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Abstract – Recently quantum walks have been considered as a possible fundamental description
of the dynamics of relativistic quantum fields. Within this scenario we derive the analytical
solution of the Weyl walk in 2 + 1 dimensions. We present a discrete path-integral formulation
of the Feynman propagator based on the binary encoding of paths on the lattice. The derivation
exploits a special feature of the Weyl walk, that occurs also in other dimensions, that is closure
under multiplication of the set of the walk transition matrices. This result opens the perspective
of a similar solution in the 3 + 1 case.
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A simple description of particles propagation on a dis-
crete spacetime was proposed by Feynman in the so-called
checkerboard problem [1] that consists in finding a simple
rule to represent the quantum dynamics of a Dirac particle
in 1 + 1 dimensions as a discrete path integral.

The definition of a discrete path integral is closely re-
lated to the underlying notion of “discrete spacetime” and
on the dynamical model used to describe the discrete time
evolution of the quantum systems. As a consequence, in
the absence of an established theory of quantum space-
time, the formulation of a discrete Feynman propagator
can be considered within different possible scenarios.

Following the original idea of Feynman, and the sub-
sequent progress of refs. [2,3], in ref. [4] Kaufmann and
Noyes analysed the checkerboard problem, providing a
solution of the finite-difference version of Dirac’s equa-
tion. In refs. [5,6] a path-integral formulation for the dis-
crete spacetime is presented within the causal set approach
of Bombelli and Sorkin [7], with trajectories within the
causal set summed over to obtain a particle propagator.
More recently, following the pioneering papers [8–10], the
quantum walks (QWs) have been considered as a discrete
model of dynamics for relativistic particles in refs. [11–20].

A QW is the quantum version of a (classical) random
walk that describes a particle moving in discrete time steps
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and with certain probabilities from one lattice position to
the neighboring sites. The first QW appeared in [21] where
the measurement of the z-component of a spin-(1/2) quan-
tum system, also denoted as internal degree of freedom or
coin system, decides whether the particle moves right or
left. Then the measurement was replaced by a unitary op-
erator on the coin system [22] with the QW representing a
discrete unitary evolution of a particle state with internal
degree of freedom given by the coin. In the more general
case the coin at a site x of the lattice can be represented
by a finite-dimensional Hilbert space Hx = Cs, with the
total Hilbert space of the system given by the direct sum
of all sites Hilbert spaces.

QWs provide the one-step free evolution of one-particle
quantum states, however, replacing the quantum state
with a quantum field on the lattice, a QW describes
the discrete evolution of non interacting particles with
a given statistics —a “second quantization” of the QW.
This can be ultimately regarded as a quantum cellular au-
tomaton [23] that is linear in the field. QWs have been
largely investigated and formalized in computer science
and quantum information [22–27] with relevant applica-
tions in designing efficient quantum algorithms [28–31].

As pointed out in ref. [22] a walk can be analyzed in two
different ways. On the one hand one can diagonalize the
QW in the momentum space, on the other hand one can
consider a discrete path-integral approach, expressing the
walk transition amplitude to a given site as a combinato-
rial sum over all possible paths leading to that site. Within
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the last perspective some QWs in one spatial dimension
have been analytically solved, the Hadamard walk [22],
where the Hadamard unitary is the operator on the coin
system, the coined QWs [32], with an arbitrary unitary
acting on the coin space, and the disordered QWs [33],
where the coin unitary is a varying function of time.

In refs. [14,15] the authors have derived the simplest
QWs in d + 1 dimensions, d = 1, 2, 3, that satisfy elemen-
tary symmetry requirements and that, as a consequence,
give the usual Dirac and Weyl equations in the limit of
small wave vectors with respect to the lattice step. The
small wave vector approximation coincides with the rela-
tivistic limit if the lattice step is hypothetically assumed
equal to the Planck scale.

While in ref. [34] the discrete path-integral solution is
given for the Dirac walk in 1 + 1 dimensions, here we
present a technique which can be used to solve the discrete
path integral for walks in dimensions higher than one.
First, if the transition matrices of the walk form a closed
algebra under multiplication, one can split the paths con-
necting two arbitrary sites on the lattice into equivalence
classes according to their overall transition matrix. Upon
a suitable choice of labeling, one can encode paths into bi-
nary strings, and associate specific algebraic properties of
the strings with the overall transition matrix and with the
couples of lattice points connected by the path. This re-
markable correspondence allows us to classify strings that
connect two given points in a given number of steps, with
the same overall transition matrix. Finally, by a combina-
torial analysis, the number of strings in each equivalence
class is counted. In this paper we apply this approach to
the Weyl walk in 2+1 dimensions providing its analytical
solution. However, the same scheme can be used in prin-
ciple for any QW which allows for a classification of paths
in terms of algebraic properties of the encoding strings.

The Weyl QW of ref. [15] describes the one-step linear
evolution of a two-component quantum field on the two-
dimensional square lattice Z2

ψ(x, y, t) :=

(

ψ1(x, y, t)

ψ2(x, y, t)

)

, (x, y) ∈ Z
2, t ∈ Z,

where ψ1 and ψ2 denote the two modes of the field. Here
we restrict to the one-particle sector and the statistics
is not relevant, but the presented solution is straightfor-
wardly extended to free multi-particle state. In the single-
particle Hilbert space ℓ2(Z2) ⊗ C2 we use the factorized
basis |x⟩|s⟩, with x ∈ Z2 and s = 1, 2.

The walk is a unitary operator A that gives the one-
step update of the field ψ(t+1) = Aψ(t). The evolution is
required to be local, corresponding to writing ψ(x, y, t+1)
as a linear combination of the field values ψ(x ± 1, y ±
1, t) on the nearest neighbouring sites, and translationally
invariant, corresponding to a unitary operator of the form

A =
∑

h

Th ⊗ Ah, h = R,L,U,D. (1)

In the last equation the symbol Th, h = R,L,U,D, rep-
resents the translation operators on the square lattice, re-
spectively in the right, left, up and down direction, while
the Ah are the 2 × 2 transition matrices of the walk act-
ing on the coin system. In the Weyl case the transition
matrices are

AR =
1

2

(

1 0

−ν 0

)

, AU =
1

2

(

1 0

ν 0

)

,

AL =
1

2

(

0 ν∗

0 1

)

, AD =
1

2

(

0 −ν∗

0 1

)

,

(2)

with |ν| = 1.
In ref. [15] the dynamics of the Weyl walk has been

studied in the wave vector space. Diagonalizing the walk,
and interpreting the wave vector k as the momentum, it
has been shown that the usual Weyl equation kinematics
is recovered for small momenta (k → 0). This means
that there exists a class of states whose walk evolution is
indistinguishable with respect to the usual Weyl equation
solutions.

Taking the initial condition ψ(0), the field at time
t is given by t applications of the walk ψ(t) = Atψ(0),
and by linearity ψ(x, y, t) is a linear combination of the
field ψ(x′, y′, 0) at the points lying in the past causal
cone of (x, y, t). According to eq. (1) at each time step
the field ψ coherently undergoes the four transitions Th,
h ∈ {R,L,U,D}, with the coin system multiplied by the
corresponding transition matrices Ah. A point (x′, y′, 0)
is generally connected to (x, y, t) via a number of different
possible paths, each of which conveniently identified by a
string σt = htht−1 . . . h1 of transitions and characterized
by the overall transition matrix

A(σt) = Aht
Aht−1

. . . Ah1
. (3)

Summing over all possible paths σt and all points (x′, y′, 0)
in the past causal cone of (x, y, t) one has

ψ(x, y, t) =
∑

x′y′

∑

σt

A(σt)ψ(x′, y′, 0). (4)

In the following we will use the binary encoding

Ah =
1

2
Aab, a, b ∈ {0, 1}, (5)

R → 00, L → 11, U → 10, D → 01, (6)

with a path σt uniquely identified by a 2t-bit string
σt = htht−1 . . . h1 → st = atbtat−1bt−1 . . . a1b1.

Now, in order to translate the sum over paths σt in
eq. (4) into a sum over binary strings we need a neces-
sary and sufficient condition that characterize all strings
st = atbtat−1bt−1 . . . a1b1 that connect a pair of points
(x′, y′, 0) and (x, y, t) on the causal network. For con-
venience we split the string st into the two substrings
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αt = at · · · a1 and βt = bt · · · b1 corresponding to the bits
in odd and even positions

st = (αt, βt), αt, βt ∈ {0, 1}t. (7)

Upon introducing the set-bits count for the binary sub-
strings αt and βt

α̂ :=
t

∑

j=1

aj , β̂ :=
t

∑

j=1

bj ,

we show that given a pair of points (x, y, t) and (x′, y′, 0),
a string st = (αt, βt) corresponds to a path connecting
them if and only if t − |x − x′|− |y − y′| is even and

α̂ =
1

2
(t − (x − x′) + (y − y′)),

β̂ =
1

2
(t − (x − x′) − (y − y′)).

(8)

These equalities are easily proved as follows. First
we denote by r, l, u, d the occurrences of the R,L,U,D
transitions in the path, with total number of steps
t = r + l + u + d. Now, recalling the binary encoding
R = 00, L = 11, U = 10, D = 01, we observe that the
only steps contributing to α̂ are left and up, while the
steps contributing to β̂ are left and down, namely

α̂ = l + u, β̂ = l + d.

From the equations above, and noticing that r− l = x−x′

and u − d = y − y′, one finally has

α̂ − β̂ = u − d = y − y′,

α̂ + β̂ = t − (r − l) = t − (x − x′),

that proves eq. (8).
In simple terms a binary string st = (αt, βt) corresponds

to a path between the points (x, y, t) and (x′, y′, 0) if and
only if the number of 1-bits in the substrings αt and βt are
as in (8), and all the admissible paths are then obtained by
independent permutations of the bits in the two substrings
αt and βt.

With the chosen binary encoding it is easy to check that
the matrices Aab in eq. (5) generate a closed algebra with
composition rule

AabAcd = (−1)(a⊕c)(b⊕d)Aad, (9)

where ⊕ denotes the sum modulo 2. Accordingly, we see
that the overall transition matrix (3) associated to a path
st is given by

A(st) =
1

2t
(−1)ϕ(st)Aatb1 , (10)

where the phase ϕ can be computed by induction from its
recursive expression ϕ(st) = ϕ(st−1)⊕ (at−1⊕at)(b1⊕bt).

Starting from ϕ(s2) = (a1 ⊕ a2)(b1 ⊕ b2) one gets the
general expression

ϕ(st) =
⊕

j∈Zt

(aj−1 ⊕ aj)bj . (11)

By eq. (10) we see that the transition matrix of a given
path st depends only on the first and last step, more pre-
cisely on the first and last bits at and b1 of the string st,
and is proportional to one of the four initial transition
matrices Aab. Exploiting this feature we split the paths
st into four equivalence classes, say Sab with a, b ∈ {0, 1},
corresponding respectively to paths having Aab as over-
all transition matrix. Then the discrete path integral of
eq. (4) is restated as follows:

ψ(x, y, t) =
∑

x′,y′

∑

st

A(st)ψ(x′, y′, 0)

=
1

2t

∑

x′,y′

∑

a,b

cabAabψ(x′, y′, 0),

cab =
∑

st∈Sab

(−1)ϕ(st),

(12)

with the sum over all admissible paths σt replaced by
the sum over all possible binary strings st. We notice
that, while the transition matrix Aab of a path st depends
only on the first and last steps, the sign (plus or minus)
depends in general on the whole path according to the
phase (11). As a consequence each coefficient cab is not
simply the cardinality of the equivalence class Sab but the
sum of paths therein, each one with a sign given by its
own phase.

In order to compute analytically the coefficients cab of
eq. (12) we exploit the set-bits counts of eq. (8) for paths
st = (αt, βt) and the following observation on the phase
in eq. (11). The phase ϕ(st) of a path st = (αt, βt)
can be determined in three steps: i) find in the string
αt the number of adjacent pairs of different bits so that
aj−1 ⊕ aj is not zero, ii) check how many of these ad-
jacent pairs are selected by the 1-bits in βt so that
(aj−1 ⊕ aj)bj is not zero, iii) if the above number is even
then the phase ϕ is 0 (the sign of the transition matrix is
plus), otherwise it is 1 (the sign of the transition matrix
is minus).

First let us consider the strings αt. For any αt, consec-
utive equal bits can be grouped into substrings as follows:

αt = atat−1 . . . a1 = . . . τ (n)
1 τ (n+1)

0 τ (n+2)
1 τ (n+3)

0 . . . , (13)

with τ (n)
i = aiai . . . ai, i = 0, 1 made of all i-bits. For

example, let us consider the 7-bit string 0010111. In this

case we have τ (1)
0 = 00, τ (2)

1 = 1, τ (3)
0 = 0, τ (4)

1 = 111.
Denoting by p the number of τ1 slots, we see that there is
a pair of different bits in correspondence to any interface
—considering the string as cyclic— between slots of dif-
ferent type τ1 and τ0; consequently, any of the p τ1 slots
has two interfaces, except for the case in which at = 1 and
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a1 = 1. Therefore, the total number of pairs of different
bits is 2(p − ata1). The number up

aa′ of strings αt with
at = a, a1 = a′, with p slots of type τ1 and 2(p − ata1)
pairs of different bits is then

up
aa′ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

α̂ − 1

p − 1

)(

t − α̂ − 1

p − a − a′

)

, if 0 < α̂ < t,

1, if α̂ = t ∧ aa′ = 1 or

α̂ = 0 ∧ (1 ⊕ a)(1 ⊕ a′) = 1,

0, if α̂ = t ∧ aa′ = 0 or

α̂ = 0 ∧ (1 ⊕ a)(1 ⊕ a′) = 0.

(14)

To prove eq. (14) we remind that in αt there are α̂ 1-bits
and t − α̂ 0-bits that must be arranged independently
in p and p − a − a′ + 1 slots, respectively. The num-
ber of these arrangements is given by the product of the
p-compositions of α̂ with the (p−a−a′ +1)-compositions
of t − α̂ (the number of p-compositions of an integer n is
(

n−1
p−1

)

), which gives eq. (14).
Now we consider the strings βt. Given the strings αt

with at = a, a1 = a′ and µ = 2p − a − a′ free pairs of
different bits1, the number of strings βt with b1 = b that
select k + b(a ⊕ a′) pairs in αt is denoted as wp,k

aa′b and is
given by

wp,k
aa′b =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

µ

k

)(

t − µ − 1

β̂ − k − b

)

, if 0 < β̂ < t,

1, if β̂ = 0 ∧ b = 0 or

β̂ = t ∧ b = 1,

0, if β̂ = 0 ∧ b = 1 or

β̂ = t ∧ b = 0.

(15)

Indeed among the β̂ − b free 1-bits of βt, one uses k of
them to select k free pairs, which can be done in

(

µ
k

)

ways. The remaining β̂ − k − b 1-bits must be arranged
in t − µ − 1 places, which is done in

(t−µ−1
β̂−k−b

)

ways. This

proves eq. (15).
Finally we can calculate the coefficients cab as

cab =
pmax
∑

p=pmin

∑

a′=0,1

kmax
∑

k=kmin

(−1)k+b(a⊕a′)up
aa′w

p,k
aa′b, (16)

with

pmin = min(1, α̂), pmax = min(α̂, t − α̂), (17)

kmin = max(0, β̂+µ−t−b), kmax = min
(

|µ|, |β̂ − b|
)

,

(18)

1Since the total number of pairs of different bits is 2(p − aa′),
and the last and first bits at = a, a1 = a′, p τ1 in αt are fixed, the
number of free pairs is µ := 2(p − aa′) − a ⊕ a′ = 2p − a − a′.

where the product
∑′

a up
aawp,k

aa′b is the total number of
paths with: last bit at = a and first bit b1 = b, 2(p − aa′)
pairs of different bits in αt among which k + b(a ⊕ a′)
selected by the 1-bits in βt.

It is worth noticing that the sign, plus or minus, is de-
cided by the total number of pairs k + b(a ⊕ a′) selected
with the strings βt. For p > 1 and 0 < β̂ < t, the sum
over k in eq. (16) can be evaluated in terms of the hyper-
geometric function 2F1(a, b, c, z), considering that one can
extend the sum over all N since the binomials

(

n
k

)

, with
n ∈ N, are null for all k ∈ Z, k < 0 or k > n:

w̃p
aa′b :=

+∞
∑

k=0

(−1)k+b(a⊕a′)

(

µ

k

)(

t − µ − 1

β̂ − k − b

)

= (−1)b(a⊕a′)

(

t − µ − 1

β̂ − b

)

F p
aa′b,

F p
aa′b := 2F1(b − β̂,−µ, t − β̂ − µ + b,−1).

(19)

In this way we have a simplified expression for the coeffi-
cients cab:

cab =
pmax
∑

p=pmin

∑

a′=0,1

up
aa′w̃

p
aa′b. (20)

In this letter we presented a method for the expression
of a QW via a path sum. The procedure is based on
the binary encoding of the walk paths and on the closure
of the transition matrices algebra. Using this approach
we provided an analytical solution for the Weyl QW in
two space dimensions, providing the first example of dis-
crete path-integral solution for a QW in dimensions higher
than one.

The technique used in this paper could in principle be
generalized to any QW whose transition matrices generate
a closed algebra under multiplication. It is then interest-
ing to investigate which hypotheses on the dynamics of the
walk imply this simple algebraic feature. One can conjec-
ture that the closure of the transition matrices algebra is
a consequence of the QW’s symmetries. Indeed both the
Weyl and the Dirac QWs of ref. [15], which exhibit this
remarkable property, are covariant with respect to the dis-
crete symmetries of the underlying lattice, while removing
the covariance requirement introduces QWs that do not
enjoy the closure property.

On the other hand, it is not clear to what extent one
can generalize the other two conditions that allow for
the analytic computation, namely i) the possibility of
classifying paths connecting fixed vertices with the same
transition matrices in terms of a suitable encoding of ele-
mentary transitions, and ii) the possibility of calculating
the complex amplitude of paths as a simple function of
the encoding.
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