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Isotropic phase squeezing and the arrow of time

Giacomo M. D’Ariano, Chiara Macchiavello, Paolo Perinotti,
Massimiliano F. Sacchi )

Theoretical Quantum Optics Group, Dipartimento di Fisica ’Alessandro Volta’, UniÕersita di PaÕia, Istituto Nazionale di Fisica della`
Materia – Unita di PaÕia, Õia Bassi 6, I-27100 PaÕia, Italy`

Received 23 December 1999; accepted 9 March 2000
Communicated by P.R. Holland

Abstract

We prove that isotropic squeezing of the phase is equivalent to reversing the arrow of time. q 2000 Published by Elsevier
Science B.V. All rights reserved.

PACS: 03.65.-w; 03.67.-a

The concept of ‘squeezing’ appeared in the litera-
w xture in the early 70’s 1,2 and was extensively

studied in order to improve the capacity of quantum
information channels and the sensitivity in interfero-

w xmetric measurements 3 . Since then squeezing has
been a very popular word in quantum optics. By
‘squeezing’ one refers to a physical process where
the uncertainty of an observable is reduced at the
expense of increasing the uncertainty of the conju-
gated observable, according to the Heisenberg in-

Žequalities for extensive reviews see for example
w x.Ref. 4 . In quantum optics quadrature squeezing,

namely the squeezing of the probability distribution
Ž † if yif .of the observable a s a e qae r2 – a andf

a† denoting the annihilation and creation operators of

) Corresponding author. Fax: q39-382-507563.
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a given radiation mode – has been achieved experi-
mentally, giving rise to a number of interesting
properties, such as phase-sensitive amplification and

w xantibunching 2,4–6 . More recently, the density op-
erator of squeezed states has been measured by

w xoptical homodyne tomography 7 .
Conjugated quadratures, i.e. quadratures relative

to phases f and fqpr2, are generalizations of the
couple of observables position-momentum. Thus, we
can view quadrature squeezing of radiation states as
a narrowing process of the probability distribution in
the phase space which occurs in a definite direction,
corresponding to the phase of the squeezed quadra-

w Ž .xture see Fig. 1 a . Classically, one can imagine a
w Ž .xsimilar process in polar coordinates Fig. 1 b , where

the radial probability distribution is squeezed, while
the phase is spread, or viceversa. In the phase space
the squared radius corresponds to the total energy of
the harmonic oscillator, which is proportional to the
photon number operator Nsa†a for a single-mode
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Ž .Fig. 1. Phase-space representation of squeezing: a conventional
Ž .squeezing of two conjugated quadratures; b squeezing in phase

and photon number.

radiation field. Number squeezing narrows the pho-
ton number distribution, with the possibility of

² 2: ² :achieving sub-Poissonian statistics DN - N
w xin photon counting 8 . This process has been investi-

gated extensively and can be experimentally achieved
w xby means of self-phase modulation in Kerr media 9 .

The inverse process, namely phase squeezing, is
the subject of the present Letter. We will consider
isotropic phase squeezing, namely squeezing of the
phase probability distribution independently of the
mean value of the phase. Such a process corresponds
to noise reduction in the measurement of phase, and
it would lead to important results for communica-
tions and measurements, such as improved sensitiv-
ity of interferometric schemes and the achievement
of the capacity of quantum communications based on
phase coding.

In the following we will prove that isotropic
phase squeezing cannot be realized because it would
correspond to reversing the arrow of time. The arrow
of time is statistically defined by the direction of the

w xirreversible dynamics of open systems 10 . In quan-
tum-mechanical terms, it is associated to a loss of
coherence of the quantum state, e.g. dephasing
mechanism of the laser light, which corresponds to a

w xrandom walk on the phase space 11 . We will prove
that any dynamical process that isotropically reduces
the phase uncertainty can be described only in terms
of a ‘time-reversed dissipative equation’.

In the literature the Heisenberg-like heuristic in-
equality DNDfG1 for the couple number-phase is
often reported. However, its meaning is only semi-
classical, since the quantum phase does not corre-

w xspond to any self-adjoint operator 12–14 . There-

fore, in order to investigate isotropic phase squeez-
ing, we have first to introduce the concepts of phase
measurement and phase probability distribution in a
rigorous way.

The quantum-mechanical definition of the phase
is well assessed in the framework of quantum esti-

w xmation theory 15,16 . In this context the phase of a
quantum state is defined by the shift f generated by
any operator F with discrete spectrum. For example
Fsa†a for the harmonic oscillator, and Fss r2z

for a two-level system, s being the customary Pauliz

operator.
Quantum estimation theory provides a general

description of quantum statistics in terms of POVM’s
Ž .positive operator-valued measures and seeks the
optimal POVM to estimate one or more parameters
of a quantum system on the basis of a cost function
which assesses the cost of errors in the estimates. For
phase estimation, the optimal POVM for pure states
< : < < i x nc with coefficients c s c e /0 on the basisn n
< :n of F eigenvectors is given by

df
< : ² <dm f s e f e f 1Ž . Ž . Ž . Ž .

2p

for the class of Holevo’s cost functions – a large
class including the maximum likelihood criterion, the
2p-periodicized variance, and the fidelity optimiza-

Ž . < Ž .: Ž .tion. In Eq. 1 e f denotes the Dirac normaliz-
able vector

< : iŽnfyx n. < :e f s e n , 2Ž . Ž .Ý
ngS

w xwhere S is the spectrum of F. In Ref. 17 the
Ž . Ž .solution given in Eqs. 1 , 2 has also been proved

for phase-pure states, namely for states described by
a density operator r satisfying the condition

² < < : < < iŽ x nyx m.r ' n r m s r e , 3Ž .ˆnm nm

and for a nondegenerate phase-shift generator F1.
For states that are not of this kind, there is no

1 The set of phase pure states indeed has to be restricted
excluding the states D with D /0 only for iy js nk, withˆ i j

ngN and k denoting an integer constant G2. In fact, those states
have phase properties that are periodic of 2p rk. A simple
example is given by the superposition of two coherent states with

Ž .amplitude " a Schrodinger-cat like states , for which ks2.¨
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available method in the literature to obtain the opti-
mal POVM, and thus the concept itself of phase does
not have a well defined meaning.

Ž .The phase probability distribution dp f of a
quantum state is evaluated by means of the optimal

Ž . Ž .POVM in Eq. 1 through the Born’s rule dp f s
w Ž .x 2Tr r dm f . The phase uncertainty Df of the state

can then be calculated. However, notice that for
periodic distributions the customary r.m.s. deviation
depends on the chosen window of integration. Defi-
nitions of phase uncertainty that do not depend on
the interval of integration given in the literature are
monotonic increasing functions f of some average
cost of the Holevo’s class, namely

² :dfs f C , 4Ž . Ž .

where C represents the cost operator

`

n nCsc y c e qe , c G0 , ;nG1 ,Ž .Ý0 n q y n
ns1

5Ž .

² :and . . . represents the quantum ensemble average.
Ž .In Eq. 5 we introduced the following notation:

†iŽ x yx .nq 1 n < : ² <e s e nq1 n and e s e .Ž .Ýq y q
ngS

6Ž .

Typical examples of functions of this kind are the
reciprocal peak likelihood and the phase deviation
Ž <² : < 2 . Ž .2 1y e . The former corresponds to f x sq

y1rx for the cost operator C with all c s1; then
2latter corresponds to fs2 1y 1r4 x with c sŽ . 1

Ž ² :1 and c s0 ;n/1 for phase-pure states e isn q
² : ² :a real positive quantity, so e s e andy q

² :2 <² : < 2 ² : .y C r4sy e , with C F0 .q
Now we introduce the concept of isotropic phase

squeezing. For the e.m. field, we remind that ordi-
nary quadrature squeezing is effective in reducing
the phase uncertainty of a quantum state provided
that the average value of the phase is known a priori.
As mentioned above, isotropic phase squeezing
should reduce the phase uncertainty of the state r

independently of the initial mean phase. In mathe-
matical terms, this condition corresponds to a linear

map G that is covariant for the rotation group
generated by the operator F, namely

G e i Ff r eyi Ff se i Ff G r eyi Ff . 7Ž . Ž .Ž .

A physically realizable linear map G corresponds to
Ž .a completely positive CP map for density operators

that can be written in the Lindblad form

Er
w xs L V r , 8Ž .Ý nE t n

1† † †w x Ž .where L O r'OrO y O OrqrO O denotes2

w xthe Lindblad superoperator 18 . We do not take into
w xaccount the customary Hamiltonian term yi H,r in

Ž .the master Eq. 8 , because for the covariance condi-
w xtion one has H,F s0, and hence the optimal

POVM is simply rotated, with the result that the
phase uncertainty is not affected by the correspond-

Žing unitary evolution such Hamiltonian term can be
equivalently applied in one step before the evolution
Ž . .8 , and preserves the phase purity of the state .

The covariance condition restricts the general form
Ž . w xof Eq. 8 to the expression 19

q`Er
s L B r , 9Ž .Ý Ý m , jE t msy` j

where

B sg F em , mG0Ž .m j m , j q

B sh F e < m < , m-0 . 10Ž . Ž .m j < m < , j y

In the following we will focus our attention on the
case of a single-mode radiation field, hence we take
Fsa†a and the spectrum SsN. We postpone the
discussion of the generality of our result at the end
of the Letter.

We consider the class of phase-pure states as
Ž .initial states for the master Eq. 9 , since for other

kinds of states the phase measurement is not well
defined, as mentioned before.

We are now in position to prove the main result
of this Letter, namely that isotropic phase squeezing
is equivalent to reversing the arrow of time. Accord-

Ž .ing to Eq. 4 the time derivative of the phase
uncertainty df has the same sign as the derivative of
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² : Ž .the average cost C , which is obtained from Eq. 9
as follows:

`² :E C E
k² :sy2Re c e . 11Ž .Ý k qE t E t ks1

A straightforward calculation gives the following
Ž .contribution for the k-th term in the sum of Eq. 11 :

E
k² :y2Re eqE t

` `

< < <s r g mq lŽ .Ý Ý Ý l , lqk m , j
ms0 j ls0

< 2yg mq lqkŽ .m , j

` `

< < <q r h lymŽ .Ý Ý Ý l , lqk m , j
ms1 j lsm

< 2yh lymqkŽ .m , j

` my1

< < <q rÝ Ý Ý l , lqk
ms1 j Ž .lsmax 0,myk

= < 2h lymqk G0 , 12Ž . Ž .m , j

which is manifestly non negative for all values of k.
Ž . Ž .Hence, according to Eqs. 11 and 12 , the average

cost as well as the phase uncertainty increase versus
time. The only possibility to achieve isotropic phase
squeezing is then to have a minus sign in front of the

Ž .master Eq. 8 , which means to reverse the arrow of
time.

Our proof rules out also the possibility of isotropic
squeezing through a phase measurement followed by
a feedback quadrature squeezing. In fact, such a kind
of process is described by a CP map as well, and one
can explicitly show that the phase uncertainty in the
measurement eventually leads to an overall phase
diffusion.

The same conclusions regarding the derivatives of
² k :e hold also for the cases of unbounded spectrumq
SsZ and bounded spectrum SsZ for a nonde-q

generate phase shift operator: also in these cases the
phase uncertainty can decrease for any input state
only if we reverse the arrow of time. For SsZ allq

Ž .series in Eq. 12 are bounded and boundary terms
appear in addition to the third one. For SsZ Eq.
Ž .12 rewrites:

E
k² :y2Re eqE t

` `

< < <s r g mq lŽ .Ý Ý Ý l , lqk m , j
ms0 j ls0

< 2yg mq lqkŽ .m , j

` `

< < <q r h lymŽ .Ý Ý Ý l , lqk m , j
ms1 j ls1

< 2yh lymqk G0 . 13Ž . Ž .m , j

In the general case a phase-covariant master equa-
tion does not evolve a phase-pure state into a phase-
pure state, hence it may happen in principle that,
after a finite time interval in which the phase-purity
is lost, phase-purity is then recovered at the end with
an overall decrease of df. However, one cannot
follow the evolution of df for finite time intervals if
the definition itself of the phase is lost during the

Ž .time evolution. A phase-covariant master Eq. 9
Ž Ž ..preserves phase-purity if and only if arg g F sm , j

Ž Ž ..w and arg h F su independent on F, andm , j m , j m , j

one can always choose w su s0 identically,m , j m , j

due to the bilinear form of the Lindblad superopera-
tor.

In the case of degenerate F, we can find the
< : ² <optimal POVM for pure states c c as follows

w x < :17 : we select a vector n for each degenerateI

eigenspace HH corresponding to the eigenvalue n,n
< : < :such that n is parallel to the projection of c onI

HH . So the Hilbert space HH can be represented asn

HH [HH , where HH is the Hilbert space spannedI H I
< :by the vectors n and HH its orthogonal comple-I H

< :tion. Since c has null component in HH theH
estimation problem reduces to a nondegenerate one
in the Hilbert space HH , and the optimal POVM isI

Ž . Ž . Ž .given by dm f sdm f [dm f , where dmI H I
is the optimal POVM for the nondegenerate estima-

Ž .tion problem in HH , while dm f is an arbitraryI H
POVM in HH . It is clear that the POVM obtainedH
in this way is optimal also for phase-pure states that
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are mixtures of pure states all with the same HH .I
The most general phase-covariant master equation is

Ž . Ž .again of the form in Eqs. 8 and 10 , however, now
there are infinitely many possible B for fixed m, jm , j

corresponding to different operators e which shiftq
the eigenvalue of F while spreading the state in the
whole HH from HH in all possible ways. Therefore,I
a phase-covariant master equation does not keep the
original state in HH , apart from the case where oneI
considers operators B defined in terms of e onlym , j q
of the form

iŽ x nq 1yx n. < : ² <e s e nq1 n . 14Ž .Ý I Iq
n

In the general case, however, a reduction of the
phase uncertainty is possible in principle, due to the

Ž .arbitrariness introduced by dm f in the definitionH
of phase in the degenerate case, the time derivative

Ž . w Ž .xof dp f sTr r dm f generally depending onI
Ž .dm f .H

We now focus attention back to the case of
Ž .nondegenerate F. Looking at Eq. 12 , one can see

that it is possible to make all terms vanishing, getting
a null derivative for the average cost. This is actually
possible only for unbounded spectra as SsN and
SsZ, where one can find a master equation that
preserves the phase uncertainty for any quantum
state. For SsN, one has the following conditions on

Ž . Ž .the coefficients of Eq. 12 : g F sg constantm , j m , j
Ž . < < 2and h F s0. Upon defining u sÝ g onem , j m j m , j

has

`Er
m ms u e r e yr . 15Ž .Ž .Ý m q yE t ms1

Ž .In the case SsZ one has more generally h F sm , j
< < 2h constant, and introducing Õ sÝ h , them , j m j m , j

phase-uncertainty preserving master equation takes
the form

`Er
m m m ms u e r e yr qÕ e r e yr .Ž . Ž .Ý m q y m y qE t ms1

16Ž .

Ž . Ž .The master Eqs. 15 and 16 are very interesting,
since they represent a counterexample to the custom-

ary identification of ‘decoherence’ and ‘dephasing’.
Ž .The study of physical realizations of Eqs. 15 and

Ž .16 could provide insight in the understanding of
decoherence and relaxation phenomena.

In conclusion, we have shown that isotropic
squeezing of the phase is equivalent to reversing the
arrow of time. This result is very general, as it holds
for any definition of phase with nondegenerate shift
operator, for any definition of phase-uncertainty in
the Holevo’s class, and for any initial phase-pure
state. In this way we have related the concept of
phase to the arrow of time statistically defined by the
evolution of open quantum systems, thus enforcing

w xthe link between phase and time 20 .
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