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1. INTRODUCTION

Detection of squeezed light requires high quantum efficiency, phase sensitivity, and
freedom from amplifier noise or any other kind of disturbance. Al present, the
homodyne detector is the optimum device for detection of a quadrature component
of the field [1]. Its phase sensitivity comes from combining the signal beam through a
beam splitter (BS) with an intense ‘local oscillator’ (LO) field operating at the same
frequency. The combined field is then directed to a photodetector and the amplitude
component of the field is revealed as the beating between the two input fields. Noise
from intensity fluctuations of the LO is canceled by means of the balanced configuration
of Fig.1, involving two photodetectors with equal responsivity and a 50-50 BS: the
difference photocurrent [p between the two photodetectors D1 and D2 measures the
interference between the signal beam and the LO, the interference being constructive
at one photodetector and destructive at the second one.

In this paper, a novel symmetry of the balanced homodyne detector is presented, which
relates different input pairs of beams to the same output photocurrent Ip. I call the
symmetry ‘squeezing symmetry’ because the input pairs of beams—which are equivalent
in producing the same current [p—are related through a squeezing transformation of
the fields. The symmelry is presented in Sec. 2, where the physical meaning of the
squeezing transformation of the fields is also discussed. In Sec. 3 the extension of the
symmetry to four-port linear devices is briefly sketched, and an application to a simple
interferometer, build up as a cascade of linear devices, is illustrated.

2. SYMMETRY OF THE DIFFERENCE PHOTOCURRENT IN THE BALANCED
HOMODYNE DETECTOR

In the following, a single-mode analysis is given, in the assumption of lossless BS and
ideal photodetectors (having unit quantum efficiency). The input fields @ and b combine
at the 50-50 BS giving the sum and the difference fields ¢ and d in the output arms.
After tuning the overall phases (by adjusting the path lengths), one has

a+tb a—b
S d:—ﬁ—. (1)

The output photocurrents I, and ﬁg are proportional to the number operators cle and
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dld and the difference photocurrent fp has the form

fD=j\1-—fQO(aTb+bT(I. (2)
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Figure 1: Scheme of the balanced homodyne detector.

The particular form of Ip in Eq.(2) is highly symmetrical, as a consequence of the
balanccd scheme., Besides the frivial symmetry under permutation of the input fields,
Ip commutes with the unitary operator U(p, v)

[fDa E’r(ﬁ: V)] =0, (3)
where

O(p,v) = 8 (7,181, v) . 4)

Here ga'b(p,b’) are the squeezing operators of Yuen [2] acting on the input fields as
follows

,Sﬂ'a(,t.-:,u)a.SA'j(;;,v) = pa+ val : §;,(;;,y)bgj(p?v) = b+ vbl (5)

and the complex numbers y and » satisfy the relation |u|* —|¢|* = 1. Invariance (3) can
be verifed by using the identity .‘::)'L(#, v) = 5,4(7%, —v). For a real parameter 2 Eqgs.(3)
and (4) state that the difference photocurrent fD is Invariant under inverse squeezing of
the two input beams. Due to the form of Eq.(4) the symmetry transformation U(u, v)
does not affect the correlation between the input beams, as opposed to the SU(2)
symmetries of the beam splitter derived in Ref.[3].

In the Schrodinger picture the invariance (3) means that the quantum statistics of the
difference photocurrent [ does not change 1[ the input state is symmetry-transformed
as

Rin — UV (1, 1) Ren U1, ) (6)

where fig,, denotes the density matrix of the input (with the two beams which are in
general quantum-correlated). For the particular case of uncorrelated beams, namely
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A

Rin = paps, the symmetry transformation (6) is equivalent to the following pair of
single-mode transformations

b — Sulm)paSiEm ), e — Sl )isSilnr) ()
Here, some remarks regarding the physical meaning of the squeezing transformations
(7) are in order. The present squeezing transformation corresponds to a simultaneous
squeczing of both the noise and the signal, whereas in the usual squeezed stales,
the unsqueezed signal is superimposed to the squeezed fluctuations (see also Ref.[4]).
In practice, the present squeezing is equivalent to an ideal noisless phase-sensitive
amplification [5], which enhances a phase component of the field, while reduces the
conjugated one. As a consequence of the squeezing symmetry, one infers that, for
example, the use of a squeezed LO is equivalent to a phase-sensitive amplification of
the remote signal. However, no improvement of the signal-to-noise ratic is achieved,
and the homodyne with squeezed LO is essentially equivalent to the homodyne with
coherent LO, where the homodyne gain is shared by both the signal and the squeezing
power components of the LO.

3. QENERALIZATION TO OTHER FOUR-PORT LINEAR DEVICES

In this section I briefly present the derivation of the squeezing symmetries of a linear
four-port device with output photocurrent quadratic in the output fields. In particular,
I suggest an application to a four-port device, built up as a cascade of clementary
four-port devices.

By a linear device [ mean that the Heisenberg equations relating the output to the input
fields are linear. The beam splitter provides an example of linear four-port device, with
Heisenberg equations

(&) =(Zatim )+ wbamt=1. @

The degenerate four wave mixer (FWM) with classical (non depleted) pump waves is
an other example of four-port linear device, with evolution equations for the signal and
idler waves given by [6]

anf 2
(§)=($;L;), m — o =1. (9)

|m|?* being the signal gain. If one of the waves is assumed to have a constant field
amplitude, the parametric amplifier (PA) can be regarded as a four-port device and
Egs.(9) apply to this case as well. (The symmetrical form of Egs.(8) and (9) pertains
to a suited choice of the field phases related to the path lengths).

For a general four-port linear device the Heisenberg equations can be written in the

form
M(‘;):M(z)nﬂ, (10)

where M denotes the linear transformation corresponding to the unitary operator M.
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Table 1: Some examples of linear transformations and conserved currents.

Symbol Linear transformations | Constraints Some conserved
of the fields a, b currents

Vi, v,ei?) i:::i;,{ P =P =1|ata=0ts, (=0

W (p, v, ) ;‘;j: ] Il + P =1 | ala+ble, ($=rn)

Uy, v, %) ﬁbj :,.iim =P =1|alb+bta, (¢=n)

Z(pa, v, %) ;::i;w‘ 2= P =1|altl +ab, (4=n)

Table 2: Symmetry transformations of the four beams leaving the Heisenberg equations
invariant. (The phases ¢ and 9 are given by: ¢ = arg(m), ¢ = arg(n)).

Device Heisenberg evolutions Symmetry transformations
of the inpul fields Input fields |  Outpul fields
BS W(m,n,—1) Vg, v, —1) Vg, v, —1)
Uy, ve~ 2, e?-’(«#—&l) U(y, v, C-Zi(qﬁﬂb))
50-50 BS U(p, —ve "¢-¥) _e%(#-¥)) V(u,v,1)
FWM/PA V(m,n,1) V(p, ve ***, e#¥=0) V (11, v, PV
W, v, 1) Wi, v,1)
Z(p, ve=4?, eiftﬁ-wl) Z(j, v, e*(#+¥)

Some examples of linear transformations, which are relevant in the present context, are
defined in Table 1, where the transformations (8) and (9) are represented by the linear
operators W(m,n, —1) and V(m,n,1).

The derivation of the squeezing symmetries of a four-port linear device with measured
photocurrent I, can be divided into three steps:

i) evaluation of the symmetry transformations (ST) of the oulput beams which preserve
the current I, (some examples can be found in Table 1);

ii) evaluation of the ST of the four beams which preserve the Heisenberg equations of
the device; in other words: evaluation of the ST of the output beams corresponding to
a given ST of the input beams;

iii) matching between the current-preserving ST of step i) and the Heisenberg-preserving
ST of step ii).

Step i) through step iii) allow one to obtain the squeezing transformation of the input
beams leaving the output photocurrent invariant. In Table 2, some ST leaving the
Heisenberg equations invariant are given, for both the BS and FWM/PA devices.
They can be simply derived by a linear analysis, or by means of the group theoretical
approaches of Refs.[3],(7],[8].

Using the above method with the help of Tables 1 and 2, the squeezing symmetry of
the 50-50 BS (¢ = 3 = 0) can be obtained as follows: a) the output photocurrent

Ip = cte—dldis preserved by V(u,»,1); b) the ST V(u,v, 1) of the output is related



329

to the ST U(g, —vr,—1) of the input: the second transformation corresponds to the
unitary operator of Eq.(4).

If a cascade of linear four-port devices is considered (where, for example, the output
beams of an element coincide with the input beams of the following), it is not necessary
to derive its Heisenberg equations in order to apply the above procedure. In fact, the
evaluation of the Heisenberg-preserving ST in step ii) for every element of the cascade
allows one to connect the ST of the inputs of two consecutive devices, and the process
can be iterated, until the input beams of the whole cascade are recached. Eventually,
the compatibility of the ST of two consecutive elements may restrict the class of the
symmetry or impose phase-matching between the devices. This mechanism actually
corresponds to a smaller symmetry class of the whole cascade, and it occurs when the
dynamical groups of the contiguous devices are different, as, for example, when a BS is

followed by a FWM/PA [3],[8].

e TR
a4 fgs D2
c I .
| FWM 3 h
a 17 .1 FEA
e -
BSs1 1b

As an example illustrating the above concepts I consider the interferometer in Fig. 2,
which is built up as a cascade of a BS followed by a FWM/PA and finally by a balanced
homodyne detector. I denote by ¢p1,%s1, B2, Y82 the phases of the beam splitters and
by ¢z, p those of the four-wave mixer (for the conventions, see Table 2). Choosing,
for simplicity, ¢gs = g2 = 0, as in the previous example, the ST of the BS2 input 1s
U(y, —v, —1). The transformation U is not in the Table 2 at the entry of the FWM:
as a consequence, the symmetry matching between the BS2 and the FWM requires a
restriction of the symmetry class. This is attained through the identity

U(p, v, e) = Z(p, v, g 0+2are(v)y | 4e real (11)

which implies that the ST for f and e coincides with Z(p, —v, —e**#)), From Table 2
one can see that the phase of v is constrained to the values arg(v) = ¢p+pp+m/2 4+ kn
(k integer), namely the restricted symmetry for e and f is Z(p, e PPHer) 2Hertdr)y
where now both p and v are real. The corresponding ST for the input beams ¢ and
d is Z(p, ive'Wr—or) 2(r=9r)) which is the global squeezing symmetry of the partial
cascade FWM/PA-BS2.

In order to obtain the squeezing symmetry of the whole cascade one has to match the ST
of BS1 and FWM. Eq.(11) leads to Z(u, ive!t#r—¢r), 2¥r=9r)) = U(y, ive'Vr-4r) _1),
and the complete cascade has a squeezing symmetry only if the phases of BSI

are constrained by ép1 + ¥ = n/2 + kr. In this case the ST of a and b is
Uy, ive'tbr—tr—26m) _etidnn),
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In conclusion, the interferometer in Fig.2 has a squeezing symmetry only if the phases
of the beam splitter BS1 are related by the equation

dp1 + P = w[2+ kr . (12)

The output photocurrent Ip is invariant under the squeezing transformation of the
input beams

a — pa -+ pelbr=er=2881) 61 b— pb— ivel¥r—ér+29m1) ] ) (13)

where u and v are real. The same result can also be obtained by evaluating the
Heisenberg equations of the cascade and deriving the related ST: this direct way,
however, is lengthy, and the symmetry breaking mechanism due to the matching of
different devices is not evident.
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