerate. In this case the false-alarm probability is zero and therefore it is
not necessary to introduce an acceptance ratio. The scaling of the minimum detectable perturbation can be
obtained directly in term of the detection probability

P (d = 0|φ 
= 0) = 1 − 1
2φ

2N2 +O(φ2) −→ φmin �
√

2Qφ
N

. (3)

One can see that a Mach-Zehnder interferometer fed by twin-beam shows a sensitivity that scales with the
energy as the ideal scheme. Such scaling does not depend on any parameter but the energy of the input state.
This should be compared with the sensitivity of the customary squeezed states interferometry [17], where
the same scaling is achieved only for a very precise tuning of the phase of the squeezing. This means that
the entanglement-assisted interferometry provides a more stable and reliable scheme.

4 Entanglement in secure communication

In this section, a secret key quantum criptographic scheme based on entangled twin beam and heterodyne
detection is analyzed. The scheme can be effectively employed both for binary quantum key distribution
and as complex alphabet trasmission channel, and the use of entangled signals results in a decrease of the
error probability. A quantum encoding of the secret-key in a cryptographic communication is motivated
by the possibility of achieving extensive key-expansion, due to the physical limitations in a quantum-
measurement based eavsdropping. Such an idea for a quantum secret-key cryptographic communication
was first suggested by Yuen [18]. The secret key is imposed as a random displacement transformation, such
that the scheme is secure in principle, i.e. the best strategy for an eavesdropper is just pure guess. Effects of
practical imperfections will be taken into account.

4.1 Binary communication

The two values of the bit are encoded in two quasi-eigenstates of the heterodyne photocurrent Z = a+ b†,
i.e. as “0” → |z0〉〉x = D(z0)|x〉〉 and ”1” → |z1〉〉x = D(z1)|x〉〉 where |x〉〉 is the twin-beam. The |x〉〉’s
(and thus the |z〉〉x’s) become orthogonal states for x → 1. We will use the notation σ0 = |z0〉〉xx〈〈z0|,
σ1 = |z1〉〉xx〈〈z1|.

The criptographic protocol consists in applying a random displacement transformation D(α) to the
bit before the transmission. The value of α represents the key that should be secretely shared before the
transmission. The receiver (Bob) knows the key, and therefore can apply the inverse transformation D†(α)
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at the end of the line and then measure the bit. For this task he has to measure a two-value POVM {Π0,Π1 ≡
1−Π0}. The two states are not orthogonal, and therefore such a POVM should be optimized to achieve the
minimum error probabilityPE = 1

2Tr [Π0σ1 + Π1σ0] = 1
2

[
1 −∑i U(λi)λi

]
, whereλi are the eigenvalues

of the matrix Λ = σ1 − σ0, and U(x) denotes the Heaviside step function. Since the two initial states σj
are pure the solution is well known: the POVM is projective [13] (this is true also for mixed σ’s) and the

error probability is given by PE = 1
2

[
1 −

√
1 − |x〈〈z1|z0〉〉x|2

]
, where |x〈〈z1|z0〉〉x|2 = exp{−|z0 −

z1|2(1+N)}. For largeN or |z1 − z0| we have PE � 1/4 exp{−|z0 − z1|2(1+N)}. This result should be
compared with the analogue scheme based on displaced unentangled states i.e., ”0” → |α0〉 = D(α0)|0〉,
”1” → |α1〉 = D(α1)|0〉 where |αj〉 are single-mode coherent state and |0〉 denotes the vacuum state.

In this case we have PE = 1
2

[
1 −

√
1 − |〈α1|α0〉|2

]
with |〈α1|α0〉|2 = exp{−|α0 − α1|2} and PE �

1/4 exp{−|α0 − α1|2} for large |α0 − α1|. As a matter of fact, entanglement is always convenient to
improve precision of the transmission channel.

Let’s go back to the entangled scheme: an eavesdropper, say Eve, does not know the key, and therefore, to
measure the bit, she has (in principle) to discriminate between the two mixed states �0 = 1/π

∫
d2αD(α)σ0

D†(α) and �1 = 1/π
∫
d2α D(α) σ1 D

†(α). Since the set of displacement operators is a UIR of a group
we have, according to Schur lemma, Λ = 1/π

∫
d2α D(α) (σ1 − σ0) D†(α) = tr [σ1 − σ0] 1 = 0, and

therefore PE = 1/2 i.e. the best strategy for Eve is just pure guess.
In practice, however, it is not possible to impose displacements with uniform probability in the complex

plane. What we can reliably implement is the following criptographic protocol (random state transformation)
�j =

∫
d2α gκ(|α|2)D(α) σj D†(α) where gκ(|α|2) = exp(−|α|2/κ)/κπ is a Gaussian distribution, and

to find the error probability for Eve, we have to diagonalize Λ =
∫
d2α gκ(|α|2)D(α) (σ1 − σ0) D†(α).

In order to prove that the present protocol is secure we have to compare the best stratey employable by
Eve with a feasible strategy that Bob can use. Therefore, we suppose that Eve is trying to eavsdrop a
maximally entangled channel (x → 1) which is not perfectly protected (κ finite). In this case we have
�j = D(zj)νD†(zj) with ν =

∫
d2α gκ(|α|2) |α〉〉11〈〈α|, such that the matrix to be diagonalized is given

by

Λ =
∫
d2α gκ(|α|2) [|α+ z1〉〉11〈〈α+ z1| − |α+ z0〉〉11〈〈α+ z0|] =

∫
d2β f(β) |β〉〉11〈〈β| ,

with f(β) = gκ(|β−z1|2)−gκ(|β−z0|2). The sum S+ of positive eigenvalues of Λ correspond to integral
of f(β) over its positivity region i.e. |β− z1|2 < |β− z0|2. Suppose that z1 = a and z0 = −a, with a real,
then

S+ =
∫ ∞

0

dx√
πκ

[
exp{−(x− a)2/κ} − exp{−(x+ a)2/κ}] = Erf

(
a√
κ

)
. (4)

The error probability for Eve is thus given by

PE =
1
2

[
1 − Erf

(
a√
κ

)]
a�1�

√
κ

2a
√
π

exp
{

−a2

κ

}
. (5)

Bob uses a scheme based on heterodyne detection and a threshold strategy as follows: suppose again that
z0 and z1 are real amplitude given by z0 = −a and z1 = a. After having revealed the outcome z from the
heterodyne detector we employ the following inference rule: if Re[z] < 0 then infer bit ”0”, ”1” otherwise.
The corresponding error probability is given by

PhE = 1
2

[
p(Re[z] > 0| − a) + p(Re[z] < 0|a)

]
=
∫

Re[z]<0
d2z |1〈〈z|a〉〉x|2 = 1

2

[
1 − Erf

(
a√
2σ2

x

)]
, (6)
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whereσ2
x = 1/2(1−x)(1+x). For largeawe havePhE �√2σ2

x/a
2π exp{−a2/2σ2

x}. The error probability
of this Bob’ feasible strategy is smaller than optimal Eve’s one as far as 2σ2

x < κ. The corresponding error
probability for Bob’ ideal scheme is given by PE = 1/4 exp{−4a2(1 +N)}, whereas the analogue ”not
entangled” channel would achieve only PE = 1/2[1 − Erf(a)].

4.2 Complex alphabet quantum communication

In this case Alice send through the transmission line the symbol z0, chosen from a complex alphabet,
encoded into the state |z0〉〉x and protected by applying a random displacement D(α) whose amplitude is
known to Bob. Bob should estimate z0 on the state |z〉〉x whereas Eve, for the same task, has at disposal the
state D(z)νD†(z) with ν =

∫
d2α gκ(|α|2) |α〉〉11〈〈α|. If both use heterodyne detection i.e. the POVM

Π(z) = |z〉〉11〈〈z| we have

pB(z) = |1〈〈z|z0〉〉x|2 =
1

π∆2
x

exp
{

−|z − z0|2
∆2
x

}

pE(z) = 1〈〈z|ζ|z〉〉1 =
∫
d2α

κπ
e−|α|2/κ |1〈〈z|D(α)|z0〉〉x|2 =

1
π(∆2

x + κ)
exp

{
−|z − z0|2

∆2
x + κ

}
, (7)

and again the security of the protocol is assured by the random distribution of the displacing amplitudes.

5 Degradation of entanglement in active fibers

In applications such teleportation or cryptography one needs to transfer entanglement among distant part-
ners, and therefore to transmit entangled states along some kind of channel. For optical implementation
this is usually accomplished by means of (active) optical fibers. As a matter of fact, the propagation of
twin-beam in optical fibers unavoidably lead to degradation of entanglement due to decoherence induced
by losses and noise. In this section, we study the evolution of twin-beam in active optical media, such the
pair of optical fibers that may be used to transmit twin-beam, and analyze the separability of the evolved
state as a function of the fiber parameters. A threshold value for the interaction time, above which the
entanglement is destroyed, will be analytically derived.
If the twin-beam are produced from the vacuum by a parametric optical amplifier with evolution operator
U = exp

[
r0
(
a†b† − ab

)]
, then we have x = tanh r0, whereas the number of photons of the twin-beam is

N = 2 sinh2 r0 = 2x2/(1 − x2). The propagation inside the fibers can be modeled as the coupling of each
part of the twin-beam with a non zero temperature reservoir. The fibers dynamics can be described in terms
of the two-mode Master equation �̇t ≡ L�t = Γa(1 +Ma)L[a]�t + Γb(1 +Mb)L[b]�t + ΓaMaL[a†]�t +
ΓbMbL[b†]�t where �t ≡ �(t), Γa = Γb = Γ denotes the (equal) damping rate,Ma = Mb = M the number
of background thermal photons, and L[O] is the Lindblad superoperator L[O]�t = O�tO

† − 1
2O

†O�t −
1
2�tO

†O . The terms proportional to L[a] and L[b] describe the losses, whereas the terms proportional
to L[a†] and L[b†] describe the linear phase-insensitive amplification process taking place into the fibers.
Of course, the dynamics inside the two fibers are independent on each other. The master equation can be
transformed into a Fokker-Planck equation for the two-mode Wigner functionW (x1, y1;x2, y2). Using the
differential representation of the superoperators the corresponding Fokker-Planck equation reads as follows

∂τWτ (x1, y1;x2, y2) =
[
1
8

(∑2
j=1 ∂

2
xjxj

+ ∂2
yjyj

)
+
γ

2

(∑2
j=1 ∂xjxj + ∂yjyj

)]
Wτ (x1, y1;x2, y2),

where τ denotes the rescaled time τ = Γ/γ t, and the drift term γ is given by γ = (2M + 1)−1. The
Wigner function of a twin-beam is given by

W0(x1, y1;x2, y2) =
(
2πσ2

+ 2πσ2
−
)−1

exp

[
− (x1 + x2)2

4σ2
+

− (y1 + y2)2

4σ2−
− (x1 − x2)2

4σ2−
− (y1 − y2)2

4σ2
+

]
,
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where σ2
+ = 1/4 exp{2r0}, σ2

− = 1/4 exp{−2r0}. The Gaussian form of the Wigner function is mantained
during the evolution whereas the variances are increased to

Σ2
+ =

(
e−γτ σ2

+ +D2) Σ2
− =

(
e−γτ σ2

− +D2) ,
withD2 = 1

4γ (1−e−γτ ). A necessary condition for disentanglement, or separability, is the positivity of the

density matrix �T , obtained by partial transposition of the original density matrix (PPT condition) [21]. In
general, PPT has been proved to be only a necessary condition for separability. However, for some specific
sets of states PPT is also a sufficient condition. These includes Gaussian states (states with a Gaussian
Wigner function) of a bipartite continuos variable system [12, 22]. Our analysis is based on this results.
In fact, the Wigner function of a twin-beam is Gaussian, and the evolution in an active medium preserves
such Gaussian character. Therefore, we are able to characterize the entanglement at any time and to give
conditions on the parameters to preserve entanglement after a given interaction lenght. The PPT condition
on the density matrix can be rephrased as a condition on the covariance matrix of the Wigner function of
the two modes. In the case of an evolved twin-beam we have that the state is separable iff both the variances
satisfies the condition Σ2

+ ≥ 1
4 , Σ2

− ≥ 1
4 . Given the parameters M , Γ and λ the threshold value τs above

which the state become separable is given by

τs =
1
γ

log

(
1 + γ

1 − e−2λ

1 − γ

)
= (2M + 1) log

(
1 − N −√N(N + 2)

2M

)
,

(remind thatN is the mean photon number of the twin-beam). In terms of the unrescaled time t the threshold
for separability reads as

ts = 3D
1
Γ

log

(
1 − N −√N(N + 2)

2M

)
, (8)

apart from the case M = 0 in which the threshold diverges. Eq. (8) says if the state was initially suffi-
ciently entangled the interaction with the environment is not destroying its character. In this case we have
approximately ts � 1

Γ log
(
1 + 1

2M

)
.

6 Summary

The technology of entanglement can be of great help in improving precision, stability and performances of
quantum optical schemes meant to process quantum information. In this paper we reviewed some applica-
tions of continuous variables entangled states, aimed to improve quantum measurements, interferometry and
communication. Since the optical implementation of quantum information processing will involve optical
fibers to establish an entangled channel between two distant users, we also study the evolution of entangled
twin-beam of light in an active optical medium, such to evaluate the degradation rate of entanglement, and
establish a threshold on the interaction time, above which the entangled is no longer present and the channel
become useless.
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