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After deriving a general formula for the quantum probability distribution function higher mo-
ments, we apply it to the multiphoton squeezed states [the usual Gaussian and the new non-Gaussian
Weyl-Heisenberg, SU(2), and SU(1,1)]. The resulting moments are discussed as functions of the
photon-number fluctuations. General criteria are considered to determine optimal squeezing proper-
ties with respect to photon-number noise. There result interesting generalized uncertainty relations in

the form of scaling laws.

I. INTRODUCTION

The possibility of quantum noise reduction in such crit-
ical physical situations as those encountered in detection
of gravity waves' or multiphoton eigenmodes of the elec-
tromagnetic field in an optical cavity’? has recently
enhanced the interest of ‘“squeezing”®* in quantized
fields.

A field in a squeezed state is characterized by fluctua-
tions in one quadrature component smaller than those in
a coherent state, the other quadrature component obvious-
ly exhibiting increased fluctuations due to Heisenberg’s
uncertainty principle.

The field quadrature components are analogous to the
canonically conjugate position § and momentum p vari-
ables of the harmonic oscillator. Since knowledge about
the oscillator phase is necessary to extract information in
a quantum communication channel, the eigenstates of §
and p are not of much use, and one needs to resort to
coherent states with a specified oscillator phase. Noise
reduction can then be achieved by squeezing the corre-
sponding quantum distribution in one canonical variable.

The usual unsqueezed coherent states have Gaussian
distributions in both g and p (Ref. 5). The states com-
monly referred to as “‘squeezed states give rise as well to
Gaussian distributions: they are obtained by distorting
the vacuum with a unitary operator which is an exponen-
tial of a quadratic form in a and a ' (the usual annihilation
and creation operators) and then by displacing the unitary
operator in the phase space to get the correct average posi-
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tion and momentum values. In this case squeezing is ob-
tained by varying all the distribution moments simultane-
ously without affecting the Gaussian shape. However, the
development of techniques for performing higher-order
correlation measurements in quantum optics has stressed
the opportunity of squeezing higher-order moments, thus
producing non-Gaussian coherent states, as suggested,
e.g., in the Hong and Mandel scheme.®

The customary Gaussian squeezed states described
above can be thought of as generated from an idealized
two-photon device. In order to produce non-Gaussian
shapes one needs k-photon squeezed states with k > 2.
These may arise, for example, in k-photon parametric
amplifiers in which the electromagnetic radiation in-
teracts with nonlinear matter via a kth-order susceptibil-
ity.

It turns out, however, that the naive way of generating
multiphoton squeezed states by distorting the vacuum
with an operator that is the exponential of a linear com-
bination of a*,a * leads to formal divergences. These
difficulties, first pointed out by Fisher, Nieto, and Sand-
berg,” were recently tackled by a Padé-approximant
analysis.® Such an analysis has, on the other hand,
shown that these states exhibit no squeezing for k>2. It
will be shown in this paper that this is a special case of a
general feature of k-photon states, whereby for a k-photon
state only the even-order (2Nth) moments corresponding
to N >k/2 (for even k) or N >k (for odd k) can be
squeezed.

Resorting to the multi-photon Brandt-Greenberg®
operators and to the Holstein-Primakoff'® realization of
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groups [Weyl-Heisenberg, SU(2), and SU(1,1)] the au-
thors have constructed a number of non-Gaussian
squeezed states which allow squeezing of different or-
ders.!1—16

The dynamical evolution of such states is coherent un-
der the action of the harmonic-oscillator Hamiltonian (one
can also consider more complicated coherence-preserving
Hamiltonians of the form discussed in Ref. 17).

These states are good test states, interesting in physical
applications. They allow a detailed analysis of the quan-
tum noise problem and a deeper understanding of the
completely nontrivial connections between the probability
distributions of different physical observables.

Focusing, in particular, on the observable number of
photons 7, we shall show that the new states correspond
to a variety of probability # distribution functions: k
Poisson, binomial [the SU(2) states correspond to a finite
maximum number of photons], and negative binomial.

The squeezing properties of the states will therefore be
compared in terms of the number of photon fluctuations.
Among the most interesting results of this analysis are (i)
the possibility of reducing the number noise with respect
to the usual Gaussian states, (ii) the existence of optimal
states which allow us to obtain the best squeezing with a
bounded noise in 7, and (iii) the appearance of generalized
uncertainty relations for both the optimal states and the
completely squeezed states, involving the higher § distri-
bution moments and the number fluctuations, in the form
of scaling laws.

In Sec. II a general formula for the quantum probabil-
ity distribution moments is derived, which allows a fac-
torization of the moments themselves in two terms ac-
counting, respectively, for the state-vector direction and
the structure of the Fock space. In Sec. III the general-
ized k-photon squeezed states are introduced in a unified
formalism, which leads straightforwardly to the proba-
bility distribution for 7, and the theorem is proved stat-
ing the conditions under which the various moments can
be squeezed. Section IV gives an extensive discussion of
the squeezing properties of all the k-photon states con-
sidered versus A fluctuations. In Sec. IV the scaling laws
are given based on the numerical analysis permitted by
the general formula of Sec. II. A few concluding re-
marks and a summary of the results are presented in Sec.
VI and some details of the analytical calculations are
given in Appendixes A and B.

II. A GENERAL FORMULA FOR THE QUANTUM
PROBABILITY DISTRIBUTION MOMENTS

In view of the comparison we are interested in, be-
tween squeezed states and the customary coherent states
(which have a Gaussian distribution for the canonical
variables), we construct here a general formula for the
quantum probability distribution even moments. We
focus our analysis on states |w) corresponding to zero-
average position and momentum, since such an average
can be arbitrarily changed to any desired value by a sim-

ple translation
|z2)o=D(2)| o) , 2.1)

where D (z) is the displacement unitary operator:
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+

D(z)=exp(za'—z*a) . (2.2)

a' and @ denote the usual creation and annihilation

operators_ [a,aT]r: 1. In fact, for the position
§=(1/V2)a +a'), one has

o214 |2)o=V2Rez . (2.3a)
Thus, the generic nth moment is given by

K2 1@—@N)"2)o=(0|§" " |)=X . (2.3b)

Analogous results hold for the momentum operator
p=(i/V2)a'—a).

We shall restrict our attention to Fock states | ), nor-
malizable in the following sense:

oo o
lo)=3 w,|n), (o o) =|o|*= > | [2=1.
n=0 n=0

(2.4)
The aim of the formula derived in this section is simply
to provide a change of basis from the number-operator
representation to the position (or momentum) represen-
tation. There results an interesting factorization of the
expression for the moments in two terms, one account-
ing for the complex ray-vector direction of |w) and the
other describing the functional structure of the Fock

space, reflected in such a change of basis.
The probability distribution in the § representation of

the state |w) is given by

2
_ , e ¢ o . H,(q)H, (q)
0,(q)=| (q |a)>| =V "mzxo“’nwm (2" My tm /2
(2.5)

H,(q) are Hermite polynomials of order n. The above
factorization comes into play if one writes Eq. (2.5) in
the form

0.(q)=Tr[QQ(g)], (2.6)
where
Q={Q;}, Qj=o0], 2.7
and
-¢* H,(q)H,(q)
QUQ=(2y(@)}, Qunla)="= DEm D (38)

T (2" Tnim )2

The generating function of the moments is now obtained
by Fourier transforming the distribution (2.6):

Oux)=F0,1x)=(w|e™|w)=Tr[QA(x)] , (2.9)
where

Ax)=FQ](x) , (2.10a)
namely,

A(x)={A,-j(X)} ’

(2.10b)
2 | @y | X2
—p X /4 V)i U=V p—v [
An(x)=e (2#)!!] (ix)*~YL#% {2 ’
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with v=min(n,m) and p=max(n,m); L8(x) are the usual
Laguerre polynomials. The moments (2.3b) are obtained
by deriving the generating function (2.9) with respect to x.
In particular, for even-order moments we have

XV =Tr[QA?M], (2.11)
2N
A (WA A (2.12)
dx x =0

After some nontrivial manipulations, whose details are
briefly summarized in Appendix A, one obtains

(2N) _ (2N) (2N) _ A(2N) (2N) —
A _{Aij > qu —qu ’ Am+2r+l,m‘“o(72 13)

(2N)
Am +2r,m

_ O(N —r) | (m +2r)
T 2r—1 m!

XF(r—N,—m;2r +1;2),

6(x) being the Heaviside function 8(x)=1, x >0, 6(x)=0,
x <0, and F (h,k,p ;x) the usual hypergeometric function.

Let us recall, for the sake of reference, that in the num-
ber fi representation, the probability distribution and the
generating function of the moments are trivial:

Non)=|{n |o)|*’=|w,|?, (2.14a)

Nw(w)=e—iw(n) 2 elwn rw" iZ ,
n=0

where (n)=(w |# |o).

(2.14b)

ITI. GENERALIZED SQUEEZED STATES

The property that |w) is a zero average state is
guaranteed if one assumes

lo)=8,]0), (3.1

where S, is a unitary squeezing operator, which is an an-
alytic function of multiparticle operators (i.e., operators
that create more than one particle at a time).

Furthermore, as we are interested in even distributions,
we need an even number of particle creators. The usual
squeezing operator,* which gives rise to a Gaussian distri-
bution,

P

S(8)Gauss=exp[+(fa—¢*a?)]

satisfies both the above requirements. Fisher, Nieto, and
Sandberg’ have proposed generalizations of the operator
(3.2) in the form

§k(§)=exp(§a1k—§*ak+h1) , (3.3

where h,=h,T is a polynomial in ¢ and a' with powers
up to (k —1). It should be remarked that the state cor-
responding to this operator does not belong to the class
of states considered in (2.4), as the vacuum vector does
not belong to its domain of analyticity.

In a series of recent papers,'! ™! the authors have pro-
posed a set of generalized multiphoton squeezing opera-
tors of the form

(3.2)

Sk(&T,0)=exp[¢E'¥(T,0)—H.c.], (3.4)

where I' is a group [the Weyl-Heisenberg group, SU(n),
n >2, and SU(1,1) were considered], o is the label of the
irreducible representations of I, and E'¥) is the raising
operator corresponding to the realization of I' in the rep-
resentation o in terms of generalized k-boson operators.
The latter, first introduced by Brandt and Greenberg,® are
defined by the commutation relations

bublnl=1,
[a'a,b]=—kby, ,

(3.5)
(3.6

showing that b, and bfk) are annihilation and creation
operators of k photons simultaneously, such that b|,=a
but b(k,ia" for k > 2.

In the Fock space they operate as

by [n)=[[n/kIDV?*|n—k) ,

(3.7a)

[[x]]=integer part of x ,
bl | n)=([[n/k]]+ 1) |n+k) . (3.7b)
In the case of the Weyl-Heisenberg (WH) group

E® =b ), whereas for the other groups considered the
raising operator is realized in the o representation accord-

ing to the Holstein-Primakoff scheme:'°
EX(SUQR);0)=(20+1—blubu) bl (3.82)
E®(SU(1,1);0)=20 —1+bobi) bl . (3.8b)

Notice also that the usual squeezing operator (3.2) belongs
to a representation of SU(1,1) (the o= discrete series),
but not in the Holstein-Primakoff realization.

The squeezed states, corresponding to the squeezing
operators introduced above [with the obvious exception of
(3.3)] can be explicitly written in the Fock basis (2.4) as

2n 1/

2
e 2n), (B.9)

I §>Gauss=(1_ | g | 2)1/4 §O

n=

|Ek Ywn=exp(— L | E(D) S, -‘% |kn) (3.9b)
n=0 n!
1/2
| &k,0)su=(1+ ] 3 n E"|kn) ,
n=0
(3.9¢)

| &k,0)sua,)

i 172
=1-[&15° 3 |2"+,;’—1] £ kn) . (3.9d)
n=0

The relation between the parameter £ labeling the states in
(3.9) and the parameter § used to define the corresponding
squeezing operators (3.2) and (3.4) (which is straightfor-
wardly obtained by using the Baker-Campbell-Hausdorff
formula) is reported in the first column of Table I.
Equations (3.9) manifestly show that the squeezed
states constructed are multiphoton states: indeed they are
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TABLE 1. Baker-Hausdorff parameter £ and its range; and photon-number average, variance, and fluctuation vs £, for the
different squeezed states considered.
Squeezed Range of ()
state E=E(8) 1€ (n) (An)? 5= A”n
— 5 tanh 0-1 _ gl ,_ &2 .
Gauss g—\é_itan(lﬁ) T TTIE: Vz\g\
WH §=¢ 0-o0 kgl kg2 &1
——Lt 0— 2k __J_QLZ_ 2k2 ___Léji__ V2o
U@ §‘=§r antlel) - garE T+ 577 ol¢l
e 2 2 R
SU(, D) -l—é%tanh 135 0-1 zkgl—lﬁ]—g‘—z 21¢20(1—_L%W Vi | £

of the general form (2.4) with ©w,50 only if n is a multi-
ple of k with k> 2 [k=2 in (3.9a)].

The moments of such multiphoton states satisfy the fol-
lowing theorem.

For a k-photon state |w), only the moments X2V corre-
sponding to 2N >k can be squeezed for even k, N>k for
odd k.

The proof of this theorem is based on the observation
that upon dividing the contributions to Tr[QA?M'] on
the right-hand side (RHS) of (2.11) into a ‘‘diagonal”

part 32, Q;A?" and an “off-diagonal” part
2 Q[} A (2N)
lj =
oy

the former is always > 1=XZY. [as one can check from

(2.13) with r=0, and (2.7) with i =j]. Thus, in order to
have squeezing, i.e., X'>¥) < 1, the latter must be strictly
negative. A necessary condition for this is that
O(N —r)=1 in (2.13), namely, N >r or 2N >k for even
k. For odd k, the final condition in (2.13), further limits
squeezing to higher moments in that 2r should also be
an integer multiple of k, then N >k. It is interesting
that such a property holds also for the states obtained
with the squeezing operator (3.3) even though they do
not belong to the class of normalizable states considered
here. This was verified numerically using Padé approxi-
mants.® By inspection of (3.9) one can check that wy, is
proportional to £"; hence, (2.7), (2.11), and (2.13) imply
that the best squeezing can be obtained for real negative
& for each moment.

The probability distribution (2.14) of the number opera-
tor for the states (3.9) is given by

N (2n)=(1— [ £ )12 2" 11E]? (3.10a)
N%%’é’<kn)=e-'§”|§|2"/nz, (3.10b)
Nty (kn)=(1+ [£]?)72 (€%, (3.10¢)
NGha) (kn)=(1— | £] 2% [2‘””” -1 ] €12, (3.10d)
Nuss(2n +1)=0, (3.10€)

k o Jk,o
NGE (p)= NGty (p)= N(s%{cx,l))(.ﬁ):(), p#kn . (3100

Equations (3.10b)—(3.10d) represent, respectively, the
Poisson, binomial, and negative-binomial distributions in
the many-photon variable kn.

IV. SQUEEZING VERSUS PHOTON-NUMBER
FLUCTUATIONS

In this section we focus our attention on the photon-
number operator and, in particular, on its probability dis-
tribution. It appears that, contrary to the case of position
and momentum operators, the latter depends on the dis-
placement characteristic of the state [see Egs. (2.1) and
(2.2)].

We shall, however, still perform our analysis in the
zero average position and momentum case, which physi-
cally corresponds to a weak signal limit. This not only
permits us to simplify the numerical analysis, but de-
scribes as well the most critical (and therefore most in-
teresting for applications) situation of noise superim-
posed on a weak signal. It turns out that in order to
compare the statistical properties inherent in the
different states, the squeezing parameter & introduced in
Eqgs. (3.9) does not lend itself to a transparent physical
interpretation and appears therefore somewhat ambigu-
ous. On the other hand, one can see from Table I that
the quantity describing the fluctuation

8=An/{n) 4.1

of the number operator is inversely proportional to |§& |
with coefficients depending on the group representation.
We therefore adopt 6! as a good independent variable to
compare different kinds of squeezing.

Figure 1 reports the second moments X ) for the vari-
ous two-photon squeezed states as functions of 8~1. The
states considered correspond to Weyl-Heisenberg and to
SU(2) and SU(1,1) groups (the latter two in the =3
representation). For the sake of comparison, the results
for Gaussian states are also shown.* One can notice
that among all states, the Gaussian ones exhibit the best
squeezing for a fixed value of §~!. However, they can-
not attain a ﬂuctua_tion in the observable number of pho-
tons lower than V'2; in other words, the Gaussian states
are photon noisy. Furthermore, as X&) is a monotonic
decreasing function of 87!, the best squeezing corre-
sponds to the lowest A fluctuation. On the other hand,
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FIG. 1. Squeezing (i.e., second moment for negative squeez- FIG. 2. Reduced # square variance vs the inverse #-

ing parameter) vs the inverse A fluctuation parameter 8!, for
the various two-photon squeezed states; SU(2) and SU(1,1)
states correspond to the o =3 representation.

all the other non-Gaussian states give rise to functions
X® (6—!) which are not monotonic but exhibit a local
minimum. Among them only the SU(1,1) states can be
completely squeezed (X'?)=0).

One can also notice that, in general, non-Gaussian
states can attain a photon-number fluctuation smaller
than those of the Gaussian states. In particular, the
Weyl-Heisenberg states can have an arbitrary small pho-
ton noise, but they are squeezing limited in that the
second moment XZ}; exhibits an absolute minimum
X'\%H,min=0.317 44 corresponding to 8 ~'=0.646 75. The
SU(1,1) states can be squeezed to zero second moment in
correspondence to the optimal value 6~ =V20 (an ex-
plicit analytic determination of this zero absolute
minimum for X (52&(1,1) is done in Appendix B). Therefore,
one can simultaneously reduce to zero both # noise and
g noise in the limit 0 — . It is worth pointing out that
whereas for WH states the local minimum is also a glo-
bal one, for the SU(1,1) states the absolute minimum
does not coincide with the relative minimum (numerical
values of such minima for large o are given in Ref. 13).
Finally, the SU(2) states are no longer squeezed
(X)2)> 1) for small # fluctuations.

Figure 2 shows the reduced absolute fluctuations
(An /k)* vs 8! for the same states considered in Fig. 1.
It appears from this figure, comparing it with the previ-
ous one, that the better the squeezing the higher the
photon-number fluctuations. In particular, the Gaussian
states exhibit the highest photon noise.

In the limit of squeezing to zero second moment,
8—V'2-for Gaussian states or §—1/v20 for SU(1,1)
states, the A variance increases asymptotically to infinity
for both states. (An /k)WH2 grows parabolically with
87!, whereas (An /k)su(z) shows a maximum, and de-

creases to zero as 8! tends to infinity, as ~(8" 12,
From Figs. 1 and 2, one can then conclude that the lo-

cal minimum of X'? for non-Gaussian states can be con-

fluctuation parameter 8! for the same two-photon squeezed
states of Fig. 1.

sidered an optimum situation as it provides a good
compromise between the requisite of the maximum
squeezing and that of minimum absolute noise in the pho-
ton number.

V. SCALING LAWS

The existence of the two vertical asymptotes for
Gaussian and SU(1,1) states in Fig. 2, corresponding to
the vanishing of X'?, suggests that we look at the depen-
dence of X'*’ vs (An /k)?. One expects a scaling relation,
that in the limit of large (An)? should give a generalized
uncertainty relation in the form

X2(An)¥ ~C . (5.1)

Figure 3 shows the log-log plot of squeezing versus re-
duced absolute photon-number fluctuation for all the
two-photon states of Fig. 1. One can notice that y =1
for both Gaussian and SU(1,1) states, in the latter case y
being independent of the value of o, provided it is finite
(see Appendix B for some details of this analysis). The
constant C depends on both the state [Gaussian or
SU(1,1)] and the representation (o). Thus, the parame-
ter ¥ can be thought of as a universal scale exponent.
One should notice that, considering the WH states as the
0— oo limit of SU(1,1), as discussed in Ref. 13, the
universal behavior is broken in the same limit and we
have y =0.

Scaling laws analogous to (5.1) can be found for
higher-order moments as well. Somewhat unexpectedly,
scaling laws for second- and higher-order moments ap-
pear for all states corresponding to the local minima of
the moments themselves versus 8~ !. In this case, the
parameter whereby the two uncertainties X'*¥ and (An)?
can be connected is the representation label o, which is
the only remaining free variable. Therefore we continue
now our analysis of the optimal squeezing properties of
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FIG. 3. Log-log plot of squeezing vs reduced absolute A
fluctuation for the same two-photon squeezed states of Figs. 1
and 2.

the non-Gaussian states, by studying numerically the
minimal moments X'2Y for even k (k=2,4) and order 2N
(N=1-4) vso L.

Figure 4 shows the resulting plots (for simplicity we
write X" instead of Y2¥)). One can notice how the
curves corresponding to SU(1,1) and SU(2) converge for
o— oo to the Weyl-Heisenberg values, with opposite lim-
iting derivatives. A similar limiting behavior can be
found in the plot of the square variance (An)pmin> [namely,
(An)? corresponding to the local minimum of YV vs
5~!, which we simply denote as (An)?] vs o ~! of Fig. 5.

Generalized scaling laws of the form

2y (N)
X (Am Y

Ci(N) (5.2)

can be obtained by eliminating o ~! between correspond-
ing curves of Figs. 4 and 5.

Figure 6 gives the log-log plots of the minimal moments
XY versus the corresponding # variance, which mani-
festly exhibit a power-law behavior of the form (5.2). It is
interesting to point out how, in this representation, all
states [WH, SU(2), and SU(1,1)] lie on the same straight
lines. The exponents yx(N) are positive numbers less
than 1, whose dependence on N and k is shown in Fig.
7(a). Figure 7(b) shows the dependence of the constants
Ci(N) on the same integer parameters. Notice that
whereas v (N) is monotonically increasing with N and
decreasing with k, C;(N) is decreasing with N and in-
creasing with k.

For k=2 and N=1 we have, from Fig. 7(a), y ~3
which is lower than the value y =1 that we found at the
absolute minimum and is very close to the value report-
ed in Ref. 13 in a slightly different, but related context.

VI. CONCLUSIONS

A numerical analysis of the squeezing and higher-order
moments features of the k-photon squeezed states has
been performed, based on the general formula for the
probability distribution moments derived in Sec. II.
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FIG. 4. Generalized squeezing for the 2Nth moments vs

1/o for k-photon states at the local minimum in §~': (a) k=2,
N=1-4;(b) k=4, N=2-4.

Two interesting results emerge from such analysis.
One can attain good squeezing without unbounded in-
crease of the fluctuations in the number of photons. In
fact, there exist states giving a stable minimum squeez-
ing with a limited photon-number noise. Moreover,
both these states and the states corresponding to com-
plete squeezing are characterized by new uncertaintylike
relations in the form of scaling laws connecting the §-
distribution higher moments with the number fluctua-
tions. In view of the generality of the # distributions in-
volved as well as of the flexibility of all the k-photon
states, we are led to conjecture that our results represent
characteristic features of squeezing in general.

A rigorous proof of this conjecture would require a
general definition of squeezed state, probably using non-
trivial methods of functional analysis. Work is in pro-
gress along these lines.

APPENDIX A

The generating function Q,(x) for the moments X2’
has been given in Eq. (2.9) in the form of the trace of a
product of two infinite-dimensional matrices:
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(an)?
.025
020 wH —
SU(L)
T T T T — — — __5U(@)
015 Neb T =
1 1 | 1 | | 1 | |
0 2 4 6 8 1 1.2 1.4 1.6 1.8 2

FIG. 5. Absolute # fluctuation vs 1/0 for k-photon states at
the 2Nth moment local minimum: (a) k=2, N =1-4; (b) k=4,
N=2-4.

0,(x)=Tr[QA(X)], (A1)

where the matrix Q is given by Eq. (2.7) and depends
only on the state |w), and A(x), independent of |w), is
linked only to the change of representation from the
number observable i to the position §. A(x) can be de-
rived by Fourier transforming the matrix given by Eq.
(2.8) and using the identity

[ dge=9"+"H, (@)Hu(q)

u—v
—v
LY

. 2
2 ix X
=Vigre =X/t | = -

>

(A2)
v=min(n,m), pw=max(n,m) .
One obtains Eq. (2.10), which gives the matrix elements

A, (x) of A(x) as
172

(2v)! (VL E—

(2u)t

x?

(A3)

The even-order moments are obtained by computing the
derivative

ony ST T —— T v
X7 sl (a) S~ _Su2)
\\
AN \\ WH 4
~ S~
~N ~
3+ S Nzl A
N N suL)
N ~N
FINN N S |
N \\ ~
\\ N
. .~ sz
N N
N N
N
= AN N=3 -~
- A -
I \M ]
| | L N S | L L
] ) 1
(an)
! (b)
b
el N2
o
S+ —
- N=3
81— -
WH
2 _Su() H B
' T b N=4
Su(Ly)
.6 |
.01 2 .02 .03
(an)

FIG. 6. Generalized squeezing for the 2Nth moments vs ab-
solute A fluctuation at the local minimum (log-log plot): (a)
k=2, N=1-4;(b) k=4, N=2-4.

2N
XEOZN)=TI‘[QA(2N)], A(ZN):(__)N d v Alx) . (A4)
dx
x =0
Using the identities
21
:2, et =2-l21 — 1), (A5)
z z=0
d¥ « z nla+B
p B e =2l —1)! [B_l], (A6)

one obtains the intermediate formula

d 21
dz 21

_z?
2

2
e’ /4[§
z=0

=2-l21 1M [ajﬁ]F(—l,—ﬁ;aH;z) , (A7)

where F(n,m,a;x) is the usual hypergeometric function.
Equation (A7) together with

dZI

ﬁ Zp=8p,21(21)! (A8)

z=0
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FIG. 7. (a) The exponent y«(N) and (b) the constant Ci(N)
of the scaling laws (5.2), corresponding to plots of Fig. 6, vs N
for k=2,4.

allow us to compute the matrix derivative in (A4) giving
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APPENDIX B

In this appendix the zero absolute minimum of the
squeezing for k=2 SU(1,1) states is analytically checked
and the scaling law of squeezing versus 7 variance is ob-
tained near such a minimum. The basic formulas in
computing the squeezing are the expectation values in
the k=2 SU(1,1) state (£ =pe'?):

2
(aJra):ﬂL2 , (B1)
1—p
((a")?)=26*(1—p»)¥
> ipzn [n +2na——1 [(n +1)n +20)]'72
n=0
(B2)

which can be simply obtained from Eq (3.9d).
Equations (B1) and (B2) allow us to compute the
second moment in the squeezing case, corresponding to

d=m:

wP=142[Ca"a)— (@) ] . (B3)
One needs to study the asymptotic behavior of the series
in (B2) for p—1 and compare its singular part with the

divergence in Eq. (B1). It is convenient to rewrite Eq.
(B2) as

*
<(aT)2>=(702%1—)T(1—p2)2”F0(p2) : (B4)

where the auxiliary function F,(x) is given by

the result (2.13): L)1
2 d20 E n n +-2-
A(ZN) B 6(N _r) (m +2r)' N Fa(x): deU Go(x), Ga(x): néox n +20
M (o — 1) m! r
{ ) (B5)
XF(r—N,—m;2r +1;2), ) .
To get an asymptotic expansion for G,(x) and, hence, for
(A9) F,(x) one needs to sum G,(x) resorting to its integral
Ay im =0, AZN=AZN representation. This can be done using the identity
J
8 1/2
Ll._m—_ _ * —n —at t _
e | =" J o die " e~ Uo(B+(a—p) ['due“Io(Bu) |, (B6)

where I,(x) are the customary modified Bessel functions. After an integration by parts one obtains

1 dt

Ga(x)zt‘;——fa(oo)—l- fow ﬁgo(ﬁ, (B7)
where
dfs (c+1/4 !
g,(t)= . fot)y=e~lotl/ ”Io[(a—%)t]+gfo due VYU [(0—Lu] . (B8)

The singular part of the integral on the right-hand side of Eq. (B7) can be extracted through the intermediate steps
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w dt & d"
——g, ()= 3 (—)'C (o — 1)y +12_
fO I—xe '% “ nzo( rCalo=3) dy"
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y=o0+1/4
1 < —1](=)p+!
— 1= [In(1—x)+ B ]-—(1—x)P+'—1
[xy p§0 +1 P+1 [ ]
— < h 1y +1 d" 1
=3 (=)"Cyloc—1) — ——In(1—x)+reg(l—x) |, (B9)
n=0 dy y=0+1/4 x?
where reg(1—x) denotes the regular part of the integral and C, are the coefficients of the expansion
I —Ig(t)= 3 Cut". (B10)
n=0
It follows that the asymptotic behavior of F,(x) for x —1 is given by
(20)! d* _ &
F”(")=(—1_,C)T+l—(a_%)dx2° xo— 14 EOC,,(G—%)"(lnx)”ln(1—x)+reg(l—x) (B11)
n=
Using Egs. (B1)—(B5) and (B11) one finally obtains squeezing near the p=1 absolute minimum:
80 4o —1 i d*
D —1_29P _ (1—p2)2 C,(oc—1)y x 7 Y4(Inx)"In(1—x) | +reg(1—x)
14p  o_P 1P| 2 Glo =3l oy g
—l—do——27=L I —140(1—p)]+0(1—p)~1— (B12)
B (20 —1)! ' P P g
T
From the last equation one can see that the squeezing X?P~(An?)-12, (B14)

goes to zero near p=1 as 1—p. From Table I we extract
the singular behavior of the variance { An?) near p=1:

(An?) ~(1—p)*. (B13)

Comparing the asymptotic behavior of X'? and (An?)
one finally obtains the scaling law

For Gaussian states the same scaling law follows directly
from Table I and the explicit expression of the second
moment:

1— |

~1— ~[(An)*]~12. (B15)
15 €] [&] ~I ]

2
X (Gz)\uss =
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