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Abstract

We present a method of generation of the Greenberger—Horne—Zeilinger state involving type II and
type I parametric downconversion, and triggering photodetectors. The state generated by the proposed
experimental set-up can be reconstructed through multi-mode quantum homodyne tomography. The
feasibility of the measurement is studied on the basis of Monte-Carlo simulations.

1. Introduction

A number of proposals for generating the Greenberger—Horne—Zeilinger (GHZ) state [1]
has been suggested in the literature [2]. Such kind of state is very interesting as it leads to
correlations between three particles in contradiction with the Einstein—Podolsky—Rosen
idea of “elements of reality” [3]. In the present contribution we present a scheme for a
complete quantum test of a GHZ state of radiation, not just for a simple verification of
some GHZ correlations, which do not prove that a true GHZ state has been produced. In
fact, the verification of a state-preparation procedure needs a complete state-reconstruction
technique, whereas correlation measurements [4] give identical results for very different
states of radiation. In this respect, a crucial technique for state-preparation tests is quantum
homodyne tomography, in which the detrimental effect of non-unity quantum efficiency of
detectors is taken into account ab initio by the reconstruction algorithms.

In the following we propose a method for generating a GHZ state through type II and
type 1 parametric downconversion, and triggering photodetectors. The proposed set-up,
although it has low rate of production due to low efficiency for single-photon downconver-
sion, however is the only way to generate a “true” GHZ state, without an additional va-
cuum component. The scheme allows a tomographic state-reconstruction, whose feasibility
here is studied on the basis of Monte-Carlo simulations.

2. Scheme for the GHZ-state generation

The scheme for the generation of the GHZ state is sketched in Fig. 1. A low-gain type-II
parametric downconverter is pumped by a strong coherent beam to generate the state

18) = (142922 [10) + y(|1£s, 1go) + €71 [1fo, 1g6))] (2.1)

in the four radiation modes f, , and g, ., where o, e represent ordinary and extraordinary
polarizations, v denotes the effective coupling depending on the pump strength and the
nonlinear susceptibility of the crystal, |0) and |la) represent the vacuum and the single-
photon Fock state for mode a, respectively.
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Fig. 1: Sketch of the experimental set-up for generating the GHZ state. A low-gain type-II
parametric downconverter is pumped by a strong coherent beam and generates the state in
Eq. (2.1). Two further downconversion processes in type I nonlinear crystals excite modes
do,e> Do,y Coe and d, .. A and PBS denote a wave plate and a polarizing beam splitter, respec-
tively. The photodetector in the lower part of the scheme collapses the field modes in the
state of Eq. (2.5). The photodetector in the upper part checks if the second photon in one of
the modes f, . has been split in the first crystal. The resulting state is a mixture of a Fock
state in modes ¢, . and of a GHZ state [see Eq. (2.6)], the weights of the two components
depending on the effective gain of crystal A and on the quantum efficiency of detector D1.

The state & at the output of the first crystal is then impinged on two type-I nonlinear
crystal A and B. In this case no classical pump is used and the dynamics must be evaluated
without the parametric approximation used to derive Eq. (2.1). For example, the unitary
evolution describing crystal A is given by

Uy = exp x4 (alblf, + €91 alb] f, —h.c.)], (2.2)

x4 being proportional to the nonlinear susceptibility of the medium. An analogous expres-
sion can be written for the crystal B. For simplicity, we assume in the following
%4 = xp = X- The state at the output of the couple of type-I crystals is given by

UUs[) = (1 +2y%)"2 {[0) + l(cos  |1fe) + sin x [1a,, 1b,))
x (cosy [1g,) +siny |lc, 1d,)) + €' (cos x |1f;,)
+ €% sin i |1a,, 1b,)) (cos x|1g.) + €# sin y|1c,1d,))]} . (2.3)

As shown in Fig. 1, a wave plate and a polarizing beam splitter act respectively on modes
Ce,o and d, , according to the unitary transformations

Ce = Co d, — (d, +d,)/V2
{Co — —Ce ’ {do - (do - de)/\/z . (24)
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When photodetector D2 reveals one photon after the polarizing beam splitter, one is guaran-
teed that two photons have been created in the type-II crystal and that the }ghoton imping-
ing on crystal B has been split. This occurs with probability Pg = 17,(y? sin® ) /(1 + 2y?),
1, being the quantum efficiency of photodetector D2. The corresponding reduced state | D)
writes

|P) = % [cos x([1fe1co) — €757 1, Ic,))

+sin y(|lay1bylc,) — @194+ 5) |1a,1b,1¢,))] . (2.5)

Photodetector D1 in the upper part of the scheme monitors the splitting of the photon
impinging on crystal A. When such detector, characterized by quantum efficiency #,, re-
veals the lack of the “pumping” photon, the resulting output state finally reads as the
following mixture

1 , sin? y

— (Na,1b,1c,) — P teates)|14,1b,1c, - > A

7 (1a,1b,1c,) — latbilc)) pr= g
0= (1 =) cos’y -

e, — TS £

o) P 05 )

[lee) ps=n2

(2.6)

The overall probablhty P, of generatlng the mixture in Eq.(2.6) is given by
P, = Pg(1 — 1, cos? ). One easily recognizes in the first component of the mixed state in
Eq (2.6) the GHZ state for a suitable arrangement of the phases, namely for

@1+ @4 +@p =T

3. Multi-mode tomographic measurement

Quantum homodyne tomography is the first quantitative technique for measuring the matrix
elements of the radiation density operator [5, 6], which is now used in optical labs [7].
Single-mode homodyne tomography can be generalized to any number of modes. However,
such a simple generalization needs a separate measurement for each mode, which cannot be
achieved when modes are not spatially separated. For this reason, in Ref. [8] it has been
proposed a general method for measuring an arbitrary observable of a multi-mode electro-
magnetic field, using homodyne detection with a single local oscillator. Such method is a
natural application of a recent group-theoretical approach to quantum tomography [9]. In
the following we recall the main results, providing the rule to evaluate the “unbiased esti-
mator” for a generic (M + 1)-mode operator. The quantum expectation value of the opera-
tor can be obtained for any unknown state of radiation through an average of such estima-
tor over homodyne outcomes that are collected using a single local oscillator by scanning
different linear combinations of modes on it. The quadrature operator to be measured is
given by X(0,y) = [AT(6, y) +A(6,w)]/2 with A(,y) =)', e ¥ w(0) a;. The vector
i{(0) represents a point on the Poincaré hyper-sphere (for the explicit parametrization see
Ref. [8]). By scanning the values of y; € [0, 7] and 6; € [0,7r/2], all possible linear combi-
nations of modes described by annihilation operators a;, with /=0, ..., M, are obtained.
The homodyne outcomes for X(6, ) can be obtained using a single local oscillator pre-
pared in the multi-mode coherent state ®¥ |y,) with |y,) = ¥ u;(6) K/2, where K > 1.
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The expectation value for a given operator O is evaluated as follows

(0) = [auly) [ dul6) | dvpy(x:0.) £(0] (5:0.). 37)

where p,(x; 6, ) denotes the homodyne probability distribution of the quadrature X(6, y)
for quantum efficiency #, and the function £,[0] (x;0, w) of x, {6;}, {w,} has the follow-
ing analytic expression

+00

A M+1 . . R

EnO0] (x;0, ) = KM' J dt e VR M T L0 exp [—2i Vit X(0, )] 1}, (3.8)
0

with i« = 27/(2n — 1). In Eq. (3.8) we used the notation

27 /2
Mo gy, < AM gy M « 2(M—1)+1
dulw] = H) 5 dul0) =2" M! 11_[1 d0, sin 0, cos 0;. (3.9)
=0 ) .

3

For any given operator O Eq. (3.8) provides the “unbiased estimator” to be averaged over
all homodyne outcomes for the quadrature X(6,y) of all modes in order to obtain the
ensemble average (O) for any unknown state of radiation. Eq. (3.7) can be specialized to
the matrix element ({n;}| R |{m;}) of the full joint density matrix. This will be obtained by
averaging the following estimator [8]

M KM+l M Y !
Ell{mi}) (ni}] (x50, ) = e s oo H{[_’W"’(W | u_:}

+00
M

R M
x J dt ¢~V MY )2 T B a2 (0) 1], (3.10)

=0
0

where p; = max (my,n;), v; = min (m,n;), and L%(z) denotes the customary generalized
Laguerre polynomial of variable z.

4. Numerical results

The tomographic measurement on the state in Eq. (2.6) can be suitably performed by vary-
ing randomly the phases and the polarizations for the couples of modes a,., b,. and c,
and then collecting homodyne outcomes by using three local oscillators. Such an experi-
mental arrangement represents an intermediate way of using the multi-mode tomographic
method of Sect. 3, and the usual method based on the product of single-mode estimators.
By using the estimator in Eq. (3.12) one can measure tomographically the expectation value
of the projector |¢) (¢| with

1 :
p) = = (|la,1b,1c,)| + €? |1a,1b,1c,))
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Fig. 2: Tomographic measurement of C(¢) in Eq. (4.11) for ¢ = 0. On the left: = 0.85,
% =0.3m, N =6 x 10°. On the right: 7 = 0.9, y = 0.4, N = 1.7 x 10,

on the state ¢ in Eq. (2.6) and compare the result with the theoretical value, namely

1

C(¢) = (¢lol¢) =5 pi[l —cos (¢ — )] - (4.11)

We report in Fig. 2 the results of some Monte-Carlo simulations of the tomographic meas-
urement of C(¢) in Eq. (4.11).

In the simulations the quantum efficiency of detectors D1 and D2 is 77, = 17, = 30% and
the phase ¢ in the state (2.6) is ¢ = 0. The values of the quantum efficiency # of homo-
dyne detectors, the coupling y of type-I downconvertors, and the number N of simulated
homodyne data are reported in the caption of the figures. The results of the simulations
show that for homodyne detectors with quantum efficiency 1 = 85% one needs about 107
data to reconstruct the state with relatively small statistical error. The experimental values
compare very well with the theoretical ones. The bars represent the statistical error, whereas
the solid line is the theoretical value of C(¢). In each plot, all points are obtained by the
same sample of data which causes the evident correlation between the statistical deviations.
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