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RELAXATION RATE

F. BORSA, G. D’ARIANQO and P. SONA

and experiment is briefly discussed.
The nuclear spin-lattice relaxation rate, 7, ' of pro-
tons and other nuclei in one-dimensional (1D) antiferro-
magnet (CH;),NMnCl, (TMMC) probes the low
frequency part of the spectral density of the electronic
spin fluctuations. The behavior of 77! in the tempera-
ture interval 5-300 K., where the spin dvnamics is

{

dominated by the onset of short range order correla-
tions, has been satisfactorily described [1.2] in terms of
an extension of Moriya's magnetic relaxation theory to
the linear chain system using the exact results for static
two-spin-correlation functions.

At low temperature e.g. T'< 5 K, but still above the
3D transition temperature, TMMC is characterized by a
pronounced 1D short range order and the spin dy-
namics is dominated by damped paramagnons and soli-
ton-like excitations [3]: both are very sensitive to the
magnitude of the external magnetic field and its direc-
tion with respect to the chain axis e. The results of 7}
in high fields (H = 2 T and H L ¢) were shown [4] 1o be
consistent with a nuclear relaxation rate driven by the
interaction with an ideal soliton gas. On the other hand,
measurements in low magnetic fields (H<2 T, H || e
and H 1 ¢) reported previously were not interpreted [5].
We present here new low field data aimed at gaining
information about the spin dynamics in TMMC for a
magnetic field range and for an orientation for which
the soliton’s description is not directly applicable.

The results of proton spin-lattice relaxation rate are
shown in figs. 1a, b and figs. 2a, b.

An explanation of the results in terms of nuclear
relaxation driven by interaction with solitons is un-
likely. In fact for fields H<1 T the width of the
a-solitons in TMMC is expected to be so large as to
invalidate any description of the spin-dynamics in terms
of a dilute gas of solitons [6]. Furthermore. for H || c.
one does not expect the presence of solitons, at least of
the Sine~Gordon type for which the theory has been
developed in TMMC [6,7]. We thus turn to the descrip-
tion for the relaxation rate in terms of interaction with
the paramagnons. The two-magnon and three-magnon
relaxation process can be ruled out because they yield a
temperature dependence of 7, opposite [8] to the one
observed experimentally.

LOW TEMPERATURE SPIN DYNAMICS IN TMMC FROM NUCLEAR SPIN-LATTICE
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Measurements of proton spin-lattice relaxation rate in (CH)y NMnCl, (TMMCY) in the temperature range (1.2-4.2 K) and
for different magnetic fields (0.085 -2 T) for both M ||e and H L ¢ arc presented and compared with theoretical calculations
based on Villain theory for damped paramagnons in 1D magnets. The implication of the disagreement found between theory
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Fig. 1. Proton relaxation rate for H || ¢: (a) 77" vs. 7 (b 777!
vs. H. The solid lines are theoretical best [t using egs. (2), (3),
(4) and normalizing the curve o the lowest experimental point.

The direct one-magnon process remains the only
effective mechanism in presence of almost gapless and
overdamped spin-waves.

By using the weak collision approach we can write

[:

1 :
_;.F:Z[Aqsl(q. w) +B,8.(q. w )] (1)
1 ¥

where w, is the nuclear Larmor frequency and +, z
refer to the spin components perpendicular and parallel
to the external magnetic field, respectively.

We procced now to make some simplifying assump-
fons:
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Fig. 2. The same as fig. 1 but for H L e.

{a) since the parameters A, and B, describing the
nuclear—electron dipolar interaction arc functions
varying with ¢ much more slowly than 5, . (g. w{)
we can set A, and B, constants and take them out
of the g-summation in eq. (1);

(b} in TMMC the dipolar interaction within the chain
induces a cross-over from isotropic Heisenberg to
an XY bechavior below 20 K [2]. Thus we can
neglect in eg. (1) the fluctuations for the spin out of
the plane perpendicular to the c¢-axis;

fc) we write for S{q, w)=5(g,0) [ (w) where the first
factor is proportional to the static susceptibility and
the second is a relaxational function whose shape
deperds on the model adoped: in general it is a
Lorentzian, centered at w = 0 lor diffusive modes or
overdamped paramagnons and at « =« (g) for un-
derdamped ones.

According to Villain’s theory [9], well defined para-
magnons are present in TMMC only for g = K, where
K is the inverse correlation length. The resulting expres-
sions of 77" which we use to (it the data are (only the
leading term is explicitated):
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For H || ¢ the dispersion curve [or paramagnons is
gapless e, w(g)=cg while for H Lc a gap is intro-
duced by the magnetic field ie. w(¢)?=(cq)* + wi(w,
=vy,H=134H). The temperature and field depen-
dence of K, K, and K | (expressed in Kelvin) are given
for TMMC by [10]:

KT .
=——=124T
418%a,

K,=K(1-H*/T?) K=K(1+H/T?) (4)

and m , =1+ H*/2T% m=1-H?/2T? where the
field is in kelvin * and ||, L refer to the direction with
respect to H. For the damping ol the paramagnons
Villain's theory gives I'= ¢K (and similarly for I} ). ¢
being the paramagnons’ speed. This relation seems to be
supported by neutron scallering results at H = 0 [11].

The theoretical behaviors obtained from egs. (2). (3).
{4) are compared with the experiments in figs. 1 and 2,
No consistent fit of the data can be obtained using a
linear relationship between I and K, the best fit beeing
obtained for I'= 1eK.

For H | ¢ the strong field dependence of 77 ' could
be due to the presence of a narrow central peak compo-
nent with K= I' < w,.

For H 1| ¢ one should conclude that the relationship
between I' and K is given by a general dynamic-scaling
law I'(H)/T(0)y~[K(H)/K(0)]* where z=1 for H =0
[11] while for H# 0, z=1. It is likely that the field
dependence of z may be related to the existence of
broad solitons not directly responsible for the nuclear
relaxation,
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* I all the equations the field H expressed in kelvin is related
to the ficld H in tesla by the formula H = M SH/2 K4,
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