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Abstract

A group-theoretical approach to the quantum Liouville equation for the damped oscillator is presented. The method allows
solutions of masier equations with prescribed long-time behaviour. As an example, the master equation of a boson field relaxing
toward a time-dependent coherent state is analyzed. The solution of more general master equations is sketched in the framework
of a Liouville picture, the analogue of the Dirac picture in this context.

The typical case of a single quantum damped oscillator is that of a boson field mode a in a vacuum cavity with

loss. The dynamical evolution of the density matrix g, of the field is described by the Liouville equation

% =%p,=—ir(Aa+1)(atap,+p.ata—2ap,a"y— iT7i(aa’p, +paa’—2a'p.a) (1)
where A denotes the mean number of thermal photons at the cavity temperature, and [ is the cavity damping.
Eg. (1) is obtained in the Dirac picture upon evaluating the second-order time evolution of the joint system-
reservoir density matrix of the mode ¢ in interaction with a Markovian thermal bath. The density matrix g, is
the reduced density matrix of the field, namely the joint photon-reservoir matrix partially traced over the Hil-
bert space of the reservoir [1]. The application of the Liouville equation (1) is not just restricted to the domain
of quantum optics: very similar equations can be found in statistical mechanics, for modeling irreversible pro-
cesses of either boson or fermion fields, Actually, Eq. (1) more generally describes the free dynamics of any
open quantum system, the only restriction being that the thermal bath is Markovian. The method here presented
could be used also to solve the fermion Liouville equation: however, for the sake of simplicity, we will focus our
attention only on bosons.

The Liouville (super)operator & describes a nonunitary time evolution, which cannot trivially be integrated
through standard Lie-algebraic techniques. Analytical solutions of Eg. (1) can be obtained upon resorting to
quasiprobability representations of the density matrix [2], or, more generally, upon cvaluating eigenvalues and
eigenvectors (i.e. eigen density matrices) of % [3]. Here I show that Eq. (1) can be solved using a very simple
algebraic ansatz, without any need of diagonalizing %. The method is powerful and looks promising in view of
a systematic search for solutions of more general dissipative equations for interacting systems (usually referred
to as master equations).

In order 10 solve Eq. (1) one needs to consider an additional fictitious boson mode b which interacts with a
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through a bilinear time-dependent Hamiltonian, and which is traced out after the unitary evolution of the joint
density matrix. In the formulas one has

pe=e“Pp=Tr,[U(t,0)p@sU(t,0)T] . (2)

In Eq. (2) p'®p" denotes the direct product of density matrices in the Hilbert space #,® #;, of the two modes ¢
and b. The density matrix # represents the thermal state

. | ; i )n ’

y_ri+l(ﬁ+l ‘ (2]
with 7 denoting the number operator of the mode (A® I=a'a, {®/i=h'h). The operator U(1, 0) acting on
H.,3® ¥, can be written in the form

U(t, 0)=exp[—arctan(e—1)2(abt—a'p)] . (4)

In the following I will shown that Eq. (2) with U(z, 0) given by Eq. (4) and # by Eq. (3) provides the solution
of Eq. (1) for any initial condition *' g, =4.

Apart from a phase factor, the limiting operator lim,_,_. U(¢, 0) is equivalent to the permutation operator
P= P between the two modes a and b, More precisely, the following limit holds,

U(oo,0)= lim U(t, 0)=exp(inb'h)P . (5)

l—oo

The last assertion follows from the evolution of the field operators,

: —1t/2 A, 5
o @\ & e (1 == e\
Ui, 0) (b)t(z’0)_(-—(1—6'"”)”2 o112 B’

2 a gt —(1—e=")'"*\(a -

U(_z.0)(5)0(;.0)*:((l_e_n)m -T2 )(b).
On the joint density matrix the permutation of modes reads as follows,

Pr@pP=1®p . (7)
Hence, from Eq. (5) one has that

U(oo, 0)pR5 0 (0, 0) = i@e—mjeintlh (8)
Eq. (8) guarantees that evolution (2) has # itself as the stationary solution, namely

lime*p=0 . (9)

—oo

Of course, the stationary solution of Eq. (1) is the thermal state (3): thus, it only remains to check that the
chosen time dependence of U/(z, 0) in Eq. (4) provides exactly the time derivative (1). The derivative of
U(1,0) (hereafter shortly denoted by U= U/(¢, 0) } can be written in the following ways,

% =—Lire"=1)""2(ab"—a"h)U,= - il(e™=1)"20 (abt-a'b) . (10)

Time differentiation of Eq. (2) leads to

¥l The solution in Egs. (2)-(4) is physically suggested by modeling the loss in form of a beam splitter with transmissivity =e~"™2: the
field mode @ impinges into the beam splitter and the output (damped) mode is obtained by partially tracing the evolved joint density
malrix over the mode b corresponding to the unused port.
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% —1T(e"'—1)~"2([a, Try (b0 p®80]) 1 - [4, Te,(bUpR9TN) 1}, (11)

where invariance of Tr, under circular permutations of b-mode operators has been exploited. Using Egs. (6)
the following identities are obtained,

Try (b0 R0 =e"Tr,(U,p@bs 0T ) — (7' —1)'2ap, ,

Tr,,(b*ﬁ,ﬁ@ﬁrjr})=ef'ff2'rr,,(62ﬁ®b+ﬁﬁr)—(e”—n'ﬂmﬁ,, (12)
and with the aid of the commutation rules
A s
bv_—ﬁ+1vb, b= G b’ , (13)

one gets the intermediate steps
Tr, (b0,p@001) = (et — 1) *[Ap.a— (A+1)ap],
Tr,(bT0,p@507) = (e"'=1)"*[Aa’p,— (A+ 1)pa'] . (14)

The desired result (1) finally follows from Egs. (11)yand (14).
The explicit form of transformation (2) in terms of a-mode operators is given by

po= 3 Vinmppmmt, (15)
HmM
where the operators J7 tmm) acting on #, are defined in terms of matrix elements of U, evaluated on 5,
pinm =, cnl Oyl s, |t 16
t =) r.l >:.‘r (ﬁ+l}m+‘ J ( 't‘)

One of the following alternative expressions can be used,

(_ 1 )s(l__e—n)s;ze—np;z
s!

. (p+5)!
plp+s|U|p)s= \/(p;ﬁS) eltatal2 ([ (p+s+1,5+1; (e=—1)alala’

]
(1) (et )52 sz D s —Ttata/2, i P T Ve
(=1)(e=1)"" \/(pﬂ)!ae S[LP((1—e~"a'a)]. (17)
Here A and .+ denote the normal and anti-normal ordering, @ (¢, f; x) is the customary degenerate hypergeo-
metric function and L§?(x) is the generalized Laguerre polynomial [4]. The upper-diagonal matrix elements
can be recovered through the identity

<o\ U p+s>p=s<p+s 0T IDYE . (18)
The case of zero thermal photons corresponds to the simple solution
= I ¥
e =1 i
e-z"fp= Z 'w_ﬁl"lﬂ”ﬂ —Pm-fafzpc—“a-}-am(af)u ) (19)
n={ .

By construction, it is clear that the method can also be used as a tool for generating new analytically-solvable
Liouville equations with prescribed stationary solutions 7 different from the thermal state (3). For example, for
coherent #=| &) { &| the time derivative of Eq. (2) leads to

% = —\l(a'ap,+pa‘a—2apat) = 4T (1—c™") -2 laa—aat, p] , (20)
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which is the master equation of a forced harmonic oscillator in a zero temperature thermal bath, with time-
dependent Hamiltonian

H=-iiI'1—e ") ~'2(@a—aa’) . (21)
Eq. (20) is obtained by means of Eqs. (12) along with the following identity,
Tr, (b1 0, p@90T) =™ Tr, (U p@5bTUT) — (e 1) *p,a’ . (22)

It is easy to check that Eq. (20) has the stationary state j_, =V=|a) (a|.

The present method can also be used for Liouville equations with nonstationary long-time solution, namely
when p, —#, for large ¢ and nonconstant #,. This follows from the observation that Eq. (8) trivially holds also
for time-dependent #=#,. Generalizing the last example to the case of a time-dependent coherent state v, =
|ee, > ¢ ;| an additional term in Eq. (20) is obtained, due to the explicit time derivative of #,. The forcing
Hamiltonian (21) then becomes

J —_— B it
H,=—i(%f‘(l—c‘“) —1/24 {l—e—’f)”la)(@a-a.,a*) ; (23)

I end this Letter with some remarks on the time evolution of the field operators (Heisenberg picture), and with
some notes on the solution of the time-reversed Liouville equation, and of the more general master equation
with given interaction Hamiltonian .

Schrédinger and Heisenberg pictures. Corresponding to the Schrédinger-picture evolution (2) of the density
matrix § one can evaluate the Heisenberg evolution of any field operator O. The latter can be written in the form

0,=¢7"0, (24)
where " denotes the dual of % in the following sense,

Tr, (0% =Tr (p¥"0) . (25)
The Schrodinger evolution in Eq. (2) can always be recast in the form

e?h= Y VOVt (26)
el
where I denotes a numerable set of (poly )indices 1. Invariance of Tr,, under cyclic permutations allows evalua-
tion of the Heisenberg evolution in terms of the Schrodinger map (26), namely **

e4" 0= PIOV . (27)

1=l
For example, from Eqs. (19) and (27) one obtains the evolution of the field operator a,

; - (cﬂ_l)n
L Z 7__e—;"‘ra-rrr,."2(a‘?}naanc-—."'.ru'|'n1.-’2=c—f'£.l’2a_ (28)

n=>0
Notice that the time evolution (28) does not preserve the commutation relation [a, a'] =1, because the present
Heisenberg picture is not unitary.
Time-reserved Liouville equation. Eq. (1) describes an irreversible process which leads to a unique stationary
solution # independently of the initial state p=p,. The irreversible nature of the process is reflected by the

# The map (27) mathematically is classified as a normal unit preserving completely positive (CP) map. It represents the most general
dynamical map for quantum dynamics of open systems. For the theory of these maps see Ref. [3]. For application of CP maps to
quantum optics see also Ref. [6].
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nonanalytic form of the operator (1, 0) in Eq. (4) which has nonunitary prolongation for 7— —¢. However,
despite U(t, 0) is nonunitary Egs. (15)-(17) can be analytically continued, thus providing a solution g, =
exp(—%1)p for the time-reversed Liouville equation. On the other hand, the inverse unitary operator
0(0, 1)=U(t, 0)" after trace (2) does not provide the time-reversed solution, but again solves the original
equation (1) (a whole family of operators of a form similar to Eq. (4) could be used as well, as it is evident
upon exploiting the invariance of Eq. (1 ) over phase changes of ¢). In order to make the transition from the
“damped” to the “amplified” oscillator, operator (4) should be modified in the following fashion,

U(t, 0)=exp[ —arcianh (1 —e ~")!"*(a'bT—ab)], (29)

namely the analytic continuation must be performed within the whole dynamical group GL(2, C), from the
compact real form SU(2) for the damped oscillator, to the noncompact form SU( 1, 1) for the amplified one.
For the thermal state # operator (29) provides the solution of the equations

dj b . ik = o1 3

~d%' =—Liri(atap,+p.ata—2ap,a’)— 1A+ 1) (aa'p, +paa’t —2a'pa) , (30)
which models a phase-insensitive amplifier. Notice that Eq. (30) becomes formally identical to the time-
reversed equation of (1) after the substitution i——7— 1: physically this means that the reservoir of the ampli-
fier should be considered as having negative temperature T="%ew/Kg log[ A/ (A+1)].

Liouville picture. The solution of the general master eq uation
dg o .
= Zp~i[A, 5] (31)

for a given Hamiltonian A can be written in terms of the solution of the Liouville equation { 1) as follows,
g
ﬁ,:e""’"’(ﬁ—ijdte—“adﬁﬁT), (32)
]
where ad I denotes the commutator with /7 and all superoperators in Eq. (32) act on the right. The exponential

e~ has 1o be considered as the inverse transformation of (2), after analytic continuation of Egs. ( 15)-(17)
for t——t. Iteration of Eq. (32) leads to

pi=e?'P exp(-ij dre~*"ad ﬁem)ﬁ, (33)

0

where @ denotes the chronological ordering operator. Eq. (33) can be viewed as the solution of the master
equation (31) in the “Liouville picture”, the analogue of the interaction Dirac picture in this context.

This work has been supported by the Ministero dell'Universita ¢ della Ricerca Scientifica ¢ Tecnologica, ltaly.

References

[ 1] P. Meystre and M.S. Sargent IT1, Elements of quantum optics {Springer, Berlin, 1991 ).

[2] B. Dacubler, H. Risken and L. Schoendorff, Phys. Rev. A 48 (1993) 3955,

[3] H.-J. Briegel and B.-G. Englert. Phys. Rev. A 47 (1993) 3311.

[4]15. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products (Academic Press, New York, 1980).
[5] E.B. Davies, Quantum theory of open systems ( Academic Press, New York, 1976).

[6] G.M. d'Ariano, Int. J. Mod. Phys. B 6 (1992) 1292,



