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Amplitude squeezing through operator scaling
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ABSTRACT: A noncanonical entropy-varying operator scaling which produces
amplitude squeezing is presented. The mechanism is equivalent to a nonselective
measurement of degrees of freedom interacting with radiation.

1. INTRODUCTION

Whenever quantum fluctuations limit the accuracy of measurements, one tries to
moderate or suppress their eflect by ‘squeezing’ the state of the field in the variable to
be measured. Reduction of quantum noise in the observable of interest O, affects the
statistics of a noncommuting observable Og according to the Heisenberg uncertainty
principle (AD"")(&OE) > 1( a)%, where [Ol 02E = 403 and AQ = O — {(j) The
technique of squeezing requires putting the delected field in a minimum-uncertainty
state, while simultaneously reducing (&Of) and increasing {&(ﬁ";) by the same factor.
. The latter is generally written in terms of the squeezing parameter p as follows:

(A0F,) = e (A0} ) =0 (1)

In most experimental situations in quantum optics, the measured observable O, is
either the number of photons 1 = ala (direct photon counting) or the quadrature
component & = (e%a + e ®al)/\/2 of the electric field at a fixed phase ¢ (homo-
or heterodyning detection). The former case is usually referred to as ‘amplitude
squeezing’ (Yamamoto et al 1987), whereas the latter as ‘quadrature squeezing’ or
simply ‘squeezing’ (Yuen 1976).

Here we briefly present a nonunitary operator scaling which produces the amplitude
squeezing. The corresponding evolution of the quantum states is entropy-varying and
resenbles a squeezing mechanism based on nonselective measurement on degrees of
freedom interacting with radiation.

2. THE SCALING TRASFORMATION
When the measured operator is 0, = 5:,,, the commutator algebra is very simple: one
has O, = 5¢+,,‘f2, O_; = —1 and fOl,O-;} is a couple of conjugated variables, like the

position and the momentum of a particle (p, §).
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The situation of the number operator O, = # is somewhat more complicated. It turns
out that # is approximately conjugated to the phase operator ®, which is defined
through the relation

By e ot (2)

E denoting the shift operators F_ = (ﬂfa +1)H2q B, o= Lﬁ_)f (Biln) = |n+1)).
As & is not Hermitian (Ey are not unitary), one should use the Hermitian operators
sin® and cos®. However, for highly excited states (i.e. states approximately
orthogonal to the vacuum |0}) and for small phase uncertainties (ﬂl‘ia} < 1 (such
that sin® ~ &), & becomes approximately Hermitian. Furthermore, the asymptotic

commutation relation holds

~

fﬁ,@] i (3}

and (n, tI') can be treated as a conjugated pair.
A straightforward way to achieve the squeezing trasformation (1) lies in the realization
of a Heisenberg evolution &y which rescales the couple (0;,0,) as follows

SH(él,z} = ?‘;16’!,2 3 (4)

the scaling parameter r being connected to the squeezing parameter p through the
relation r = exp p. The corresponding Schrodinger evolution &5 of the states is defined
by the identity

Tr(08u(0)) = Tr(Ss(2)0) , (5)

where g denotes a general density matrix state. As a result of Eqs.(4) and (5) the
state evolution S rescales all the moments in the form

(OF ) — r¥7{0F,) , (6)

whichever stale ¢ is considered. One should notice thatl, as a consequence of the
scaling S, the average (O,) itself would be reduced. Therefore, in order to preserve
the signal, a driving excitation of the state is also needed, which displaces the average
value from (01} to r\()l) without changing the shape of the pml:rablhty distribution.
The canonical trasformation of Yuen (1976) Sg(a) = pa + val (lu]? = [¢* = 1)
provides an example of scaling trasformation for the couple (f‘,;.‘ Ed, tx/2), upon choosing
= {?’ +v71)/2 and v = e *¥(r"' —#)/2. Here we show that for the conjugated pair
(2, ®) the scaling trasformation L4) can be obtained by means of a nonunitary (i.e.
noncanonical) evolution. Its general form in the Heisenberg picture can be inferred
from the definition of the phase operator ® in Eq. (2). The latter implies that the
rescaling of the phase corresponds to transition from one-particle shift operators By
to r-particle shift operators (£ )"

Su(Bx) = (Bs) (7)
(E4)" now acting on the Fock space as follows:

(B1) |n) = |nLtr). (8)
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From Eqs.(7) and (8) it turns out that the scaling of a generic operator O has the
form

r—=1 o0
52(0) =Y 5105, 5 =¢" Y ninr+A. (9)

A=0 n=0
(The phase factors are ineffective in the action (9) and will be dropped in the
following). S5 are nonunitary operators satisfying the orthogonality and completeness
relations

& ~ r=1 &

A R e (10)

A=0

Although the scaling Sy is nonunitary, it preserves the operator products, as a
consequence of the orthogenality conditions. When applied on the particle operator
a the operator scaling gives the result

1+ [ﬁ,fr])m]”z

Suld) = im_u [§]<n|= G o = by s (11)

where [z] denotes the maximum integer < z (for the creation operator one has
SH(uT) = I’L)- Egs. (11) show that the scaled particle operator Sg(a) coincides with
the r-boson operator b, introduced by Brandt et al (1969). The particle operators b,

and bi,] annihilate and create » photons simultaneously and satisfy the commutation

relations: [z‘;(,,},bE[T}] =1, [A, b)) = —7b(y). The preservation of the operator product
implies that the scaling Sy of a generic operator 0 = (j(a, a.T} (Hermitian analytic

function of a and ai') can simply be obtained substituting a and al with by and bl_),

ie. 8x(0) = {i"(b(,.),b{lr}}. Therefore, the present operator scaling corresponds to the
construction of the r-photon observables of D’Ariano et al (1989,1990a).

The scaling of the number operator 7 can be obtained from the defining equation (9).
One obtains

Su(h) = [A/r] = bl,ybr) - (12)

It follows that the number operator satisfies the rescaling (4) only asymptotically, in
the limit of large mean numbers (7) > r

Sg(R) ~r i . (13)

The nonunitary evolution in the Schrodinger picture Sg is obtained from Eqgs.(5) and
(9) using the invariance of trace under cyclic permutations

r—1 %
Ss(e) = 3 $r08 . (14)
A=0
One can see that the state evolution (14) does not preserve the Neumann-Shannon
entropy S(2) = —Trplogp. For example, starting with a pure state ¢ = |w}{w|, the
mixed state is obtained

Pl

Ss(lwhlw]) = 31 (Qa],  [0) = Silw) =3 Inplnr + Auw) , (15)

A=0 n=={)
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If the limit 7 — oo is performed while keeping {#) constant, a pure number state
is obtained. Therefore, the entropy is always a decreasing function of r for large r,
whereas, for small 7, it can be increasing or decreasing, depending on the input state.

3. DISCUSSION

The nonunitary scaling is essentially simulated in the experimental realizations of
the amplitude-squeezing based on entropy-varying schemes, where 7i-noise reduction
is obtained via nonselective measurements of some auxiliary probe field quantum-
correlated with the radiation (signal) field. In the high-@Q@ micromaser Fock state
generation (Filipowicz et al 1986), for example, the probe is an inverted two-level atom
entering the cavity with a well defined velocity. On the other hand, in the quantum-
nondemolition photon-number measurement and in the parametrically amplified idler
photon counting approaches proposed by Yamamoto et al (1987) the probe is another
electromagnetic wave interacting with the signal mode in a nonlinear medium.
There is no obvious strict comparison between the theoretical scaling (14) and
the above mentioned actual realizations of amplitude-squeezing. However, some
similarities can be recognized a posteriori, upon identifying the dummy variable A
in Eq.(14) with some quantum number of the probe field.

Let us briefly consider the case of the high-Q micromaser Fock state generation. In
the generalized scheme of Fu-li Li et al (1990) the probe field is represented by a
beam of two-level atoms eutering the cavity in clusters of 2J atoms, one cluster at

a time. One can see that (D’Ariano 1990b) the evolution of the density matrix of
ta 2N

wmz()

on(n)|n}in| after N clusters passed through the cavity
(initially in the vacuum state) simulates the same variation of entropy attained by
the scaling Sy acting on the pure state |w){w|, where Jw) = T17 1/pn(n)|n(r + 1))
The role of the scaling factor r is played by the total spin multiplicity r = 2N J + 1.

the radiation field px

The above correspondence can be further carried out when a pure Fock state is
reached in the limit N — oo (trapping states). An asymptotic analysis in the
neighborhood of the trapping state |ng){ng| for J = 1/2 shows that (2} =~ no — aN-
(a = 4{ng + 1)?77?), whereas (An*) =~ ngalN~'. It follows that the Fano factor
F = (An?) /{n) rescales according to the rule F' ~ N™' ~ 7%, which is in agreement
with the scaling (6) and a diriving excitation of the siate displacing the average
number from {72} to r{n).

REFERENCES
Brandt R A and Greenberg O W 1969 I, Math, Phys. 10 1168
D’Ariano G M and Sterpi N 1939 Phys, Rev. A 39 1860
D’Ariano G M 1990a Phys. Rev. A 41 2636
D’Ariano G M 1990b Phys. Rev. A (submitted)
Filipowicz P, Javanainen J and Meystre P 1986 J. Opt. Soc. Am. B 3 906
Fu-li Li, Xiao-shen Li, Lin D L and George T F' 1990 Phys. Rev. A 41 2712
Yamamoto Y, Machida S, Imote N, Kitagawa M and Bjork G 1987
J. Opt. Soc. Am. B 4 1645
Yuen H P 1976 Phys. Rev. A 13 2226




