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Parameter estimation in quantum optics
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We address several estimation problems in quantum optics by means of the maximum-likelihood principle.
We consider Gaussian state estimation and the determination of the coupling parameters of quadratic Hamil-
tonians. Moreover, we analyze different schemes of phase-shift estimation. Finally, the absolute estimation of
the quantum efficiency of both linear and avalanche photodetectors is studied. In all the considered applica-
tions, the Gaussian bound on statistical errors is attained with a few thousand data.

PACS numbd(s): 42.50.Ar

[. INTRODUCTION cussed below, the most general, and widely usable in prac-
tice. The ML procedure answers to the following question:
In order to gain information about a physical quantity onewhich values of the parameters are most likely to produce
should, in principle, measure the corresponding quantum olthe results which we actually observe in the measurement?
servable. In cases when the measurement can be directhpis statement can be quantified, and the resulting procedure
implemented the statistics of the outcomes is goverfied IS the ML estimation of the parameters.
ideal conditions, i.e., neglecting thermal, mechanical or other Recently, the ML principle has been applied to the recon-
sources of classical noisenly by the intrinsic fluctuations Struction of the whole state of a generic quantum system
of the Observab|e, name'y by the quantum nature of the Sy£5,6] In that case the parameters of interest are the matrix
tem under investigation. In practice, however, it is mostelements of the density operator in a suitable representation.
likely that the desired observable does not correspond to Bayesian and ML approaches have been also applied in neu-
feasible measurement scheme, or the physical quantity do&®n interferometry7].
not correspond to any observable at all. In such case one has In this paper, we focus our attention on the determination
to infer the value of the quantity of interest from the mea- Of Specific parameters which are relevant in quantum optics,
surement of a different observable, or generally of a set oftnd analyze their ML estimation procedure in some details.
observables. In this situation, even in ideal conditions, the In the next section we briefly review the ML estimation
indirect parameter estimation gives an additional uncertaintprocedure as well as the method to evaluate its precision. In
for the estimated value, and the quantum estimation theory€C. lll we consider the estimation of the parameters of a
[1,2] provides a general framework to optimize the inferenceaussian state and of the coupling constants of a generic
procedure. quadratic single-mode Hamiltonian. As we will show, the
In the recent years, the indirect reconstruction of observiwo estimation problems are closely related, and ML prin-
ables and quantum states has received much attentiofiPle leads to a fully general solution. In Sec. IV we study
Among the many reconstruction techniqueS, the most Su@ifferent schemes of phase estimation, whereas in Sec. V the
cessful is quantum homodyne tomogram, WhiCh, in- ML principle is applled to the estimation of the quantum
deed, is the only method which has been experimenta”yfficiency of both linear and avglgnche photodetectors. Sec.
implemented[4]. Quantum tomography provides the com- VI closes the paper by summarizing our results.
plete characterization of the state, i.e., the reconstruction of
any quantity of interest by simple averages over experimen-
tal data. In many cases, however, one may be interested not
in the complete characterization of the state, but only in Here we briefly review the theory of the maximum-
some specific feature, like the phase or the amplitude of thékelihood (ML) estimation of a single parameter. The gen-
field. Moreover, one can address the problem of characterizralization to several parameters is straightforward. Let
ing an optical device, rather than a quantum state, like meg(x|\) be the probability density of a random variabig
suring the coupling constant of an active medium or theconditioned to the value of the paramekerThe form ofp is
quantum efficiency of a photodetector. In all these cases, thlenown, but the true value of the parameieris unknown,
desired parameter does not correspond to a measurable and will be estimated from the result of a measurement of

II. MAXIMUM-LIKELIHOOD ESTIMATION

servable, and contains only partial information about the et x;,X,, ... Xy be a random sample of sia¢ The joint
quantum state of light involved in the process. Our goal is tprobability density of the independent random variable
link the estimation of such parameters with the results fronx,,x,, . .. x5 (the global probability of the samplés given

feasible measurement schemes, as homodyne, heterodynepyr
direct detection, and to make the estimation procedure the
most efficient. N
Among all possible procedures for parameter estimation, L(X1 o, + .. XnIN) = H P(XN), (1)
the maximume-likelihood ML) method is, in the sense dis- k=1
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and is called the likelihood function of the given data sampleestimators for which the Cram&®ao bound is attained with

(hereafter we will suppress the dependencg oh the data  a relatively small number of measurements, i.e., the ML pro-
The maximum-likelihood estimatory, =\y ({x¢}) (MLE)  cedure provides an efficient estimation of the parameters. In
of the parametei maximizes £(\) for variations of A,  Secs. lll and IV examples will be examined where the prob-

namely it is given by the solution of the equations ability p(x|\) is Gaussian versusand not Gaussian versus
the parametex, whereas in Sec. V an example with discrete
JL(N) B aZ[,()\)<0 @ measurement outcomes=0,1) will be also analyzed.
N N

Ill. GAUSSIAN-STATE ESTIMATION

Since the likelihood function is positive the first equation is

X In this section we apply the ML method to estimate the
equivalent to

gquantum state of a single-mode radiation field that is charac-

aL(\) terized by a Gaussian Wigner function. Such kind of states
—— =0, 3 represents the wide class of coherent, squeezed and thermal

N states. Apart from an irrelevant phase, we consider the

where Wigner function of the form

2

2A
! W(x,y)= —exp—24%e” 2/(x—Rep)?

L(x>=logm>=k§1 log p(x/\) (4)

+e”(y—Im u)?]}, ®
is the so-called log-likelihood function. The form of the ML
principle in Eq.(3) is the most often used in practice. and we apply the ML technique with homodyne detection to
The importance of MLE stems from the following theo- estimate the four real parametérsr, Re u, and Imu. The
rems[8,9]. four parameters provide the number of thermal, squeezing
(1) Maximum-likelihood estimators are consistent, i.e.,and coherent-signal photons in the quantum state as follows:
they converge in probability to the true value of the param-

eter for increasing size of the data sample. 11
(2) The distribution of MLESs tends to the normal distri- =2 P_l '
bution in the limit of large samples, and MLEs have mini-
mum variance. For finite samples the variance is governed Neq= SintPr, 9
by the CrameRao boundsee below.
There are also situations in which the MLE gives a poor Neon= | 11]2.

estimation for a parameter. However, for the distributions
considered here the ML procedure is statistically efficient. In terms of density matrix, the state corresponding to the
In order to obtain a measure for the confidence interval inWigner function in Eq(8) writes

the determination ok, we consider the variance ;

1 N |22
e=D(u)S(r) ) S'(nD'(w), (10
o= [ |T1 ) a2 (®) Mt LNt L
where S(r)=exdr(@®—a'®/2] and D(u)=expua’—u*a)
Upon defining the Fisher information denote the squeezing and displacement operators, respec-
tively.
e- [ 4 ap(x|\)]? 1 6 The theoretical homodyne probability distribution at
N X )N p(x|\)’ (6) phase¢ with respect to the local oscillator is given by the
Gaussiarf11]
it is easy to provg10] that
1 () \/ 2
X, )=
ol= NE" (7) P m(e¥cosp+e Z'sirte)
. . _— 2A2
whereN is the number of measurements. The inequality in xexp — _
Eq. (7) is known as the CrameRao bound8] on the preci- e?cosd¢p+e ¥sirte

sion of ML estimation. Notice that this bound holds for any

functional form of the probability distributiop(x|\), pro- _ —igy\ 12

vided that the Fisher information exists\ and d,p(x|\) XIx—Relpe )] ] (D
existsVx. When an experiment has “good statistic§'e., a

data sample large enougthe Crame-Rao bound is satu- For nonunit quantum efficiency<1 the ideal distribution
rated. As we will show in the following, the application of (11) is replaced by a convolution with a Gaussian of variance
the ML principle in quantum optics generally corresponds to(1— 7)/(47%). From Eqgs.(4) and (11) one easily evaluates
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p(n) statistical error of the reconstructed number probability af-
fects the third decimal digit, and is not visible on the scale of

0.4 the plot.
The estimation of parameters of Gaussian Wigner func-
0.3 tions through the ML method allows one to estimate the

parameters in quadratic Hamiltonians of the generic form

1 1
0.1 I I H=aa+a*a'+pa’a+ §§a2+§§*aT2. (15)
— n

01 23 456 78 910 . .  int
In fact, the unitary evolution operatdd =e preserves
FIG. 1. Photon-number probability of a squeezed-thermal statethe Gaussian form of an input state with Gaussian Wigner
The black histogram for the theoretical, the gray one reconstructefunction. In other words, one can use a Gaussian state to
state by means of the maximum-likelihood method and homodyng@robe and characterize an optical device described by a
detection. Number of data samplis=50000; quantum efficiency Hamiltonian as in Eq(15). Assumingt=1 without loss of

7=280%; number of thermal photomg,=0.1; number of squeez- generality, the Heisenberg evolution of the radiation made
ing photonsng,=3. The statistical error affects the third decimal s given by
digit, and it is not visible in the scale of the plot.

UTaU=vya+da'+pu, (16)
the log-likelihood function for a set oN homodyne out- )
comesx; at random phase; as follows: with
N 2
=S 1. 24 y=cog\e?—[&]?) \/7 sin(Ve?— €%
=1 2'° rr(ezrcosz¢i+e*2’sin2¢i)
242 _ & .
— xi—Re(uwe ]2 (12 6=—i ————sin(Ve —|[£]%),
e2'co§¢i+e‘2'sin2qbi[ i~ Relu . 12 Ve — 1€
. 17)
The ML estimatorsAy, , ry., Reun., and Imu,, are pa *_
found upon maximizing Eq12) versusA,r,Reuw, and Im u. K= |§|2 (COS{ e —leH -1
In order to obtain a global estimation of the goodness of
the state reconstruction, we evaluated the normalized overlap a* \/W
O between the theoretical and the estimated state — 1 === sin(V e~ | §]).
Vo= €2
Trle om] 13 For an input stateg with known Wigner function

- /—Z_TY[QZ]TY[QML] : W,(8,8%), the corresponding output Wigner function writes

* )\ — * * * * *
Notice thatO=1 iff o=g,, . Through some Monte-Carlo Woeut(B.B7)=Wo((B=m)y" = (B7 = n7)8.(B" —n")y
simulations, we always found a value around unity, typically —(B— ) 5*). (18
with statistical fluctuations over the third digit, for number of
data sampledN=50000, quantum efficiency at homodyne Hence, by estimating the parameterss,. and inverting
detectorsy=80%, and state parameters with the following Eds.(17), one obtains the ML values fat, ¢, and¢ of the
rangesng<3, Ner<5, andng<3. Also with such a small Hamiltonian in Eq.(15). The present example can be used in
number of data samples, the quality of the state reconstrugractical applications for the estimation of the gain of a
tion is so good that other physical quantities that are theoPhase-sensitive amplifier or equivalently to estimate a
retically evaluated from the experimental values ofSqueezing parameter.
Auis 'me» Reume, and Impuy, are inferred very pre-
cisely. For example, we evaluated the photon number prob- IV. PHASE ESTIMATION
ability of a squeezed thermal state, which is given by the

integral The quantum-mechanical measurement of the phase of

the radiation field is the essential problem of high sensitive
27d ¢ [Cbng,1) —1]" inte_rferometry, and has regeived much attentic_)n in quantum
<n|9|n>:f - e , (14) optics[12]. The problem arises because for a single mode of
27 C(p,Ngy,1)" ! the electromagnetic field there is no selfadjoint operator for
the phase, hence a more general description of the phase
with C(¢,ny,r)=(np+3)(e” 'sirfp+e”codgp)+3. The  measurement is needed on the ground of estimation theory
comparison of the theoretical and the experimental resultgl,2].
for a state witty,=0.1 andng,= 3 is reported in Fig. 1. The In the following we apply the ML method to different
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schemes of phase estimation and evaluate the corresponding b ' ' ' '
sensitivity. % - .
©
A. Heterodyne detection on coherent state «
. |
For a coherent state with amplitude€' ¥ the probability § % = .
density for complex outcome; at theith heterodyne mea- o
surement is given by -
1 S
plar)= —exp(—|a;—A €. (19 & 0
02 0 ogé) 0.8
. " . . 4 0. .
The max-likelihood conditioL/d¢=0 provides the MLE
for the phasey. One obtainsyy, =arg(a), where the over- squeezing fraction
line denotes the experimental average over N heterodyne rig 2 Estimation of the statistical erréircles for the phase-

outcomes, namely_z=(EiN:1ai)/N. For small phase-shif{y  shift measurement through the maximum-likelihood method on a

=0 the CrameRao bound gives the constraint-,  squeezed state of radiation, for different values of the degree of
=1/y2nN, n being the average photon number:(Az). squeezing. The total number of phqton of the state is fixed at
=50. The solid line represents the Crarfiao bound on the errors.
Only 5000 homodyne data have been used, and the bound is satu-
rated, thus proving the efficiency of the method.

/ 1
1+\/1+—
4A%

Notice that forA>1, Eq.(25) requires that an equal number
The ML condition provides for the estimator gfthe solu- of squeezing and coherent photons contributes to the total
tion average power in the radiation, namely,,~ns~n/2. In

this case Eq(24) rewrites

B. Homodyne detection at random phase on coherent state
In this case the homodyne probability for outcomeat
theith measurement at phagg writes

e’ =2A2 . (25)

2
p(X; )= \[;exp{—Z[xi—Acoswi— W (@0

Yy = arctarix sin ¢p/x cose). (22
1
Also in this kind of phase-detection strategy, the variance of o'i? > (26)
the estimator for small phase-shift satisfies 4Nn
5 1 namely one obtains the ideal limit for the sensitivity of phase
e (22 estimation[1,2]. The bounds on sensitivity obtained in the

previous examples are saturated within a rather small num-
ber of data samples. In Fig. 2 we compare the experimental
error obtained by a Monte Carlo simulation of homodyne
The use of squeezed states and homodyne detection at tHetection on squeezed states using 5000 data samples with

phase corresponding to the squeezed quadrature offer a bettBe theoretical bound of E¢24). We fixed the total number
result in terms of sensitivity. Consider the problem of esti-of photons at the value=50, and varied the squeezing frac-
mating the phase/ in the stateD(A elw)g(r)|o> with A, r tion ng,/n. Notice how experimental and theoretical data
>0. The homodyne probability of outconye for the mea- compare very well. We estimated the statistical errors in
surement of the quadratute= (a—a')/2i writes Figs. 2—4 from the raw data by propagation of the errors on

T the evaluation of/, namely
e
p(y)=\ ——exd—2e*(yi—Asing)’]. (23

2
14
B aﬁ,:( ';’EL) o5 (27)
The MLE for ¢ is then given by, = arcsing/A). For small y

phase shifty=0 the CrameRao bound provides the rela-

tion

C. Homodyne detection at fixed phase on squeezed states

Notice that for large data samplesyﬂe‘zrmN, and one
recovers Eq(24). As shown in Figs. 2—4, our estimation of
errors approaches the CrariRao bound, hence proving that
2= 1 (24) the ML method for the phase estimation is statistically effi-
AN A2 cient. At the optimal value of squeezing fractipsee Eq.
(25)], the behavioro o< 1/n is well reproduced, also at the
Upon maximizing the produd?e?®’ versus the total number small number 5000 of data samples, as shown in Fig. 3.
of photons in the stata=A?+ sintr, one obtains the opti- Unfortunately, the result in Eq26) is very sensible to the
mal squeezing effect of less-than-unity quantum efficienoy of realistic
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FIG. 3. Phase sensitivity vs total number of photons achievable

through homodyne detection on squeezed states and maximum- FIG. 4. Same as in Fig. 2, but for quantum efficiengy 80%.
likelihood estimation, with optimal fraction of squeezing photons Notice how the best sensitivity is achieved for a smaller fraction of
[see Eq.(27)]. Compare the results of a Monte Carlo simulation squeezing photons.
with 5000 homodyne outcomésircles with the theoretical behav-
ior (solid line). erating at very low intensities resort to avalanche process in

order to transform a single ionization event into a recordable
homodyne detectors. Foy<1, the homodyne probability is pulse. This implies that one cannot discriminate between a
given by a convolution of the ideal distribution in ER3)  single photon or many photons as the outcomes from such
with a Gaussian with variance {1n)/47. In such case, Eq. detectors are either a “click,” corresponding to any number

(24) is replaced by of photons, or “nothing” which means that no photons have
been revealed. In this section we apply the ML principle to
o2y ﬂ the absolute estimation of the quantum efficiency of both

5 7 linear and avalanche photodetectors. We suppose to have at

0= W (28 our disposal a known reference state and, from the results of

a measurement upon such a state, we infer the value of the
guantum efficiency.

Let us first study the case of linear photodetectors. As a
reference state we consider a squeezed-coherent state, mea-
sured by homodyne detection. The effect of nonunit quantum
efficiency » on the probability distribution of homodyne de-

1-7 1- 7 tection is twofold. We have both a rescaling of the mean
4A°+ )xz—x— —=0. (29)  value and a broadening of the distribution. For a squeezed
Y Y state|xo,r)=D(xo)S(r)|0) with the direction of squeezing
parallel to the signal phase and to the phase of the homodyne
detection(without loss of generality we set this phase equal
0 zero andxy,r >0) we have15]

The optimal value of the squeezing fac®r?" to minimize
Eqg. (28 at fixed total number of photons is given by the
solution in the interval =[0,1] of the cubic equation

X3+

Compare Fig. 2 with Fig. 4, where quantum efficiengy
=0.8 has been used. Indeed, the optimal squeezing fracti
rapidly approaches zero as=A2y for —0. Such a detri-

mental effect of quantum efficiency is similar to the effect of )
losses in squeezed-state homodyne communication channels 0. ()= ex;{ _ (X— 7Xo)
[13]. However, it can be partially stemmed by adopting a K NN 2A2 |
feedback-assisted homodyne detec{ib4)]. (30)
1
V. ABSOLUTE ESTIMATION OF THE QUANTUM AZZZ(efzr-l— 1-17).
EFFICIENCY

In principle, in a photodetector each photon ionizes aThe total number of photons of the state is givenrbyxé
single atom, and the resulting charge is amplified to produce- sintfr, whereas the squeezing fraction is definedas
a measurable pulse. In practice, however, available photode=sinifr/n. Apart from an irrelevant constant, the log-
tectors are usually characterized by a quantum efficiencyikelihood function can be written as
lower than unity, which means that only a fraction of the
incoming photons lead to an electric pulse, and ultimately to 1
a “count.” If the resulting current is proportional to the in- —L(n)=logA?+ —(x°+ UXS—277X0;)- (31)
coming photon flux we have a linear photodetector. This is, A?
for example, the case of the high flux photodetectors used in
homodyne detection. On the other hand, photodetectors og-he resulting MLE is thus given by

023815-5



D’ARIANO, PARIS, AND SACCHI PHYSICAL REVIEW A62 023815

—2r 1 \/ 2ry2 —2r v —2r
m=1+e +;{1— 1+64x5[ X+ (1+e ") (Xg—2X+Xpe ") Xol}. (32
0

A set of Monte Carlo simulated experiments confirmed that g
the Crame-Rao bound is attained. The performances of the o= 2, (1— 7Plp)p| Ton=!—Tlorr, (33
ML estimation can be compared to the “naive” estimation p=0

based onIy on the measurement of the mean value, IeWherel denotes the identity operator. Indeed, for high quan-

7av=XIXo. We expect this method to be less efficient, sincetum efficiency(close to unity I1egr and 1oy approach the

the quantum efficiency not only rescales the mean value, biirojection operator onto the vacuum state and its orthogonal
also spreads the variance of the homodyne distribution in Egsubspace, respectively. With avalanche photodetectors we
(30). In Fig. 5, on the basis of a Monte Carlo simulated have only two possible outcomes: “click” or “no clicks”
experiment, we compare the ML and the average-valuevhich we denote by “1” and “0,” respectively. The log-
methods in estimating the quantum efficiency through homolikelihood function is given by

dyne detection on a squeezed state. The advantages of ML

method are apparent, especially for the estimation of low L(7)=(N=Nc)logPo(7)+Nclogl1—Po(7)], (34
values of . On the other hand, for small values of the
squeezing fraction the two methods have similar perfor-
mances, except for very low signals, whereas the ML esti-

mation performs better. number of events leading to a click. The maximunlLgfy),
Let us now consider avalanche photodetectors, which PEH-a. the MLE for the quantum efficiency, satisfies the equa-

form the ON-OFF measurement described by the two- valuetlon
probability operator measure

where Py(7)=Tr olloge is the probability of having no
.clicks for the reference state described by the density matrix
¢, N is the total number of measurements, axdis the

Ne
: : Po(7mL)=1— N (35
o~ b @ 3
: whose solution, of course, depends on the choice of the ref-
s erence state. The optimal choice would be using single-
\g photon states as a reference. In this case, we have the trivial
&= result 7. =N¢/N. However, single-photon states are not
o easy to prepargl6], and generally one would like to tegt
°r for coherent pulsee). In this case, we hav®y(7)=exp
ot L —|af?n) and
0 0.5 1 (=lafn)
n 1 Nc)
=——log| 1——|. 36
———— ML PE g( N (36)
3 ®
3 The Fisher information is given by
[ wr * -
~ ] 2 2
5 }M ] aPo) 1 (aPl) 1
& - = — — 4 — JR—
| % A dn) Po \dn| Py
LO -
i | é 1 aPo)z a7
o et T = Y = | y
0 0.5 1 Po(1-Po)
K and therefore, for a weak coherent reference one has
FIG. 5. Estimation of the quantum efficiency of linear photode- )
tectors through homodyne detection on a squeezed state. Both plots _ 7 n
. . X F=———=—+ (39
report the ratio between the estimated value of the quantum effi- erlal®_q |a|2
ciency and the true value, as a function of the true val)eResults
obtained using the maximum-likelihood methdt) results by the g9
“naive” average-value method. The homodyne sample consists of
50 blocks of 50 data each, whereas the reference state is a squeezed | |
state with mean number of photons=1 and squeezing fraction Oo——— (39
v=99% (nearly a squeezed vacuum K V7N
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VI. SUMMARY AND CONCLUSIONS statistically reliable determination of the parameters of inter-

In quantum optics, there are several parameters of gre%tSt' Moreo"ef' by using the ML methoq on.ly few thousand
interest corresponding to quantities that are not directly ob: ata are required for the precise determmaﬂop of parameters.
servable. Among these, we studied the parameters of W€ Stress that the ML procedure used in this paper can be
Gaussian state, the phase of a squeezed-coherent state, &Rglied o a broad class of estimation process, since it applies
the quantum efficiency of either linear or single-photon re-t0 any probability distributiorp(x|\), as long as its func-
solving photodetector. In this paper, we have applied thdional form is known and the maximum of the likelihood
maximum-likelihood method to the determination of thesefunction is unique. In conclusion, for the measurement of
parameters using feasible detection schemes. In particuldp@rameters pertaining to quantum states or optical devices,
we have considered homodyne detection and ON-OFF phdhe ML procedure should be taken into account, in order to
todetection. In all cases here analyzed, the resulting estima@ptimize data analysis and thus reducing the experimental
tors are efficient, unbiased and consistent, thus providing efforts.
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