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Quantum cellular automata, which describe the discrete and exactly causal unitary evolution of a lattice 
of quantum systems, have been recently considered as a fundamental approach to quantum field theory 
and a linear automaton for the Dirac equation in one dimension has been derived. In the linear case a 
quantum cellular automaton is isomorphic to a quantum walk and its evolution is conveniently formu-
lated in terms of transition matrices. The semigroup structure of the matrices leads to a new kind of 
discrete path-integral, different from the well known Feynman checkerboard one, that is solved analyti-
cally in terms of Jacobi polynomials of the arbitrary mass parameter.
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1. Introduction

The simplest example of discrete evolution of physical systems 
is that of a particle moving on a lattice. A (classical) random walk
is exactly the description of a particle that moves in discrete time 
steps and with certain probabilities from one lattice position to 
the neighboring positions. This is a special instance of a cellular 
automaton, a more general discrete dynamical model introduced 
by von Neumann [1].

A quantum version of the random walk, called quantum walk
(QW), was first introduced in [2] where a measurement of the 
z-component of a spin-1/2 particle decides whether the particle 
moves to the right or to the left. Later the measurement was re-
placed by a unitary operator on the spin-1/2 quantum system, also 
denoted internal degree of freedom or coin system, with the QW 
representing a discrete unitary evolution of a particle with internal 
degree of freedom given by the spin [3]. In the most general case 
the internal degree of freedom at a site x of the lattice corresponds 
to a Hilbert space Hx , and the total Hilbert space of the system is 
the direct sum 

⊕
x Hx encompassing the Hilbert spaces of all the 

sites. As in the classical scenario, a QW is a special case of a quan-
tum cellular automaton (QCA) [4], with cells of quantum systems 
locally interacting with a finite number of neighboring cells via a 
unitary operator. While QWs provide the one-step free evolution 
of one-particle quantum states, QCAs can describe the evolution 
of an arbitrary number of particles on the same lattice. However, 
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replacing the quantum state with a quantum field on the lattice, 
a QW describes a QCA that is linear in the field (providing the dis-
crete evolution of non-interacting particles with a given statistics). 
This corresponds to a “second quantization” of the QW and can ul-
timately be regarded as a QCA. This is what we call field QCA in 
the present paper.

Both QCAs and QWs have been a subject of investigation in 
computer-science and quantum information, where the two no-
tions have been extensively studied and mathematically formalized 
(see Refs. [5–7,3,8,9]). The interest in these models was also moti-
vated by the use of QWs in designing efficient quantum algorithms 
[10–13].

In Ref. [3] Ambainis et al. provided two general ideas for ana-
lyzing the evolution of a walk. The first idea consists in studying 
the walk in the momentum space, providing both exact analyti-
cal solutions and approximate solutions in the asymptotic limit of 
very long time. The second idea is to use the discrete path-integral 
approach, expressing the QW transition amplitude to a given site 
as a combinatorial sum over all possible paths leading to that 
site. Ref. [3] provides a path-sum solution of the Hadamard walk
(the Hadamard unitary is the operator on the coin system), while 
Ref. [31] gives the solution for the coined QW, with an arbitrary 
unitary acting on the coin space. The same author considered the 
path-integral formulation for disordered QWs [32] where the coin 
unitary is a varying function of time.

The first attempt to mimic the Feynman path-integral in a dis-
crete physical context is the Feynman checkerboard problem [14]
that consists in finding a simple rule to represent the quantum 
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dynamics of a Dirac particle in 1 + 1 dimensions as a discrete 
path-integral. In Ref. [15] Kaufmann and Noyes simplify previous 
approaches [16,17] to the Feynman checkerboard, providing a so-
lution of the finite-difference Dirac equation for a fixed value of 
the mass. However, such finite-difference equations have no corre-
sponding QW or QCA, and generally lead to non-unitary evolutions. 
More recently, following the pioneering papers [18–20], a discrete 
model of dynamics for a relativistic particle has been considered 
in a QWs scenario [21–30].

Here we consider the unique automaton in one space dimen-
sion that satisfies the following basic principles: unitarity, linearity, 
locality, homogeneity and invariance with respect to the symme-
tries of the lattice. In Refs. [25,26] it has been shown that these 
constraints lead to a specific automaton model which describes 
the evolution of a quantum field with two internal degrees of 
freedom. Such a field automaton, which does not correspond to 
a coined QW, gives the usual Dirac equation in the relativistic 
limit of small wave-vectors where the lattice step is hypothetically 
assumed to be the Planck length. After reviewing the one dimen-
sional Dirac automaton and the physical significance of its solu-
tions, we solve analytically the automaton in the position space 
via a discrete path-integral, providing a discrete version of the 
Feynman propagator. In this formulation the discrete paths corre-
spond to a sequence of the automaton transition matrices, which 
are proved to be closed under multiplication. Exploiting this fea-
ture, and the binary encoding of the admissible paths between two 
causally connected sites, we derive the analytical solution for an 
arbitrary initial state and mass parameter.

2. The one-dimensional Dirac QCA

The Dirac QCA of Refs. [25,26] describes the one-step evolution 
of a two-component quantum field

ψ(x, t) :=
(

ψR(x, t)
ψL(x, t)

)
, (x, t) ∈ Z2,

ψR and ψL denoting the right and the left mode of the field. Here 
we restrict to one-particle states and the statistics is not relevant, 
but the presented solution could be extended to multi-particle 
state for any statistics consistent with the evolution. In the single-
particle Hilbert space C2 ⊗ l2(Z), we will use the factorized basis 
|s⟩|x⟩, with s = R, L.

Here the evolution of the field is restricted to be linear, namely 
there exists a unitary operator A such that the one step evolution 
of the field is given by ψ(t +1) = Uψ(t)U † = Aψ(t). In the present 
case the assumption of locality corresponds to writing ψ(x, t + 1)
as linear a combination of ψ(x + l, t) with l = 0, ±1. Homogeneity 
(or translation invariance) corresponds to a unitary operator A of 
the form

A = AR ⊗ T + AL ⊗ T −1 + A F ⊗ I,

AR =
(

n 0
0 0

)
, AL =

(
0 0
0 n

)
, A F =

(
0 im

im 0

)
,

T =
∑

x∈Z
|x + 1⟩⟨x|, (1)

where AR , AL , A F are called transition matrices, and n2 + m2 = 1, 
n, m ∈ R+ .

The specific form of the transition matrices in Eq. (1) has been 
derived in Refs. [25,26] as a consequence of the constraints of uni-
tarity and invariance with respect to the symmetries of the lattice, 
and the dynamics of the automaton (1) has been rigorously an-
alyzed in the k wave-vector space. Interpreting the parameter k
and m of the Dirac automaton as momentum and mass it has been 

shown that the usual kinematics of the Dirac equation is recov-
ered for small momenta (k → 0) and small mass (m → 0). The 
Dirac limit of the automaton is not proved taking a sequence of 
automata with smaller and smaller lattice and time spacing, i.e. 
the continuum limit given by lattice spacings and the time steps 
sent to 0, but rather fixing the automaton and computing the evo-
lution of a class of states with limited band in momentum. For 
these states the automaton dynamics and the usual dynamics of 
the Dirac equation turn out to be indistinguishable.

It is worth noticing that the discrete model of evolution pro-
vided by the automaton (1) differs with respect to the one at the 
basis of the Feynman checkerboard. Indeed the checkerboard so-
lutions to the Dirac equation are valid for discrete physics using 
finite differences calculus (where one usually recovers solutions 
to the infinitesimal Dirac equation in the appropriate continuous 
limit). On the other hand the automaton dynamics does not cor-
responds to a finite difference Hamiltonian or Lagrangian but to 
a discrete and exactly causal unitary evolution. The difference is 
even more clear observing that it does not exist a QCA whose evo-
lution exactly corresponds to the finite difference Dirac differential 
equation. For these reasons the path-sum formulation of the Dirac 
QCA presented in the following does not coincide with the Feyn-
man checkerboard one (see for example [15]) and it is based on 
the algebraic features of the transition matrices in Eq. (1).

3. Path-sum formulation of the Dirac QCA

Given the field initial condition ψ(0), after t time steps one has 
ψ(t) = Atψ(0), and by linearity the field ψ(x, t) must be a lin-
ear combination of the field at the points (y, 0) lying in the past 
causal cone of (x, t). In general each point (y, 0) is connected to 
(x, t) in t time steps via a number of different discrete paths. Ac-
cording to Eq. (1) at each step of the automaton the local field 
ψ(y, 0) undergoes a shift T l , l = 0, ±1, and the internal degree of 
freedom is multiplied by the corresponding transition matrix Ah , 
with h ∈ {R, L, F }. A generic path σ connecting x to y in t steps 
is conveniently identified with a string σ = htht−1 . . .h1 of transi-
tions, corresponding to the overall transition matrix given by the 
product

A(σ ) = Aht Aht−1 . . . Ah1 . (2)

Summing over all admissible path σ and over all points (y, 0) in 
the past causal cone of (x, t), one has

ψ(x, t) =
∑

y

∑

σ

A(σ )ψ(y,0). (3)

We now evaluate analytically the sum over σ in Eq. (3) as a func-
tion of the variables x, y, t .

Upon denoting by r, l, f the numbers of R , L, F transitions 
in σ , using t = r + l + f and x − y = r − l, one has

r = t − f + x − y
2

, l = t − f − x + y
2

. (4)

The overall transition matrix 
∑

σ A(σ ) in (2) can be efficiently 
computed taking the following binary encoding

AR = nA00, AL = nA11, A F = im(A10 + A10) (5)

A00 =
(

1 0
0 0

)
, A11 =

(
0 0
0 1

)
, (6)

A01 =
(

0 1
0 0

)
, A10 =

(
0 0
1 0

)
, (7)

and observing that the matrices Aab satisfy the simple composition 
rule
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Aab Acd = 1 + (−1)b⊕c

2
Aad, (8)

⊕ denoting the sum modulo 2. It is then convenient to denote 
by σ f = ht , . . .h1 the generic path having f occurrences of the 
F -transition, and write Eq. (3) as follows

ψ(x, t) =
∑

y

t−|x−y|∑

f =0

∑

σ f

A(σ )ψ(y,0). (9)

In a path σ f the F transitions identify f + 1 slots

τ1 Fτ2 F . . . . . . Fτ f +1, (10)

where τi denotes a (possibly empty) string of R and L. According 
to Eq. (8) the generic path σ cannot contain substrings of the form

hihi−1 = RL, hihi−1 = LR, (11)

hihi−1hi−2 = R F R, hihi−1hi−2 = L F L, (12)

since they give null transition amplitude. Therefore, according to 
Eq. (11) each τi in (10) is a string of equal letters, i.e. τi = hh . . .h, 
with h = R, L. On the other hand Eq. (12) shows that two con-
secutive strings τi and τi+1 must be made of different h. This 
corresponds to have all τ2i = hh . . .h and all τ2i+1 = h′h′ . . .h′ , with 
h ̸= h′ . In the following we will denote by ΩR and ΩL the sets 
of strings having τ2i+1 = R R . . . R and τ2i+1 = LL . . . L, respectively, 
for all i.

The above structure for strings σ f can be exploited to deter-
mine the matrix A(σ f ). We consider separately the cases of f
even and f odd. For f even one has

A(σ f ) = α( f )

⎧
⎨

⎩

A00 + A11, f = t
A00, f < t, σ f ∈ ΩR ,
A11, f < t, σ f ∈ ΩL,

(13)

while for f odd one has

A(σ f ) = α( f )

⎧
⎨

⎩

A10 + A01, f = t
A10, f < t, σ f ∈ ΩR ,
A01, f < t, σ f ∈ ΩL,

(14)

with the factor α( f ) given by

α( f ) := (im) f nt− f . (15)

According to Eqs. (13) and (14) we can finally restate Eq. (9) as

ψ(x, t) =
∑

y

∑

a,b∈{0,1}

t−|x−y|∑

f =0

cab( f )α( f )Aabψ(y,0), (16)

where caa(2k + 1) = c01(2k) = c10(2k) = 0. The coefficients cab( f )
count the number of paths σ f which give Aab as total transition 
matrix, and are given by the following product of binomial coeffi-
cients

cab( f ) =
(

µ+ − ν
f −1

2 − ν

)(
µ− + ν
f −1

2 + ν

)
,

ν = ab − āb̄
2

, µ± = t ± (x − y) − 1
2

, (17)

where c̄ := c ⊕ 1, and the binomials are null for non-integer ar-
guments. The expression of cab is computed via combinatorial 
considerations based on the structure (10) of the paths, and on 
Eqs. (13) and (14). Let us start with the coefficients c00 and c11. 
The matrices A00 and A11 appear only for f even (see Eq. (13)) in 
which case one has f +2

2 odd strings τ2i+1 and f
2 even strings τ2i . 

A00 appears whenever σ f ∈ ΩR , namely when the R-transitions 

are arranged in the strings τ2i+1. This means that we have to count 
in how many ways the r identical characters R and l identical 
characters L can be arranged in f +2

2 and f
2 strings, respectively. 

These arrangements can be viewed as combinations with repeti-
tions which give

c00( f ) =
( f

2 + r
r

)( f
2 + l − 1

l

)
=

( t+x−y
2
f
2

)( t−x+y
2 − 1
f
2 − 1

)
,

where the second equality trivially follows from Eq. (4). Simi-
larly A11 appears whenever σ f ∈ ΩL which gives

c11( f ) =
( f

2 + l
l

)( f
2 + r − 1

r

)
=

( t−x+y
2
f
2

)( t+x−y
2 − 1
f
2 − 1

)
.

Consider now the other two coefficients c10 and c01 counting the 
occurrences of A10 and A01. The last ones appears only when f is 
odd (see Eq. (13)) and then one has the same number f +1

2 of odd 
strings τ2i+1 and even strings τ2i . Counting the combinations with 
repetitions as in the previous cases we get

c10( f ) = c01( f ) =
( f −1

2 + r
r

)( f −1
2 + l

l

)

=
( t+x−y−1

2
f −1

2

)( t−x+y−1
2

f −1
2

)
,

which concludes the derivation of the coefficients cab( f ) in 
Eq. (17).

The analytical solution of the Dirac automaton can also be ex-
pressed in terms of Jacobi polynomials P (ζ,ρ)

k computing the sum 
over f in Eq. (16)

ψ(x, t) =
∑

y

∑

a,b∈{0,1}
γa,b P (1,−t)

k

(
1 + 2

(
m
n

)2)
Aabψ(y,0),

k = µ+ − a ⊕ b + 1
2

,

γa,b = −
(
ia⊕b)nt

(
m
n

)2+a⊕b k!(µ(−)ab + a⊕b
2 )

(2)k
, (18)

where γ00 = γ11 = 0 (γ10 = γ01 = 0) for t + x − y odd (even) and 
(x)k = x(x + 1) · · · (x + k − 1).

4. Conclusions

We studied the one dimensional Dirac automaton, considering 
a discrete path-integral formulation. The analytical solution of the 
automaton evolution has been derived, adding a relevant case to 
the set of quantum automata solved in one space dimension, in-
cluding only the coined QW and the disordered coined QW. The 
main novelty of this work is the technique used in the derivation 
of the analytical solution, based on the closure under multiplica-
tion of the automaton transition matrices. This approach can be 
extended to automata in higher space dimension. For example the 
transition matrices of the Weyl and Dirac QCAs in 2 + 1 and 3 + 1
dimensions recently derived in Ref. [26] enjoy the closure feature 
and their path-sum formulation could lead to the first analytically 
solved example in dimension higher than one.

Acknowledgements

This work has been supported in part by the John Templeton 
Foundation under the project ID# 43796 A Quantum-Digital Uni-
verse.



3168 G.M. D’Ariano et al. / Physics Letters A 378 (2014) 3165–3168

References

[1] J. von Neumann, Theory of Self-Reproducing Automata, University of Illinois 
Press, Urbana and London, 1966.

[2] Y. Aharonov, L. Davidovich, N. Zagury, Quantum random walks, Phys. Rev. A 48 
(1993) 1687–1690.

[3] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, J. Watrous, One-dimensional 
quantum walks, in: Proceedings of the Thirty-Third Annual ACM Symposium 
on Theory of Computing, ACM, 2001, pp. 37–49.

[4] G. Grossing, A. Zeilinger, Quantum cellular automata, Complex Syst. 2 (2) 
(1988) 197–208.

[5] B. Schumacher, R. Werner, Reversible quantum cellular automata, preprint, 
arXiv:quant-ph/0405174.

[6] P. Arrighi, V. Nesme, R. Werner, Unitarity plus causality implies localizability, 
J. Comput. Syst. Sci. 77 (2) (2011) 372–378.

[7] D. Gross, V. Nesme, H. Vogts, R. Werner, Index theory of one dimensional quan-
tum walks and cellular automata, Commun. Math. Phys. (2012) 1–36.

[8] P. Knight, E. Roldán, J. Sipe, Propagating quantum walks: the origin of interfer-
ence structures, J. Mod. Opt. 51 (12) (2004) 1761–1777.

[9] A. Ahlbrecht, H. Vogts, A. Werner, R. Werner, Asymptotic evolution of quantum 
walks with random coin, J. Math. Phys. 52 (2011) 042201.

[10] A. Ambainis, Quantum walk algorithm for element distinctness, SIAM J. Com-
put. 37 (1) (2007) 210–239.

[11] F. Magniez, M. Santha, M. Szegedy, Quantum algorithms for the triangle prob-
lem, SIAM J. Comput. 37 (2) (2007) 413–424.

[12] E. Farhi, J. Goldstone, S. Gutmann, A quantum algorithm for the Hamiltonian 
NAND tree, preprint, arXiv:quant-ph/0702144.

[13] A.M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, D.A. Spielman, Exponen-
tial algorithmic speedup by a quantum walk, in: Proceedings of the Thirty-Fifth 
Annual ACM Symposium on Theory of Computing, ACM, 2003, pp. 59–68.

[14] R. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals, International 
Series in Pure and Applied Physics, vol. 2, McGraw-Hill, New York, 1965, 
pp. 34–36, problem 2-6.

[15] L.H. Kauffman, H. Pierre Noyes, Discrete physics and the Dirac equation, Phys. 
Lett. A 218 (3) (1996) 139–146.

[16] T. Jacobson, L.S. Schulman, Quantum stochastics: the passage from a relativistic 
to a non-relativistic path integral, J. Phys. A, Math. Gen. 17 (2) (1984) 375.

[17] V. Karmanov, On the derivation of the electron propagator from a random walk, 
Phys. Lett. A 174 (5) (1993) 371–376.

[18] S. Succi, R. Benzi, Lattice Boltzmann equation for quantum mechanics, Phys-
ica D 69 (3) (1993) 327–332.

[19] D. Meyer, From quantum cellular automata to quantum lattice gases, J. Stat. 
Phys. 85 (5) (1996) 551–574.

[20] I. Bialynicki-Birula, Weyl, Dirac, and Maxwell equations on a lattice as unitary 
cellular automata, Phys. Rev. D 49 (12) (1994) 6920.

[21] F.W. Strauch, Relativistic quantum walks, Phys. Rev. A 73 (2006) 054302, http://
dx.doi.org/10.1103/PhysRevA.73.054302.

[22] J. Yepez, Relativistic path integral as a lattice-based quantum algorithm, Quan-
tum Inf. Process. 4 (6) (2006) 471–509.

[23] G.M. D’Ariano, The quantum field as a quantum computer, Phys. Lett. A 376 
(2012) 697.

[24] A. Bisio, G.M. D’Ariano, A. Tosini, Dirac quantum cellular automaton in one di-
mension: Zitterbewegung and scattering from potential, Phys. Rev. A 88 (2013) 
032301.

[25] A. Bisio, G. D’Ariano, A. Tosini, Quantum field as a quantum cellular automa-
ton I: the Dirac free evolution in one dimension, preprint, arXiv:1212.2839.

[26] G.M. D’Ariano, P. Perinotti, Derivation of the Dirac equation from principles of 
information processing, preprint, arXiv:1306.1934.

[27] P. Arrighi, M. Forets, V. Nesme, The Dirac equation as a quantum walk: higher 
dimensions, observational convergence, preprint, arXiv:1307.3524.

[28] P. Arrighi, S. Facchini, Decoupled quantum walks, models of the Klein–Gordon 
and wave equations, Europhys. Lett. 104 (6) (2013) 60004.

[29] T.C. Farrelly, A.J. Short, Causal fermions in discrete space–time, Phys. Rev. A 
89 (1) (2014) 012302.

[30] T.C. Farrelly, A.J. Short, Discrete spacetime and relativistic quantum particles, 
preprint, arXiv:1312.2852.

[31] N. Konno, Quantum random walks in one dimension, Quantum Inf. Process. 
1 (5) (2002) 345–354.

[32] N. Konno, A path integral approach for disordered quantum walks in one di-
mension, Fluct. Noise Lett. 5 (04) (2005) L529–L537.

http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6E65756D616E6E313936367468656F7279s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6E65756D616E6E313936367468656F7279s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib616861726F6E6F76313939337175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib616861726F6E6F76313939337175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib616D6261696E6973323030316F6E65s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib616D6261696E6973323030316F6E65s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib616D6261696E6973323030316F6E65s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib67726F7373696E67313938387175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib67726F7373696E67313938387175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib736368756D61636865723230303472657665727369626C65s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib736368756D61636865723230303472657665727369626C65s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6172726967686932303131756E69746172697479s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6172726967686932303131756E69746172697479s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib67726F737332303132696E646578s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib67726F737332303132696E646578s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6B6E696768743230303470726F7061676174696E67s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6B6E696768743230303470726F7061676174696E67s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib61686C627265636874323031316173796D70746F746963s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib61686C627265636874323031316173796D70746F746963s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib616D6261696E6973323030377175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib616D6261696E6973323030377175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6D61676E69657A323030377175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6D61676E69657A323030377175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6661726869323030377175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6661726869323030377175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6368696C6473323030336578706F6E656E7469616Cs1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6368696C6473323030336578706F6E656E7469616Cs1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6368696C6473323030336578706F6E656E7469616Cs1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6665796E6D616E313936357175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6665796E6D616E313936357175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6665796E6D616E313936357175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6B617566666D616E313939366469736372657465s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6B617566666D616E313939366469736372657465s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6A61636F62736F6E313938347175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6A61636F62736F6E313938347175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6B61726D616E6F763139393364657269766174696F6Es1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6B61726D616E6F763139393364657269766174696F6Es1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib7375636369313939336C617474696365s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib7375636369313939336C617474696365s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6D65796572313939367175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6D65796572313939367175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6269616C796E69636B69313939347765796Cs1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6269616C796E69636B69313939347765796Cs1
http://dx.doi.org/10.1103/PhysRevA.73.054302
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib596570657A3A323030367034343036s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib596570657A3A323030367034343036s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib64617269616E6F706C61s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib64617269616E6F706C61s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib626973696F323031336469726163s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib626973696F323031336469726163s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib626973696F323031336469726163s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib42445471636149s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib42445471636149s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib643230313364657269766174696F6Es1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib643230313364657269766174696F6Es1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib61727269676869323031336469726163s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib61727269676869323031336469726163s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib61727269676869323031336465636F75706C6564s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib61727269676869323031336465636F75706C6564s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib66617272656C6C793230313463617573616Cs1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib66617272656C6C793230313463617573616Cs1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib66617272656C6C79323031336469736372657465s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib66617272656C6C79323031336469736372657465s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6B6F6E6E6F323030327175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6B6F6E6E6F323030327175616E74756Ds1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6B6F6E6E6F3230303570617468s1
http://refhub.elsevier.com/S0375-9601(14)00909-8/bib6B6F6E6E6F3230303570617468s1
http://dx.doi.org/10.1103/PhysRevA.73.054302

	Path-integral solution of the one-dimensional Dirac quantum cellular automaton
	1 Introduction
	2 The one-dimensional Dirac QCA
	3 Path-sum formulation of the Dirac QCA
	4 Conclusions
	Acknowledgements
	References


