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We suggest a method for measuring the photon number distribution and the density
matrix of a single-mode radiation field. The setup consists of a chain of active ring
cavities, each fed by a strong coherent probe and coupled to the signal through cross-
Kerr phase modulation. Each cavity is set at resonance by a different Fock component
of the signal, so that the detection probability at the cavities output is proportional
to the signal photon statistics. The off-diagonal elements of the density matrix can be
evaluated by measuring the photon statistics of a set of displaced signal states. The
suggested setup allows a reliable state measurement even with low quantum efficiency
at detectors.

1. Introduction

The detailed photon number distribution of the radiation state %̂ cannot be easily

measured by direct photodetection, since the current technology provides detectors

with mutually exclusive limitations: a linear detector with high quantum efficiency

works only with large photon fluxes, whereas high sensitive avalanche photodetec-

tors are nonlinear and have limited quantum efficiency. In any case, there is no

available high-efficiency photodetector which can discriminate a single photon in a

range of, say, ten photons.

For the above reasons, the homodyne tomography technique1,2 has become a

popular method for reconstructing the photon number distribution,3,4 because the

amplification from the local oscillator in the homodyne detector allows one to use

high-efficiency linear photodiodes. Other methods have also been suggested2 to

overcome the inherent inadequacy of photodetectors, either by photon “chopping”5

or by mixing the signal mode with a strong local oscillator, such as in unbalanced6,7

and multiport8 homodyne detection schemes. Further proposals9 involve indirect

measurements that exploit the interactions of the field with atomic degrees of free-

dom. All these methods have some limitations which, so far, prevented their full

implementation for the reconstruction of the radiation state. In particular, they

suffer from the detrimental effects of non-unit quantum efficiency. Indeed, quan-

tum homodyne tomography plays a privileged role, since it is the best method for
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arbitrary state reconstruction which has been implemented so far.4,10 On the other

hand, homodyne tomography itself suffers from statistical errors which rapidly in-

crease, versus the index n of the photon number distribution P (n) = 〈n|%̂|n〉, even

for high values of quantum efficiency, thus needing large samples of experimen-

tal data. In the above scenario, it becomes very interesting to devise a detection

method where the quantum efficiency is not a critical parameter. This is the case

of the setup that we present in this paper, which, in principle, can measure the

photon distribution of a given signal with a relatively small number of data, and

with little dependence on quantum efficiency at photodetectors. As we will show, by

enlarging the data sample, the setup also allows us to reconstruct the off-diagonal

density-matrix elements through the least-squares method of Ref. 7, by measuring

the photon distribution of a set of displaced signal states. Remarkably, the resulting

state-reconstruction method also works at low quantum efficiency.

2. Dynamics of the Kerr Cavity

The device is schematically depicted in Fig. 1. It consists of a certain number of

active ring cavities, each fed by a strong coherent probe and coupled to the signal

density operator ν̂ by a nonlinear medium that imposes cross-Kerr interaction.

Notice that the signal mode does not interact with the cavity mirrors, but simply

imposes a phase-shift due to the Kerr medium, thus, it is not affected by the losses

caused by the mirrors. The effect of losses in high-Q cavities is scarcely relevant for

the excited coherent states therein. On the other hand, the signal decoherence that

is induced only by the Kerr medium imposes limits to the number of concatenated

cavities.
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Fig. 1. Schematic diagram of the setup to measure the photon number distribution of a generic
input signal ν̂. Each cavity is fed by a strong coherent probe and coupled to the signal by a
nonlinear medium that imposes cross-Kerr phase modulation. The cavities can be separately
tuned by adjusting the phase shift ψk. In this way, each cavity is set at resonance by a different

Fock component Nk in the signal state, and the detection probability P
(k)
1 at the output of the

kth cavity is proportional to the diagonal matrix element νNkNk of the signal.

Each cavity can be separately tuned by adjusting the phase shift ψk. In this way,

each cavity is set at resonance by a different Fock component |Nk〉 in the signal

state, and, as shown in the following, the detection probability P
(k)
1 at the output

of the kth cavity is proportional to the diagonal matrix element νNkNk of the signal

state.
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Let us first consider the dynamics of a single cavity. The input and output modes

of the cavity (aj and bj , respectively, j = 1, 2) are connected through the linear

transformation {
b1 = κ(ϕ)a1 + eiϕσ(ϕ)a2

b2 = σ(ϕ)a1 + κ(ϕ)a2

, (1)

where ϕ is the total phase shift suffered by the cavity mode. In Eq. (1), the ampli-

tude of the phase-dependent transmissivity σ and reflectivity κ are given by

κ(ϕ)
.
=

√
1− τ(eiϕ − 1)

1− [1− τ ]eiϕ
, σ(ϕ)

.
=

τ

1− [1− τ ]eiϕ
, (2)

with |κ(ϕ)|2 + |σ(ϕ)|2 = 1, τ being the transmissivity of the cavity beam splitters.

In our case, the phase ϕ is the sum of the shift due to the Kerr modulation and

the tunable phase ψ. The Kerr interaction is governed by the evolution operator

UK = exp{iχta†ab†b}, a and b being the signal and the cavity modes, respectively,

and χt the overall Kerr coupling. Each Fock component |n〉 of the signal imposes

to the cavity mode a total phase shift ϕ ≡ ϕn = ψ − χnt. It is clear that by

adjusting the value of ψ to ψ = χtn∗, we can select which Fock component |n∗〉
sets the cavity at resonance. To simplify the notation, we write σn

.
= eiϕnσ(ϕn)

and κn = κ(ϕn). We also assume that the coherence time of the input signal is of

the order of the photon flight time in the cavity, thus assuring that the cavity mode

effectively couples with the signal through the cross-Kerr medium.

The device is composed of a chain of cavities, as shown in Fig. 1. The input

state before each of the cavities is given by

%̂in = |α〉〈α| ⊗ |0〉〈0| ⊗ ν̂ , (3)

namely, a generic state ν̂ for the signal mode and a strong coherent state |α〉 for

the cavity probe mode, the second input port of the cavity being unexcited. The

output state after each cavity can be easily written in the Schrödinger picture as

%̂out =
∞∑

n,m=0

νnm |κnα〉〈κmα| ⊗ |σnα〉〈σmα| ⊗ |n〉〈m| . (4)

The state in Eq. (4) is an entangled superposition, in which each Fock component

of the signal corresponds to a different cavity response.

The measurement scheme consists in detecting whether (detector D on) or not

(detector D off) any photon is present at one output port of the cavity. This ON/OFF

detection strategy is described by a two-value probability operator measure

Π̂OFF
.
=
∞∑
k=0

(1− η)k|k〉〈k|, Π̂ON
.
= Î− Π̂OFF , (5)

where η denotes the quantum efficiency of the photodetector. The case of per-

fect photodetection (i.e. η = 1) leads to the projection operator on the vacuum



March 15, 2000 12:32 WSPC/147-MPLB 0242

18 G. M. D’Ariano et al.

Fig. 2. Monte Carlo simulations of the whole procedure for measuring the photon number dis-
tribution. We report the distribution obtained for the input signal excited in a squeezed vacuum
with 〈a†a〉 = 1 average photons and a coherent state with 〈a†a〉 = 3, respectively. The simulated
sample consists of ten blocks of 200 data each, for a total number of N = 2000 repeated prepa-
rations of the signal. The quantum efficiency and the beam-splitter transmissivity are η = 20%
and τ = 0.1%, respectively. The Kerr coupling is χt = 0.1, and the probe amplitude is |α| = 10.
Gray-shaded areas denote statistical errors, and the empty squares represent theoretical values.

Π̂OFF = |0〉〈0|. The probabilities corresponding to the “click” (detector D on) and

to the “no-click” (detector D off) events are given by

PON = Tr[Π̂ON%̂out] =
∞∑
n=0

νnn

(
1− e−η|α|2 |σn|2

)
(6)

POFF = Tr[Π̂OFF%̂out] =
∞∑
n=0

νnne
−η|α|2 |σn|2 , (7)

whereas the conditional output states are given by

ν̂ON =
e−|α|

2

PON

∞∑
n,m=0

νnme
|α|2[κnκ

∗
m+σnσ

∗
m](1− e−η|α|2σnσ∗m) |n〉〈m| (8)

ν̂OFF =
e−|α|

2

POFF

∞∑
n,m=0

νnme
|α|2[κnκ

∗
m+(1−η)σnσ

∗
m] |n〉〈m| . (9)

The explicit form of the cavity transmissivity function is given by

|σn|2 =

[
1 + 4

1− τ
τ2

sin2 ψ − χnt
2

]−1

, (10)

which exhibits a periodic structure sharply peaked at

n =
ψ + 2πj

χt

.
= n∗ +

2π

χt
j , j ∈ N , (11)
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with unit maximum height and width of the same order of the beam splitter trans-

missivity τ (typically τ ∼ 0.1% ÷ 0.01%). The value n∗ can be adjusted to an ar-

bitrary integer by tuning the phase shift ψ as a multiple of χt. On the other hand,

subsequent integers that satisfy Eq. (11) for j 6= 0 play no role when they corre-

spond to Fock components that are not excited in the input signal [for nonlinearity

shift χt � 1, this is true for not too excited input states with 〈∆̂n2〉 � 2π/(χt)].

In this case, the detection probability rewrites as

PON ' νn∗n∗
[
1− e−η|α|2

]
+
η|α|2τ2

(χt)2

∑
k 6=n∗

νkk

(n∗ − k)2
. (12)

Equation (12) indicates that for a cavity with high quality factor (i.e. τ � χt),

the detection probability is proportional to the selected diagonal matrix element

PON ' νn∗n∗ [1− exp(−η|α|2)]. Correspondingly, for low values of the nonlinearity,

the conditional output states are

ν̂OFF '
∑
n6=n∗

νnn

POFF
|n〉〈n| ν̂ON ' |n∗〉〈n∗| . (13)

In summary, the detection probability is proportional to the selected diagonal ma-

trix element, and a successful photodetection reduces the signal to the correspond-

ing Fock number state.

3. The Measurement Scheme

Here, we are interested in measuring the whole photon number distribution of a

given signal. Therefore, we use a chain of cavities, each tuned at a different integer

Nk. The measurement scheme consists of repeatedly preparing the signal and then

detecting which cavity is switched on. The relative frequency of “clicks” for the kth

cavity is proportional to the diagonal matrix element νNkNk of the signal. In doing

this, it should be taken into account that the input signal ν̂(k) of the kth cavity is

the output signal from the (k − 1)th one, namely, the state that has been reduced

according to the outcome of the (k − 1)th photodetector. Hence, for the detection

probability P
(k)
ON at the output of the kth cavity we have

P
(k)
ON ' ν

(k)
NkNk

[
1− exp

(
− η|α|2

)]
, (14)

where the matrix elements, after the reduction, due to the (k − 1)th detection are

given by the recursion formula

ν(k)
pp =


δpNk−1

if D(k−1) is ON

ν
(k−1)
pp

1− δpNk−1

P
(k−1)
OFF

if D(k−1) is OFF
. (15)
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In order to check the reliability of the present measurement scheme, we have per-

formed several Monte Carlo simulations of the whole detection strategy. In Fig. 2,

we report the photon distribution obtained for the input signal excited in a squeezed

vacuum and a coherent state, respectively. Remarkably, the photon distribution has

been reconstructed with a simulated sample of only N = 2000 repeated prepara-

tions of the signal, and with low quantum efficiency of the probe photodetectors

(η = 20%). Indeed, the most relevant feature of the present scheme is that the

quantum efficiency of the probe photodetectors at the output of the cavities is not

a critical parameter. Low quantum efficiency does not affect the quality of the re-

construction, but only decreases the overall detection rate, namely, the number of

samples that activate at least one of the cavities. Notice that the detection rate

could, in principle, be restored by increasing the probe amplitude α, however with

the restriction that the quantity (η|α|2τ2)/(χt)2 � 1 in Eq. (12).

Fig. 3. Monte Carlo simulation of the reconstruction of a squeezed vacuum state with 〈a†a〉 = 0.5
average photons: real part of the matrix elements (on the left), and corresponding statistical errors
(on the right). The ring-cavity method has been used to measure the displaced photon number
distributions pn(z), with |z| = 1.4 and 25 equally spaced phases φ = arg z ∈ [0, 2π) with 4000 data
each. Ten blocks have been used to evaluate statistical errors. The parameters of the setup are
the following: quantum efficiency η = 20%, beam-splitter transmissivity τ = 0.01%, Kerr coupling
χt = 0.1, probe amplitude |α| = 10.

One can also imagine the chain of cavities designed as a loop with only one cavity,

with the signal from the output fed into the output many times, each time varying

the tunable phase shift ψ, and continuing this process until the photodetector clicks.

Such a loop needs, of course, a fast and well-synchronized tuning of the phase ψ.

The proposed setup also allows the evaluation of the off-diagonal elements of the

density matrix. As shown in Ref. 7, the displaced Fock-state probability distribution

pn(z) = 〈n, z|%̂|n, z〉, with |n, z〉 = eza
†−z̄a|n〉, can be used to reconstruct the density

matrix %̂ by means of a least-squares inversion method. The displacement parameter

z can be kept constant in modulus, varying only the phase of the local oscillator

that realizes the displacement on the signal %̂ through a high-transmissivity beam

splitter. The distributions pn(|z|eiϕ) at different phases ϕ can then be measured

by the ring-cavity method described above. In Fig. 3, we report the result for the

reconstruction of a squeezed vacuum state with average photon number 〈a†a〉 = 0.5,
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together with the corresponding statistical errors. We stress that the reconstruction

of the whole density matrix has been carried out using quantum efficiency as low as

η = 20%. We remember that the good cavity condition
√
η|α|τ � χt poses severe

limitations on the size of the nonlinear phase-shift χt. However, values as large as

χt = 0.1, as in our computer simulations, have been predicted theoretically,11 and

are now entering into the realm of experiments.12

4. Conclusion

We have suggested a scheme that, in principle, allows us to measure the photon

number distribution of the radiation field. The scheme is composed of a chain of

ring cavities pumped with strong coherent states and coupled to the signal mode

through a Kerr medium. Conventional ON/OFF photodetectors measure the probe

field exiting each cavity. Through Monte Carlo simulations, we have shown that

the method allows us to measure the photon distribution with high reliability, even

with a limited number of input data samples and low quantum efficiency. The same

setup, with the help of the least-squares inversion method of Ref. 7 applied to a set

of displaced copies of the input state, can be used to measure the density matrix of

a generic input signal with essentially no detrimental effect from non-unit quantum

efficiency.
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et al. (Kluwer, Dordrecht, 1997), pp. 175–202.

2. D.-G. Welsch, W. Vogel and T. Opatrny, Progr. in Opt. 39, in press (1999).
3. M. Munroe, D. Boggavarapu , M. E. Anderson and M. G. Raymer, Phys. Rev. A52,

R924 (1995).
4. J. Mlynek, G. Breitenbach and S. Schiller, Phys. Scr. T76, 98 (1998).
5. H. Paul, P. Torma, T. Kiss and I. Jex, Phys. Rev. Lett. 76, 2464 (1996).
6. K. Banaszek and K. Wodkiewicz, Phys. Rev. Lett. 76, 4344 (1996).
7. T. Opatrny and D.-G. Welsch, Phys. Rev. A55, 1462 (1997).
8. A. Zucchetti, W. Vogel and D.-G. Welsch, Phys. Rev. A54, 856 (1996); M. G. A.

Paris, A. Chizhov and O. Steuernagel, Opt. Commun. 134, 117 (1997); M. Brune, S.
Haroche, V. Lefevre, J. M. Raimond and N. Zagury, Phys. Rev. Lett. 65, 976 (1990).

9. K. Jacobs, P. L. Knight and V. Vedral, J. Mod. Opt. 44, 2427 (1997); S. Schneider,
A. M. Herkommer, U. Leonhardt and W. P. Schleich, J. Mod. Opt. 44, 2333 (1997);
C. T. Bodendorf, G. Antesberger, M. S. Kim and H. Walther, Phys. Rev. A57, 1371
(1998).



March 15, 2000 12:32 WSPC/147-MPLB 0242

22 G. M. D’Ariano et al.

10. D. T. Smithey, M. Beck, M. G. Raymer and A. Faridani, Phys. Rev. Lett. 70, 1244
(1993).
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