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Abstract

Quantum tomography is a general method for estimating the ensemble average of all operators of an
arbitrary quantum system from a set of measurements of a quorum of observables. A procedure for
deconvolving instrumental noise is available, which makes the tomographic method feasible in different
physical contexts. Recent developments are presented and new experiments are proposed, which are
now made possible by the tomographic technique.

1. Introduction

Suppose that we can prepare a quantum system repeatedly in the same state, and make a
series of experiments such that we can measure a different observable in each experimental
setting. Can we estimate the ensemble average of any desired system operator — including
the density matrix of the state itself — from the set of measured outcomes? How the mea-
sured observables must be chosen in order to allow such universal estimation? The answer
to this question is given by the method of quantum tomography. Similarly to classical
tomography, where a picture of a hidden object is build up using various observations from
different angles, in quantum tomography a complete description of a quantum system is
recovered by observing complementary features in different experimental runs. For exam-
ple, in quantum optics, optical homodyne tomography allows to reconstruct the quantum
state of light from a set of measured field quadratures at different phases with respect to the
homodyne local oscillator (LO). This is analogous to what happens in computer-assisted
tomography, where the image of a hidden internal part of a living body is obtained from
recorded transmission profiles of X-rays that penetrated the body from various directions.
The name quantum tomography originated in quantum optics from such analogy with the
classical computer-assisted tomography. There, the set of quadrature probability distribu-
tions for varying LO-phase was recognized [1] to be the Radon transform of the Wigner
function, the Radon transform being the basic imaging tool in medical tomography. This
method led to a first qualitative technique for measuring the matrix elements of the radia-
tion density operator [2]. A first quantitative technique has then been presented [3, 4], the
one which is now used in the lab [5]. The method has then been generalized to the estima-
tion of arbitrary field observable [6], and, recently, it has been extended to arbitrary quan-
tum system [7, 8].

In this paper, after reviewing the general tomographic approach in Section 2, in Sect. 3 a
set of new experiments will be given, which are now made possible by the general quan-
tum tomographic technique. Particular attention is devoted to a new class of experiments,
which allow, for the first time, to check experimentally the quantum mechanical state-reduc-
tion rule.
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2. The general approach

The set of quadratures in homodyne tomography is an example of quorum [9] of observa-
bles, namely a “complete” set of noncommuting observables for determining the quantum
state of the system. The concept of quorum is the basis of the general tomographic method
for estimating the ensemble average of all operators of arbitrary quantum system. As we
will see in the following, the method provides a concrete framework to design measuring
apparatuses for estimation, taking into account also instrumental noise of any kind in the
measurement. In this section the method will be briefly reviewed at an intermediate level of
generality: routes to generalizations can be found in Ref. [7].

2.1 Quorum and estimating procedure

We call the set Q = {Q;} of observables Q,, A € A, a quorum for the quantum system S
if it is possible to estimate the ensemble average (A) of any operator A € £L(H) by using
only measurement outcomes of quorum observables. An unbiased estimation rule £ for the
quorum @ assigns to every operator A an operator valued function of Q; € Q, the unbiased
estimator £4(Q;), such that the ensemble average (A) = Tr [Ag] for arbitrary unknown state
© can be obtained by averaging over the quorum as follows

(A) = Af du(2) (Ea(Q1)) , (2.1)

where u is a probability measure over A, and the integral is a sum for discrete set A
(explicit dependence of £4 on A is omitted for simplicity of notation).

Eq. (2.1) corresponds to the following estimation procedure for (A): i) select an observa-
ble O, randomly in the quorum Q according to the probability measure u; ii) measure Q;
and evaluate the function £4 of the outcome; iii) average the result over many measure-
ments with different Q; € Q. Notice that the ensemble average (A) of any operator
A € L(H) is obtained from the same set of data using the same fixed estimation rule.

Eq. (2.1) must be true for arbitrary o, whence

A :,Af du(A) Ex(Qz) » (2.2)

with integral convergence in expectation. Notice that the estimation rule is generally not
unique, since there exist null estimators N over Q satisfying the identity

a[ du(A) N(Q;) = 0. (2.3)

The existence of null estimators sets an equivalence relation ~ between unbiased estimators
(two estimators are equivalent if they differ by a null estimator).

2.2 The general unbiased estimation rule

I now derive a general estimation rule abstractly: physical implementations and apparatuses
will be considered in the next subsections. An unbiased estimation rule is obtained from
any (Lie) group T of transformations g € T with invariant measure dg and unitary irreduci-
ble representation (UIR) R over the Hilbert space H of the quantum system (7" unimodular
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for simplicity). The following selfadjoint involution E = Ef = E-' on H® H

E= J dgRi(g) @ R(g), (2.4)

is an intertwining operator, namely, for any two operators A and B one has the identity
E(A®B) = (B®RA)E, (2.5)

which is easily proved by the first Schur lemma. For square-integrable R, the invariant
measure dg can be normalized as [, dg|(u| R(g) [0)[* =1, |u),|v) € H any two unit vec-
tors — the integral being independent on their choice, due to irreducibility of the representa-
tion. With such normalization the following identities hold

Tr (E) =Tr, (E) =1, (2.6)

where Tr; denotes the partial trace over the ith Hilbert space of H ® H. From Egs. (2.5)
and (2.6) one has

A=Tr [A® 1E]. (2.7)

Consider the polar parametrization g(w;i) = exp (iyi - f) of group elements, where
T = {T;} is a basis for the Lie algebra of T, and 7 € A is a unit vector |i]> =1 here
playing the role of A. Using the new polar variables {7} for T, the intertwining operator
rewrites as follows

-,

E=[diE@-T), (2.8)
A

where
Eii- T) = [ du(y) e 4T (2.9)

AT=T®1-1®T, the measure du(y) includes the Jacobian J(w,7) in

dg = J(y,n) dy dit, and the integral is extended to the real axis or to a circle, for T with
continuous or discrete spectrum, respectively. Egs. (2.7—2.9) are equivalent to the following
unbiased estimation rule

EA@-T)=Tr [A®1E@-T)]. (2.10)
For A traceclass, integral and trace in Egs. (2.9) (2.10) can be exchanged, obtaining

Ea(-T) = [ du(y) Tr [e ¥ T A] ¢iviT (2.11)

2.3 Physical implementation

How to realize the quorum of observables in practice? In a concrete situation one doesn’t
have an infinite set of detectors at disposal for all possible observables in Q. However, one
can start from a finite maximal set of commuting observables, say {H,}, and achieve the
quorum observables by evolving H, under the action of a group G of physical transforma-
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tions (in the Heisenberg picture). This can be attained, for example, by preceding the H,-
detectors with an apparatus that performs the transformations of G. For example, as shown
in the following, for spin tomography a quorum is given by the set of all angular momen-
tum operators J - 77 on the sphere 77 € S?. The detector is a Stern-Gerlach apparatus for J,
preceded by a uniform magnetic field in the xy plane. The magnetic field in the xy plane
rotates J, to J - 1. In other situations, the group G is simply achieved by tuning some para-
meters at detectors, e.g. rotating the phase of the local oscillator (LO) in the homodyne
detector of a homodyne tomographer [4]. In this scenario the quorum manifold A is iso-
morphic to the coset space G/H, H denoting the stabilizer of the seed observables H,
under the action of G. Notice that, in the present construction, the physical group G is
generally different from the fomographic group T.

24 Examples

In this subsection the general tomographic procedure is illustrated on the basis of some
examples. In Table 1 the estimation rule for some different apparatuses is given. The first
example is homodyne tomography [4]. The measuring apparatus is a homodyne detector

Table 1

Examples of applications of the general quantum tomographic method. Here T denotes the
tomographic group, G the physical group, A the quorum manifold, Q; = - T the quorum
observables (on convenience, both 4 and 77 denote a point in /). The estimation rule E(Q;)
is given in Egs. (2.1) and (2.9—2.10). The measure du(A), is defined in Eqgs. (2.1) and (2.8).
WH denotes the Weyl Heisenberg group of displacement operators in the complex plane. D,
denotes the dihedral group with a two-fold axis. P,C ~ SU(n+ 1)/U(n) denotes the n-
dimensional complex projective space. All other notation is standard.

Homodyme tomography Multimode homodyme
T WH SU(n+1)
G U(l1) SU(n+1)
4 _ [07 .7'[} PnC
o =n-T Xy X(6,y)

dg aw
du(i —

ﬂ( ) T (zn)n+l

1] 1 [ dk k!

E(0)) 2 J dk k cos (k AX,) = J e cos (kAX(0,9))
0 0

Spin tomography Pauli tomography
T SU(2) D,
G SO(3) D,
Y| . s Z;
O =i-T J-it O

dn 1
du(4 — —

oy yp 3
a

2J+1 - 3 1

E(Q;) : Jdl/) sin’ % cos (v AJ - i) > 0a®aa+§

0
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with tunable phase with respect to the LO. The quantum system is the harmonic oscillator
representing a single mode of the e.m. field, with annihilation and creation operators
[a,a'] = 1 acting on a infinite dimensional 7. The tomographlc group T is the Heisenberg-
Weyl group of dlsplacement operators D(a) = exp (aa’ — a*a). The quorum is the set of
field quadratures Xy = 1(a'e? +ae” ’¢’) with uniformly distributed phase ¢ € [0, 7],
du(p) =d¢ /J‘E The phys1cal group G is the group U (1) of rotations of the phase ¢. The
stabilizer H is generated by the sr-rotation, which is equivalent to the quadrature inversion
Xpin = —Xp.

¢The secogd example in Table 1 is the case of multimode homodyne tomography with
one LOJ[10]. The apparatus is a homodyne detector with phase and mode-tunable LO.
The quantum system is a multimode e.m. field, with anmhllatlon operators aop,di, .. .,
a,. The quorum is the set of quadratures X(6,y) = [A'(0 w)+A(0,y)] where

0,w) => 1, e u(6) a are bosonic mode operators, with @ € S™ a point on a Poin-
caré hyper—spher%i w={w, €1[0,2n]}, 6 ={6,€[0,7/2]}, with probability measure
du(0,y) = [[_y 52 di. The annihilation operators A(6, y) of the quorum are the orbit of
a fixed single mode, say ap, under the action of G =T = SU(n + 1). As a relevant exam-
ple of application, here I report the estimator of the matrix element ({n;}| R |{m;}) of the
full joint density operator R of modes for generally nonunit quantum efficiency # [10]

n
—i Z (mi—my)y, Khtlon

. — V]!
Eltmg) oy (30 w) = Tl IHO{[_I\/EMI(G)]M | M_ﬂ}

< ) n+ Y (w—v) n
dete”“’\/mt '; U Lk (0) 4. (2.12)
=0
0

In Eq. (2.12) ; = max (my,n;), v; = min (my,n;), k = 257/(2n — 1), and L (x) denote gen-
eralized Laguerre polynomials. Other examples can be found in Ref. [10].

The third example in Table 1 represents the case of spin tomography for a spin-J elemen-
tary particle, or any (2J + 1)-level system. The tomographic group is T = SU(2), whereas
the physical group is the group of rotations of the angular momentum G = SO(3). The
quorum is the set of all angular momentum operators J -7 on the Bloch sphere
§? ~ SU(2)/U(1) uniformly distributed with du(ii) = dii/(4x). The apparatus is the two-
field Stern-Gerlach machine already mentioned.

The last example is a particular case of the previous one for J = % Here the discrete
minimal quorum Q = {0, ,0, ,0.} of Pauli matrices is available. T = G = D, the dihedral
group of s-rotations around three perpendicular axes. Notice that this minimal quorum is
not complete for estimation with J > % However, although quorum minimality maybe dic-
tated by elegance and simplicity requirements, it is not clear if it is of any practical use. For
example, achieving the complete rotation group physically is not more difficult than achiev-
ing only a discrete subgroup. Moreover, computer simulations show that statistical errors in
the estimation procedure are unaffected by the size of the quorum [11].

2.5 Composite systems: distinguishable and indistinguishable subsystems

For composite systems with Hilbert space H = @}_ 1Hn a quorum is the Cartesian-product
quorum Q= x",09,, with the tensor product estimation rule for factorized operators

An €y 4 (Ql, o, On) =TI, €4,(Q,) — the rule being extended to all operators
in £(H) by 'Tmearlty Notice that the tensor product rule is sufficient to estimate any global
observable in L(H) (for example, the full joint density matrix), but a local measurement on
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Z

N S Fig. 1: Double gradient Stern-Gerlach setup
0 Y for measuring the state of two indistinguish-
to able spin-1/2 particles. From traces 7. and %,

one tomographically reconstructs the triplet
matrix block, whereas from trace sy one gets

the singlet matrix element. The first uniform

magnetic field in the xy plane is used to rotate

X the angular momentum to achieve the quorum.

each subsystem is needed, i.e. subsystems must be distinguishable (an example is the self-
homodyne technique in Ref. [12]). In contrast, for indistinguishable systems one needs a
quorum of global observables. An example of global quorum observables is the one-LO
multimode homodyne tomography already mentioned. As another example, one can consider
a cluster of two identical spin-1/2 particles. For indistinguishable particles one can prove
[11] that the spin reduced density matrix is block diagonal in the total spin S, e.g. there are
no off-diagonal elements between singlet and triplet for two spin-1/2 particles. Therefore, it
is possible to reconstruct the complete reduced spin density matrix through spin tomogra-
phy on the total spin. In Fig. 1 a double gradient Stern-Gerlach setup is represented which
allows measuring the state of two indistinguishable spin-1/2 particles. From traces ¢ and
o one can tomographically reconstruct the triplet matrix block, whereas from trace sy one
gets the singlet matrix element [11]. For larger numbers of particles an increasing number
of magnetic gradients would be needed in the tomographic reconstruction.

2.6 Taking into account instrumental noise

In the practical situation the estimation needs to be achieved in the presence of instrumental
noise. In quantum mechanics instrumental noise of any kind can be described by a unit-
preserving completely positive (CP) map I": L(H) — L(H). The n01se I' can be decon-
volved for the estimation of A if £4(Q) is in the domain of I'"' and I''[€4(Q;)] is
still a function of Q; (£4(Q;) is a function of Q; in the sense that it shares the same
spectral decomposition of Q). In this case the ensemble average of A can be estimated
1n the presence of noise F using the deconvolved estimator [see Eq. (2.8)]
ENGE T)] Tr; {A® IrY[E(7- T)]}. Noise can be deconvolved more generally
when there is a new quorum Qp isomorphic to Q with a map mpr: Q < Qr such that
'[€4(Q;)] shares the same spectral decomposition of mp(Q;) for all 0; € Q.

An example of noise deconvolution is the case of Gaussian noise in homodyne detection
[13]. Here, in order to evaluate the deconvolved estlmator for noise variance A%, one only
needs the identity I'[exp (ikX,)] = exp (ikX, — 1 k*4%) in order to get the deconvolved
estimation rule

1T )
I 'EXy)] = > J dk k ¢4F cos (k AX,) . (2.13)
0

Nonunit quantum efficiency corresponds to Gaussmn noise with 4> = (1 —#)/(2#). Notice
that, generally, there is a A-dependent bound for A°, above which the deconvolution fails
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Fig. 2: Example of conditioned tomography: reconstruction of Schrodinger-cat states of ra-
diation [18] (tomographic improvement of a scheme proposed in Ref. [19]). In the general
conditioned tomographic scheme one has a couple of correlated beams, and a quantum
measurement is performed on beam 1, while a tomographic reconstruction is made on beam
2, conditioned on the result of the measurement on beam 1. In the scheme for reconstructing
Schrdinger-cat states two orthogonally polarized modes of radiation — the “signal” and
“readout”—are entangled by a parametric amplifier followed by a half-wave plate. The param-
etric amplifier generates a correlated state of the two modes and the half wave plate rotates
the polarization directions. After detection of the readout beam 1, the signal beam 2 is
reduced to a Schrodinger-cat state (the degenerate parametric amplifier (DOPA) “stretches”
the cat-state, making the two coherent components more distinguishable). The cat-state on
beam 2 is then tomographically reconstructed through conditional homodyne tomography.

[13]. In the example of Eq (2.12) the estimator AT already a deconvolved estimator,

and the bound is 7 > 5. Another example is the J = 5 estimation in a Pauli-channel

I'y(A)=(1—-pA+5 T [A] 0 < p < 1, with deconvolved estimation rule for p < 1

3 _ 1
£V (0,) =S {(1=p) " TrAvd] 00 + 5 Tr [A]} . (2.14)
2.7 Estimation for unbounded operators

In Eq. (2.11) the estimation rule was specialized to traceclass operators. For nontraceclass
operators one can evaluate the integral in Eq. (2.9) as a distribution and use a kind of
renormalization technique that exploits the equivalence relation ~ between estimators, drop-
ping the unbounded null-estimator part. For example, for homodyne tomography, all null
estimators are linear combinations of XX ¢*(2+2+k) ~ 0 for k,p > 0. One can deduce a
function calculus based on the equivalence ~, and evaluate all the estimators of the un-
bounded s-ordered field monomials {a!"a"}, for quantum efficiency # in terms of “trun-
cated” Herm1te polynomials [14]. For example, the estimator of the photon number is
simply £ (Xy) = 2X2 —1/(25), €™ denoting deconvolved estimators for quantum effi-
ciency 17 The same techmque can be used for the case of one-LO multimode homo-
d¥ne tomography. For example for the total photon number of two modes one has

E oy (X(0,0)) = 4X(0, )" = 1/n.
3 New experiments

The quantum tomographic technique opens new perspectives for testing quantum me-
chanics. For example, it is possible to directly test the nonclassicality on various one-mode
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Fig. 3: Examples of conditioned tomography. On the left: tomographic scheme for measuring the
quantum Liowvillian matrix of an optical phase-insensitive device [20]. On the right: testing the quan-
tum state-reduction rule [21]. In the tomographic scheme for measuring the quantum Liouvillian matrix
a random-n Fock state |n) for the input beam of the optical device is achieved by performing photo-
detection on the other twin beam, n being the measured number of photons. A non degenerate optical
parametric amplifier (NOPA) with vacuum input is used to produce the twin beams. By scanning the
set of states at the device input and comparing them with their respective output states, it is possible to
reconstruct the Liouvillian of the device. In the scheme for testing the quantum state-reduction rule (on
the right), a different kind of measurement—photodetection, heterodyne (as in figure), etc. — can be
performed on beam 1, while the reduced state of beam 2 is tomographically reconstructed, conditioned
by the measurement outcome on beam 1. For example, for heterodyne detection, after heterodyning
beam 1, the reduced state of beam 2 is tomographically reconstructed conditioned by the heterodyne
outcome. In place of the heterodyne detector one can put any other kind of detector for testing the
state-reduction on different observables: for example, for heterodyne detection the reduced state is a
coherent state, whereas, for photodetection, the reduced state is a number eigenstate. The state-reduc-
tion can be tested by a direct measurement of the fidelity between the theoretically expected reduced
state and the experimental one, using a suitable conditioned estimator that takes into account also state
distortion due to finite gain at the NOPA and nonunit quantum efficiencies at detectors. Monte Carlo
simulated experiments [21] show that a decisive test can be performed even with only a few thousand
measurements, with low gains at the NOPA and low quantum efficiencies at the readout photodetector.

and two-modes states, by tomographically measuring some special observables of the field
[15]. Moreover, new tests of Bell’s inequalities are now possible [16], based on two-mode
homodyne tomography, with the possibility of achieving very good detection quantum effi-
ciencies. Finally, using three polarization-tunable homodyne detectors, in principle it is pos-
sible to make a complete tomographic test of the preparation of a Greenberger-Horne-Zei-
linger state [17], which cannot be checked by simple coincidence measurements.

3.1 Conditioned homodyne tomography

Using parametric downconversion, a new set of experiments based on conditioned homo-
dyne tomography is now possible. The general conditioned scheme is as follows. A nonde-
generate optical parametric amplifier (NOPA) produces a couple of correlated twin beams 1
and 2 from vacuum downconversion. A quantum measurement is performed on beam 1,
and a homodyne tomographic reconstruction is made on beam 2, conditioned on the result
v of the first measurement, namely using an estimator £,” (X,;v) which depends on the
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outcome v of the measurement on beam 1. Examples of this conditioned tomographic
scheme are: i) the tomographic reconstruction of Schrdinger-cat states of radiation of Ref.
[18], which represents a tomographic improvement of a scheme proposed in Ref. [19] (see
Fig. 2); ii) the tomographic scheme of Ref. [20] for measuring the quantum Liouvillian
matrix of an optical phase-insensitive device (see Fig. 3); iii) the test of the quantum state-
reduction rule of Ref. [21] (see Fig. 3). Especially interesting is the test of the state-reduc-
tion rule in Fig. 3, since, in our knowledge, it has never been performed. Notice that such a
test is generally not equivalent to a test of the repeatability hypothesis, since the latter holds
only for measurements of observables described by self-adjoint operators with discrete spec-
trum, whereas, for heterodyne detection, the measurement is not repeatable, as the reduced
states are coherent states, which are not orthogonal.

3.2 Test of the minimum disturbance principle

Another interesting test of quantum mechanics that can be performed using quantum tomo-
graphy is the Liiders state-reduction rule for degenerate observables. The rule states that for
measurement outcome x the reduced state is given by

E(x) 0E(x)

Tr[oER)] (3.15)

0 —0,=

where E(x) =), Eq(x) represents the projector on the degenerate eigenspace correspond-
ing to eigenvalue x, d denoting a degeneration index. Notice that if one considers the mea-
surement as complete, i.e. with d as unread but knowable in principle, the “marginal” rule
would be obtained: 0 — 0, = >, Eq(x) 0E4(x)/Tr [>_, 0E4(x)], which gives an incoher-
ent superposition as opposite to the coherent one in Eq. (3.15). This means that the Luders
rule corresponds to a kind of minimum disturbance principle. A test of the Luders rule
would need a way to distinguish between a pure state and a mixed one, and this can be
done by quantum tomography.
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