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We present the first full experimental characterization of a single-qubit device. This method uses a Pauli
Process Tomography at the output of the device and needs only a single entangled state at the input, which
works as all possible input states in quantum parallel. The method can be easily extended to any n-qubits
processing device.

1 Introduction

The marriage of quantum physics and information technology, originally motivated by the need for minia-
turization, has recently opened the way to the realization of radically new information-processing devices,
with the possibility of guaranteed secure cryptographic communications, and tremendous speedups of some
complex computational tasks. Among the many problems posed by the new information technology (1)
there is the need of characterizing the new quantum devices, making a complete identification and character-
ization of their functioning. As we shall see, quantum mechanics provides us with a powerful tool to achieve
the task easily and efficiently: this tools is the so called quantum entanglement, the basis of the quantum
parallelism of the future computers. We present here the first full experimental quantum characterization of
a single-qubit device.

How do we usually characterize the operation of a device? Actually, we are interested just in linear
devices, since quantum dynamics is intrinsecally linear. Any linear device, either quantum or classical
(examples are: an optical lens or a good amplifier), can be completely described by a transfer matrix which
gives the output vector by matrix-multiplying the input vector. In quantum mechanics the inputs are density
operators ρin and the role of the transfer matrix is played by the so called quantum operation [2] of the
device, that here we will denote by E. Thus the output state ρout is given by the quantum operation applied
to the input state as follows:

ρout =
E (ρin)

Tr [E (ρin)]
(1)

and the normalization constant Tr [E (ρin)] is also the probability of occurence of the transformation E,
when there are other possible alternatives, such as when we consider the state transformation due to a
measuring device for a given outcome.

Now the problem is: how to reconstruct the form of E experimentally? One would be tempted to adopt
the conventional method [1] of running a basis of all possible inputs, and measuring the corresponding
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Fig. 1 General experimental scheme of the method for the tomographic estimation of the quantum operation
of a single qubit device. Two identical quantum systems, e.g. two optical beams as in the present experiment,
are prepared in an entangled state |Ψ〉〉. One of the systems undergoes the quantum operation E, whereas
the other is left untouched. At the output one makes a quantum tomographic estimation, by measuring jointly
two observa-bles from a quorum {O(l)}. In the present experiment the quorum is represented by the set of
Pauli operators.

outputs by quantum tomography [3]. However, since the states ρ are actually operators, not vectors, in order
to get all possible matrix elements we would need to run a complete orthogonal basis of quantum states |n〉
along with their linear combination 2

1
2
(|n′〉 + ik |n′′〉), with k = 0, 1, 2, 3 and i denoting the imaginary

unit (this is a simple consequence of the polarization identity). However, the availability of such a set of
states in the laboratory is, by itself, a very hard technological problem (states with a precise varying number
of photons and, even worst, their superposition, are still a dream for experimentalists).

The quantum parallelism intrinsic of entanglement now comes to help us, running all possible input
states in parallel by using only a single entangled state as the input! This was first shown in [4]. Hence, we
don’t need to prepare a complete set of states, but just one entangled state, a state commonly available in
modern quantum optical laboratories!

2 Pauli tomography

Assume for semplicity, and with no loss of generality, that the entangled state spans a 4-dimensional Hilbert
space H1 ⊗ H2, each space Hi of dimension d = 2. The input entangled state,

|Ψ〉〉 =
∑
nm

Ψnm |nm〉 (2)

expressed in terms of the basis vectors |n〉 ⊗ |m〉 = |nm〉 of the two spaces Hi(i = 1, 2) is used as shown
in Fig. 1 where the entangled systems consist of two single-mode optical beams. The key feature of the
method implies that only one of the two systems, say system i = 1, is input into the unknown device E,
whereas the other is left untouched. This setup leads to the output state Rout, which in tensor notation writes
as follows

Rout = E ⊗ I |Ψ〉〉 〈〈Ψ | , (3)

where I denotes the identical operation. It is a result of linear algebra that Rout is in one-to-one corre-
spondence with the quantum operation E, as long as the state |Ψ〉〉 is full-rank, i.e. it has non-vanishing
components on the whole state-space of each system, such as, for instance, a so called maximally entangled
state. Full-rank entangled states can be easily generated by Spontaneous Parametric Down Conversion of
the vacuum state, as in the experiment reported here. Note that by this method the problem of availability
of all possible input states is solved: we just need a single entangled state |Ψ〉〉, which works as all possible
inputs in a sort of quantum parallelism!

Now, how to characterize the entangled state Rout at the output? We obviously need to perform many mea-
suremeuts on an ensemble of equally prepared quantum systems, since, due to the no-cloning theorem [5]
we cannot determine the state of a single system [6]. For this purpose a technique for the full determination
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of the quantum state has been introduced and developed since 1994. The method named Quantum Tomog-
raphy [3] has been initially introduced for the state of a single-mode of radiation, the so called Homodyne
Tomography, and thereafter it has been generalized to any quantum system. The basis of the method is just
performing measurements of a suitably complete set of observables called quorum. For our needs, we just
have to measure jointly a quorum of observables, here the spin observables σi (i = 0, 1, 2, 3), on the
two entangled systems at the output, in order to determine the output state Rout, and hence the quantum
operation E.

In this paper we present the first complete experimental characterization of a quantum device, which
in our case will be a single-qubit device. The qubit is encoded on polarization of single photons in the
following way

|0〉 = |1〉h |0〉v , |1〉 = |0〉h |1〉v
(4)

namely with the “logical zero” state corresponding to a single horizontally polarized photon and the “logical
one” state corresponding to a single vertically polarized photon. In the following we will denote by h and
v the annihilation operators of the horizontally and vertically polarized modes of radiation associated to a
fixed wave-vector, k. Using single photon states we encode a qubit on the polarization. In the polarization
representation, the Pauli matrices write as follows:

σ1 = h†v + v†h
σ2 = i

(
h†v − v†h

)
σ3 = h†h − v†v

(5)

The ring of Pauli matrices is completed by including the identity σ0 = h†h + v†v. In the following we
will denote by �σ the column three-vector of operators �σ = (σ1, σ2, σ3), and by σ the column tetra-vector
σ = (σ0, σ1, σ2, σ3), and use Greek indices for three-vectors components α = 1, 2, 3 (or α = x, y, z), and
Latin indices for tetra-vector components: i = 0, 1, 2, 3.

A wave-plate changes the two radiation modes according to the matrix transformation:(
h

v

)
−→ w (φ, θ)†

(
h

v

)
w (φ, θ) ≡ W (φ, θ)

(
h

v

)
(6)

where the matrix W (φ, θ) is given by:

W (φ, θ) =

(
cos θ − sin θ

sin θ cos θ

)(
1 0
0 eiφ

)(
cos θ sin θ

− sin θ cos θ

)

=

(
z+ + cz− sz−

sz− z+ − cz−

)
(7)

where s = sin 2θ, c = cos 2θ, θ is the wave-plate orientation angle around the wave-vector k, z± =
1
2

(
1 ± eiφ

)
, φ = 2πδ

λ , λ is the wave-lenght and δ is the optical path through the plate. Special cases are
the λ

4 plate which can be used with θ = π
4 to give the right and left circularly polarized modes(

r

l

)
= W

(π

2
,
π

4

)( h

v

)
=

eiπ/4
√

2

(
h + iv

−ih + v

)
(8)

and the λ
2 plate wich can be used to give the diagonal linearly polarized modes(

a

b

)
= W

(
π,

π

8

)( h

v

)
=

1√
2

(
h + v

h − v

)
. (9)
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Fig. 2 Pauli-matrix measurement apparatus for photon polarization
qubits inserted at the end of each test optical beam.

The Heisenberg picture evolution of the Pauli matrices corresponding to the unitary U on the qubit Hilbert
space will be given by a rotation, which we will denote as follows

U†�σU = R(U)�σ. (10)

In particular, for a φ-wave-plate we have the rotation matrix

R (W (φ, θ)) =


 s2 + c2 cos φ −c cos φ sc(1 − cos φ)

c sin φ cos φ −s sin φ

sc(1 − cos φ) s sin φ c2 + s2 cos φ


 . (11)

In particular, for a λ
2 -wave-plate we have

W (π, θ) =

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)

R (π, θ) =


 − cos 4θ 0 sin 4θ

0 −1 0
sin 4θ 0 cos 4θ


 .

(12)

The σz-photo-detector is achieved as in Fig. 2. From Eq. (11) we can see that a σx-detector can be obtained
by preceding the σz -detector with a λ/2-wave-plate oriented at θ = π/8, whereas a σy-detector is obtained
by preceding the σz-detector with a λ/4-wave-plate oriented at θ = π/4. When collecting data at a σα-
detector, we will denote by σα = ±1 the random outcome, with σα = ±1 corresponding to the h-detector
flashing, and σα = −1 corresponding to the v-detector flashing instead. The experimental averages for the
complete setup must coincide with the following theoretical expectation values

s
(1)
i s

(2)
j = 〈〈Ψ | (U† ⊗ I)(σ(1)

i ⊗ σ
(2)
j )(U ⊗ I) |Ψ〉〉 (13)

and, in particular, s(1)
i ≡ s

(1)
i s

(2)
0 and s

(2)
i ≡ s

(1)
0 s

(2)
2 now s(n)

i denoting the random outcome of the detector

of the nth beam (n = 1, 2) in the entangled state. For maximally entantangled states we have also s
(1)
α =

s
(2)
α = 0 for all α = x, y, z. The theoretical expectations for the setup without the device to be characterized

are be given by:

〈〈Ψ | (σ(1)
i ⊗ σ

(2)
j ) |Ψ〉〉 = Tr

[
Ψ+σiΨσ∗

j

]
, (14)

where Ψ denotes the matrix of the state on the customary basis of eigenvectors of σz . In particular, for the
four Bell states

1√
2

∣∣σj

〉〉
= σj ⊗ I

1√
2

|I〉〉 (15)
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Fig. 3 (online colour at: www.interscience.wiley.com) Experimental char-
acterization by Pauli Tomography of a single optical λ/2 Waveplate
[ϕ = π; θ = +0.249π] inserted on channel k1 with the following optical
properties: retardation phase ϕ = (π); orientation angle of the optical axis
respect to the laboratory horizontal direction “h”: θ = (0.249π). The ex-
perimental real and imaginary parts of the four matrix elements Uij of the
Waveplate are shown together with the related measured statistical variances.
The corresponding theoretical values are shown for comparison.

we have

1√
2
∆ij (σk) = δijHkj , H =




1 1 −1 1
1 1 1 −1
1 −1 −1 1
1 −1 1 1


 . (16)

Using Eq. (10) and (14) we obtain

s1
αs2

β =
∑

λ

Rαλ(U)∆λβ(Ψ) . (17)

In particular, in the lab we use the multiplet state corresponding to Ψ = σx/
√

2, whence we have

s1
αs2

β = Rαβ(U)∆1β(Ψ) .

3 Method, apparatus and results

The input maximally entangled state |Ψ〉〉, expressed by Eq. (2), was SPDC generated in the laboratory by
an optical parametric amplifier (OPA) physically consisting of a nonlinear (NL) BBO (ß-barium-borate)
crystal plate, 2 mm thick, cut for Type II phase matching and excited by a pulsed mode-locked ultraviolet
laser UV having pulse duration τ = 140 fsec and wavelength (wl) λp = 397.5 nm. Precisely, the apparatus
was set to generate on the two modes ki, i.e. the entangled systems i = 1, 2, single photon couples in a
polarization entangled “triplet” state, viz. |Ψ〉〉 = 2−1/2 |σx〉〉, according to Eq. (15). The wl of the emitted
photons was λ = 795 nm. The measurement apparatus consisted of two equal polarizing beam splitters
PBSi with output modes coupled to four equal Si-avalanche photo-detectors SPCM-AQR14 with quantum
efficiencies QE � 0.42. The beams exciting the detectors were filtered by equal interference filters within
a bandwidth ∆λ = 6 nm. The detector output signals were finally analyzed by a computer. We want now



Fortschr. Phys. 51, No. 4–5 (2003) 347

Fig. 4 (online colour at: www.interscience.wiley.com) Experimental
Chracterization by Pauli Tomography of a combination of two optical Wave-
plates: the Waveplate [ϕ = 0.45π; θ = −0.138π] (cf. Fig. 3) followed by
a λ/2 Waveplate [ϕ = π; θ = +0.29π]. The experimental real and imag-
inary parts of the four matrix elements Uij of the combination are shown
together with the related measured statistical variances. The corresponding
theoretical values are shown for comparison.

to determine experimentally by this apparatus the matrix elements of the state |Ψ〉〉 expressed by Eq. (2).
This can be achieved as follows: from the trivial identity

〈nm| Ψ〉〉 = Ψnm , (18)

we obtain the matrix Ψnm for the input states in terms of the following ensemble averages

Ψnm = eiϕ 〈〈Ψ | 01〉 〈nm| Ψ〉〉√〈〈Ψ | 01〉 〈01| Ψ〉〉 (19)

where the unmeasurable phase factor is given by: exp (iϕ) = Ψ01/ |Ψ01|. The choice of the vector |01〉 is
arbitrary as it is needed only for the sake of normalization: e.g. we could have used |10〉 or |11〉, instead.
Using the tomographic expansion over the four Pauli matrices [3], [4] we see that, in virtue of Eq. (19), the
matrix element of the input state is obtained from the following experimental averages:

Ψnm =
1

4
√

p

∑
ij

Qij(nm)s(1)
i s

(2)
j , (20)

where

p = 〈〈Ψ | 01〉 〈01| Ψ〉〉 =
1
4

(
1 + s

(1)
3

)(
1 − s

(2)
3

)
(21)

is the fraction of coincidences with both σz-detectors firing on h, and the matrix Q(nm) is given by

Qij(nm) = 〈n| σi |0〉 〈m| σj |1〉 (22)

the unitary matrix Unm of the device is now obtained with the same averaging above but now for the state
at the output of the device: |UΨ〉〉 = (U ⊗ I) |Ψ〉〉 . Therefore, we now have:

(UΨ)nm = eiϕ 〈〈UΨ | 01〉 〈nm| ΨU〉〉√〈〈UΨ | 01〉 〈01| ΨU〉〉 , (23)
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where we use again Eqs. (21), (22), but now the average expressed by 20 is carried out over the output state
|UΨ〉〉. The (complex) parameters Unm are obtained from Eq. (23) by matrix inversion. This is of course
possible since the matrix Ψ is invertible, in virtue of the entangled character of |Ψ〉〉.

The experimental demonstration of the tomographic process is given in Figs. 3 and 4 where both real and
imaginary parts of the four components of the matrix U are reported for two different “unknown” devices
inserted in the mode k1 of the tomographic apparatus. The experimental results are shown together with
the corresponding data evaluated theoretically. Furthermore the experimental “variance” of the data are also
reported. Each “unknown” device is represented in one figure, namely:

Fig. 3: a single λ/2 Waveplate [ϕ = π; θ = +0.249π] i.e., with retardation phase ϕ = (π) and orientation
angle respect to the “horizontal” direction “h” : θ = (0.249π).

Fig. 4: a combination of 2 Waveplates: i.e. a Waveplate [ϕ = 0.45π; θ = −0.138π] followed by a λ/2
Waveplate [ϕ = π; θ = +0.29π].

As we may see, the experimental results are found in good agreement with theory.

4 Conclusions

We have given the first demonstration, in a simple single-qubit context, of a novel Tomographic method
which is able to fully characterize the properties of any device acting on a quantum system by exploiting for
the first time the complete intrinsic parallelism of the quantum entanglement. This method establishes a new
fundamental framework of utterly paradigmatic relevance in the domains of modern Quantum Measurement
theory and Quantum Information.

Our method is expected to be of general and far reaching relevance. In facts, it can be adopted within more
general and complex multi-qubit systems. For instance by this method a full characterization of a two-qubits
device, such as a controlled-NOT, can be achieved. In this case we just need to double the input and the
measurement setup, by providing two input entangled states and four detectors coupled at the outputs of
the two pairs of the device channels. The full quantum characterization of the the device is finally obtained
by a joint tomographic reconstruction on both channels of the device.

Acknowledgements We are indebted with the FET European Network on Quantum Information and Communication
(Contract IST-2000-29681-ATESIT), the I.N.F.M. PRA 2001 “clon” and with M.U.R.S.T. for funding.

References

[1] I. L. Chuang and M. A. Nielsen, Quantum Information and Quantum Computation (Cambridge University Press,
Cambridge 2000).

[2] K. Kraus, States, Effects, and Operations (Springer-Verlag, Berlin 1983).
[3] G. M. D’Ariano, Quantum Tomography, Proceedings of the Intl. School “E. Fermi”, Varenna: Experimental

Quantum Computation and Information, edited by F. De Martini and C. Monroe (Editrice Compositori, Bologna
2001).

[4] G. M. D’Ariano and P. Lo Presti, Tomography of quantum operations, Phys. Rev. Lett. 86, 4195 (2001).
[5] W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature (London) 299, 802 (1982).
[6] G. M. D’Ariano and H. P. Yuen, On the impossibility of measuring the wave function of a single quantum system,

Phys. Rev. Lett. 76, 2832 (1996).


