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Doubly special relativity from quantum cellular automata
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Abstract – It is shown how a doubly special relativity model can emerge from a quantum cellular
automaton description of the evolution of countably many interacting quantum systems. We
consider a one-dimensional automaton that spawns the Dirac evolution in the relativistic limit
of small wave vectors and masses (in Planck units). The assumption of invariance of dispersion
relations for boosted observers leads to a non-linear representation of the Lorentz group on the
(ω, k)-space, with an additional invariant given by the wave vector k = π/2. The space-time
reconstructed from the (ω, k)-space is intrinsically quantum, and exhibits the phenomenon of
relative locality.
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The existence of a fundamental scale of length or mass,
which can be identified with the Planck scale, is a ubiqui-
tous feature of quantum gravity models [1–7]. The appear-
ance of the minimum length ℓP =

√

!G/c3 is the result
of combining the fundamental constants that characterize
physical theories describing different scales: ! (quantum
mechanics), c (special relativity), and G (gravity). The
so-called Planck length ℓP is commonly regarded as the
threshold below which the intuitive description of space-
time breaks down, and new phenomenology is expected.
A natural hypothesis is that quantum features become
crucial in determining the structure of space-time below
the Planck scale, leading to a radical departure from the
traditional geometric concepts. This perspective makes
one wonder about the fate of Lorentz symmetry at the
Planck scale. A possible way of tackling this question is
to consider a theory with two observer-independent scales,
the speed of light and the Planck length, as proposed in the
models of doubly special relativity (DSR) [8–13]. All the
DSR models share the feature of a non-linear deforma-
tion of the Poincaré symmetry that eventually leads to a
modification of the quadratic invariant

E2 = p2 + m2. (1)
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Such deformed kinematics are especially interesting since
they provide new phenomenological predictions, e.g. wave-
length dependence of the speed of light and a modified
threshold for particle creation in collision processes. Ev-
idences for a violation of the Lorentz energy-momentum
dispersion relation (1) have recently been sought in as-
trophysics, see, e.g., the thresholds for ultra-high-energy
cosmic rays [14,15], and in cold-atom experiments [16].

A recent approach to a Planck scale description of
physical kinematics is that of quantum cellular automata
(QCAs). The QCA generalizes the notion of cellular au-
tomaton of von Neumann [17] to the quantum case, with
cells of quantum systems interacting with a finite number
of neighbors via a unitary operator describing the single-
step evolution. The general theory of QCA is rigorously
treated in refs. [18,19] while first attempts to model rel-
ativistic dynamics with QCA appears in [20,21]. Here,
following the proposal of refs. [22–26], we assume that
each cell x of the lattice corresponds to the local value
ψ(x) of a quantum field whose dynamics is described by a
QCA. From this perspective the usual quantum field evo-
lution should emerge as a large-scale approximation of the
automaton dynamics occurring at an hypothetical discrete
Planck scale. In ref. [22] a QCA —called Dirac QCA in the
following— has been proposed for describing the Planck
scale physics of the Dirac field in d = 1 space dimension,
assuming the Planck length as the distance between the
cells. In ref. [24] it has been shown that the dynamics
of such QCA recovers the usual Dirac evolution in the
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relativistic limit of small wave vectors k ≪ 1 and small
masses m ≪ 1 (everything expressed in Planck units). In
ref. [25] it has been shown that in d = 3 space dimen-
sions and for a minimal number of field components, only
two QCAs satisfy locality, homogeneity, and isotropy of
the quantum-computational network, the two QCAs be-
ing connected by CPT symmetry, and giving the Dirac
evolution in the relativistic limit. In d = 1, 2 space dimen-
sions there is instead only one QCA satisfying the above
requirements.

Clearly the QCA theoretical framework cannot enjoy
a continuous Lorentzian space-time, along with the usual
Lorentz covariance, which must break down at the Planck
scale. For this reason the notion itself of a boosted refer-
ence frame as based on an Einsteinian protocol has still
to be refined. However, whatever the final physical inter-
pretation of the relativity principle, it must include the
invariance of the dispersion relation in any of its expres-
sions, being at the core of the physical law. In this letter
we explore this route and, assuming the invariance of the
Dirac QCA dispersion relation, we find a non-linear repre-
sentation of the Lorentz group which exhibits the typical
features of a DSR with an invariant energy scale. For
the present purpose without loss of generality we focus
on the easiest d = 1 dimensional case. As for any DSR
model, it turns out that due to the non-linearity of the
representation of the Lorentz group, the Lie algebra of the
representation of the full Poincaré group, including boosts
and translations, is distorted, and the space-time emerging
from the automaton exhibits relative locality, namely the
extensively studied phenomenon according to which the
coincidence of two events is observer-dependent [27–29].
Specifically, we will show that in the automaton case
the coincidence of particles trajectories is no longer ob-
server independent. Contrarily to the usual special rel-
ativity, where the Poincaré group acts linearly both in
the position and in the momentum space, in the DSR sce-
nario there are essentially no restrictions on the non-linear
energy-momentum transformations, allowing for a variety
of possible models. Since these models are generally in-
equivalent from the physical point of view, an open prob-
lem is to single out one of them via physical principles.
The quantum cellular automaton provides a microscopic
dynamical model which naturally introduces a DSR.

A quantum field cellular automaton describes the one-
step evolution ψ(x) → Uψ(x) of a n-components field
ψ(x) := (ψ1(x), ψ2(x), . . . , ψn(x))T defined on a discrete
lattice x ∈ Zd of quantum cells. As proved in ref. [21]
for d = 1 and in ref. [25] for any d, in a non-interacting
scenario all scalar fields exhibit trivial evolution, namely
Uψ(x) = ψ(x), and the minimal dimension of the array
ψ(x) for the field to admit a non-trivial evolution is two.
Our QCA then evolves a two-components field. In the fol-
lowing, we will restrict ourselves to the one-dimensional
case d = 1, and x then denotes one site on a discrete array
of cells. The two field components in this case can be la-
belled as ψ(x) := (ψl(x), ψr(x))T , with ψr and ψl denoting

the left and right field modes. The one-dimensional Dirac
QCA can be derived by imposing the invariance of the
evolution with respect to the symmetries of the causal
network [24,25], and is given by

U =

(

nS −im

−im nS†

)

, n2 + m2 = 1, (2)

with S the shift operator Sψ(x) := ψ(x + 1). The canoni-
cal basis of the Fock space of the field states are obtained
by applying to the vacuum state |Ω⟩ the creation opera-
tors ψ†

s(x), s = r, l. In the following we restrict ourselves
to the one-particle sector for which an orthonormal ba-
sis is given by the states |s⟩|x⟩ := ψ†

s(x)|Ω⟩. We write a
generic one-particle state as |ψ⟩ =

∑

x,s gs(x)|s⟩|x⟩ and

eq. (2) defines a unitary matrix U on C2 ⊗ l2(Z). In
the Fourier-transformed basis |s⟩|φ(k)⟩, with |φ(k)⟩ :=
(2π)−1/2

∑

x e−ikx|x⟩, k ∈ B := [−π, π], the matrix U
is written as

U =

∫

B
dk Û(k) ⊗ |φ(k)⟩⟨φ(k)|, Û(k) =

(

neik −im

−im ne−ik

)

,

whose eigenvalues are exp[±iω(k)] where the function ω(k)
is given by

cos2 ω = (1 − m2) cos2 k, (3)

which is the dispersion relation of the Dirac automaton.
A similar dispersion relation was obtained from a finite-
difference version of the Maxwell and Klein-Gordon equa-
tions in refs. [30,31], with the same small-wavelength limit
as in eq. (3). In the limit of small wave vectors and masses
eq. (3) reduces to ω2 = k2 + m2, and we recover the
Lorentz dispersion relation of eq. (1)1. Disregarding the
internal degrees of freedom, we consider the dispersion re-
lation in eq. (3) as the core dynamics of the theory which
should be independent of the reference frame. In one spa-
tial dimension the Lorentz group consists in only the boost
transformations which in the energy-momentum sector are
represented by the linear map

Lβ : (ω, k) (→ (ω′, k′) = γ(ω − βk, k − βω), (4)

with γ := (1 − β2)−1/2. It is immediate to check that the
automaton dispersion relation of eq. (3) is not invariant
under such standard boosts.

Following the DSR proposal of preserving the Lorentz
group structure, the linear Lorentz boosts in eq. (4) should

1For large wave vectors a thorough interpretation of k and ω in
terms of the momentum and energy, respectively, would need an
interacting theory.
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Fig. 1: (Color online) The automaton dispersion relation (left)
and group velocity (right) for m = 0.1, 0.2, 0.4, 0.8, 1, from
bottom to top at k = 0 (left), and at k = π/2 (right).

be replaced by a non-linear representation of the kind

LD
β := D−1 ◦ Lβ ◦ D, (5)

where D : R2 → R2 is a non-linear map.
The specific form of D gives rise to a particular energy-

momentum Lorentz deformation. As pointed out in [13],
in order to realize a DSR model, the non-linear map D, has
to satisfy the following constraints: i) the Jacobian matrix
JD(k, ω) of D evaluated in k = ω = 0 must be the identity,
ensuring that the non-linear transformations LD

β recover
the standard boosts in the regime of small momenta and
energies; ii) the invertibility range of D must be a Lorentz
invariant region of the energy-momentum space; iii) the
model will exhibit an invariant energy scale only if the
map D has a singular point, namely some energy ωinv

which is mapped to ∞. Restating eq. (3) in the following
way:

sin2 ω

cos2 k
− tan2 k = m2,

the non-linear map D in (5) can be taken to be

D : (ω, k) (→ D(ω, k) := (sinω/ cosk, tan k) . (6)

One can show that the map in eq. (6) automatically satis-
fies the aforementioned requirements i)–iii) with the in-
variant energy ωinv = π/2. By inserting the map (6)
into eq. (5) we obtain the following deformed Lorentz
transformations:

ω′ = arcsin [γ (sinω/ cosk − β tan k) cos k′] ,

k′ = arctan [γ (tank − β sin ω/ cosk)] .
(7)

which leave the automaton dispersion relation of eq. (3)
invariant.

The modified transformations have two symmetrical in-
variant momenta k = ±π/2 corresponding to the invariant
energy ωinv = π/2 independently of m. The fixed points
split the domain B = [−π, π] into two regions B = B1∪B2,
with B1 := [−π/2, π/2] and B2 := [−π, −π/2] ∪ [π/2, π],
which remain separate under all possible boosts. The
points k = ±π/2 correspond to maxima of the group ve-
locity v := ∂kω(k) (see fig. 1). While in region B1 an
increasing k corresponds to an increasing group velocity,
in region B2 we see the opposite behavior. However, as
one can verify using the transformations (7), a boosted
observer who sees an increased group velocity in B1 also
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Fig. 2: (Color online) Top panel: delocalization of a state local-
ized at x = 0 after a boost with β = −0.99 for mass m = 0.1.
Bottom panels: left: momentum representation of a boosted
localized state for different values of the mass m = 0.1 (red) 0.3
(orange) 0.8 (green) with β = −0.99. Right: momentum rep-
resentation of a boosted localized state for different values of
the boost β = 0.4 (red) 0.8 (orange) 0.99 (green) with m = 0.1.

sees an increased group velocity in B2 since in both cases
the momentum k is mapped closer to the invariant point.
Since the two physical regions B1 and B2 exhibit the same
kinematics they are indistinguishable in a non-interacting
framework. For massless particles the Dirac automaton
dispersion relation (3) coincides with the undistorted one
ω2 = k2 and the group velocity no longer depends on k.
Thus, the model we are considering does not exhibit a
momentum-dependent speed of light.

The action of the boosts (7) on the states of the automa-
ton (disregarding the internal degrees of freedom) reads

|ψ⟩ =

∫

dkµ(k)ĝ(k)|k⟩
LD

β
−−→

∫

dkµ(k) ĝ(k)|k′⟩ =
∫

dkµ(k′) ĝ(k(k′))|k′⟩, (8)

where µ(k) = [2(1 − m2) tan ω(k)]−1 is the density of
the invariant measure in the k-space, k′ is as in eq. (7),
and |k⟩ := (2(1 − m2) tan ω(k))1/2|φ(k)⟩. One can ver-
ify that the transformation (8) is unitary. In fig. 2 we
show how a perfectly localized state transforms under
boosts.

Let us now deepen our analysis and consider how
the features of the present framework affect the ge-
ometry of space and time. Under the action of the
deformed boost LD

β a function f̂(ω, k) transforms as

f̂ ′(ω, k) = f̂(ω′(ω, k), k′(ω, k)) and, following an ansatz
due to Schützhold et al. [27], one can express the boosted
function in the variables t, x by conjugating the boost LD

β
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Fig. 3: (Color online) Two coincidences of travelling wave pack-
ets in the automaton evolution of eq. (2).
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Fig. 4: (Color online) Transformation of a Gaussian state due
to a boost for two different values of β = −0.99, −0.999 and
m = 0.1 in the momentum (left) and the position (right) rep-
resentations.

with the Fourier transform F (see footnote 2), i.e.,

f ′ = F−1 ◦ LD
β ◦ F f,

f ′(t′, x′) =
∑

x,t∈Z

∫

dω′dk′ e−iχ(ω′,k′,x,t,x′,t′)f(x, t),

χ(ω′, k′, x, t, x′, t′) = k(ω′, k′)x − k′x′ − ω(ω′, k′)t + ω′t′.

(9)

We notice that, due to the non-linearity of D, the map (9)
does not correspond to a change of coordinates from (t, x)
to (t′, x′) and therefore we cannot straightforwardly inter-
pret the variables t and x as the coordinates of points in a
continuum space-time interpolating the automaton cells:
this may be regarded as manifestation of the quantum
nature of space-time. One can then adopt the heuristic
construction of ref. [27], interpreting physically the co-
ordinates (x, t) in terms of the mean position x at time
t of a restricted class of states that can be interpreted
as moving particles, namely narrow-band Gaussian wave
packets moving at the group velocity. In this construc-
tion points in space-time are regarded as crossing points
of the trajectories of two particles as in fig. 3 (such points
have an “extension” due to the Gaussian profile). For a
function gk0

(t, x) peaked around k0, the map (9) can be

2Here F denotes the Fourier transform in both time and posi-
tion variables: F(f)(ω, k) =

∑
t,x ei(ωt−kx)f(ω, k), F−1(f)(t, x) =

∫
dµ e−i(ωt−kx)f(t, x).

k1 ≈ 0
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Fig. 5: (Color online) Relative locality. In the left reference
frame, the joint intersection of four wave packets, the first cou-
ple having wave vector close to 0 and the second couple close to
π/5, locates the point with coordinates (x, t). In the boosted
reference frame on the right, by applying the transformation of
eq. (8), the four wave packets no longer intersect at the same
point.

approximated by taking the first-order Taylor expansion of
k(ω′, k′) and ω(ω′, k′) respectively around k′

0 and ω′(k0)
in the function χ. One can indeed verify that a narrow
wave packet remains narrow under a boost (see fig. 4),
thus confirming the validity of the linear approximation.
Expanding the function χ to first order in ω′ − ω0 and
k′ − k0 gives an expression of the following type:

χ(ω′, k′, x, t, x′, t′) ≈ (x, t)J(k0)(k
′, ω′)T − (x′, t′)(k′, ω′)T

and after performing the integral in dω′ dk′ one obtains
the following transformations:

(

t′

x′

)

≈

(

−∂ω′k ∂k′k

∂ω′ω −∂k′ω

)

k′=k′

0

(

t

x

)

. (10)

Since eq. (10) defines a linear transformation of the vari-
ables x and t and the wave packets move along straight
lines, we can interpret (10) as the transformation of the
coordinates xp and tp of a point p in space-time, namely of
the intersection of the trajectories of two particles having
k’s close to some common k0. However, the k-dependence
of the transformations (10) makes the geometry of space-
time observer-dependent in the following sense. Consider
a point p which is given by the intersection of four wave
packets, the first pair peaked around k1 and the sec-
ond pair peaked around k2 (k1 ̸= k2). Because of the
k-dependence in (10), a boosted observer will actually see
the first pair intersecting at a point which is different from
the one where the second pair intersects (see fig. 5). This
effect, first noticed in ref. [27] is the characteristic trait
of the so-called relative locality [28,29]. The space-time
resulting in such a way from the automaton dynamics is
not “objective”, in the sense that events that coincide for
one observer may not for another boosted observer. The
above heuristic construction is in agreement with the as-
sertion of ref. [29] that relative locality appears as a feature
of all models in which the energy-momentum space has a
non-flat geometry. This can be easily seen by requiring
that the transformation (10) does not depend on k0 and
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remembering that for k0 = 0 one must recover the usual
Lorentz transformations.

In this letter we have shown that the quantum cellular
automaton of refs. [24,25] provides a microscopic kinemat-
ical model compatible with the recent proposals of DSR.
We obtained the non-linear representation of the Lorentz
group in the energy-momentum space by assuming the in-
variance of the dispersion relation of the automaton. Us-
ing the arguments of ref. [27] we heuristically derived a
space-time that exhibits the phenomenon of relative local-
ity. Our analysis has been carried out in the easiest case of
one space dimension, which, however, is sufficient to the
analysis of the present letter. The same arguments can
be easily generalized to three space dimensions using the
results of ref. [25], leading to additional symmetry viola-
tions, e.g. rotational covariance.
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