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1. Introduction

The rapid development of an information technology in the last
decades made the optimization of information processing tasks an
important field of computer science. For example one needs to
optimize database search, as well as tasks that emerged due to
internet e.g. algorithms for anti-spam filters and internet search
engines. The last two tasks are instances of the so-called machine
learning [1], which can be defined as follows. Suppose we have
a black box evaluating an unknown function f and we have ac-
cess to N uses of it. However, after we lose the access to the black
box we need to evaluate f on an input that was not previously
available. Naturally any machine learning has two phases – train-
ing and retrieving. The knowledge on f acquired in the training
phase of the strategy is encoded into a bit string that is later
used as a program governing the retrieval phase. Obviously, if N
is greater or equal to the number of possible inputs of f then the
training part of the strategy can acquire complete knowledge of f .
The same task, termed quantum learning, can be generalized to
quantum theory. In this case the black box performs an unknown
quantum transformation T . The result of the training phase is a
quantum state ψT . This state has to be kept in the quantum mem-
ory until the retrieving phase, where it enters together with the
unknown state ρ into the retrieving channel that mimics the ac-
tion of T on ρ . We can immediately observe substantial difference
to machine learning. Even for finite dimensional quantum systems
there does not exist a finite N for which the quantum learning
works perfectly. Indeed, even if the training part of the strategy
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would encode full information about T into the finite dimensional
state ψT , the no programming theorem of Nielsen [2] prevents us
to retrieve the transformation perfectly.

A closely related problem to quantum learning was studied as
a quantum version of pattern recognition algorithms [3,4]. For the
case of quantum learning of channels, the first analysis was pub-
lished in Ref. [5], where very simple processing techniques were
studied for learning of particular gates like the Grover oracle [6] or
the discrete Fourier transform. Learning of unitary black boxes was
analyzed in Ref. [7]. Surprisingly, it turns out that the task of quan-
tum learning of unitaries can be fully parallelized, which means
that the optimal training phase is achieved by applying the N uses
of the black box on the fixed entangled state. Another surprising
feature of the aforementioned training phase is that it is an opti-
mal estimation procedure and hence the quantum memory can be
replaced by a classical storage of the estimated unitary black box.
The simulation then consists in the conditional application of the
gate corresponding to the estimated parameters.

In the present Letter we will consider the case in which the
black box to be learnt is a device performing a von Neumann
measurement, namely a projective non-degenerate Positive Oper-
ator Valued Measure (POVM) E := {Ei}. We will show that for
measuring black boxes the surprising features of optimal learning
of unitary black boxes disappear. In particular, we will show that
the optimal algorithm cannot be parallelized, leading to a training
phase that lasts an increasing time versus the number of examples.
Moreover, the optimal training does not consist of optimal estima-
tion, thus requiring a coherent quantum memory for the storage of
the learnt measurement.

The Letter is organized as follows. In Section 2 we review some
notation and preliminary concepts used in the analysis. In Sec-
tion 3 we expose the mathematical formulation of the general
problem of optimal learning in mathematical terms. In Section 4
the problem is simplified exploiting all the symmetries that can
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be useful. The problem is then solved in Section 5 for the cases
N = 1, N = 2 and N = 3. Finally, the Letter is closed by concluding
remarks in Section 6.

2. Preliminary concepts

In this section we review some notions of the theory of quan-
tum networks [8–10]. The main feature of this approach is the rep-
resentation of quantum networks in terms of suitably normalized
positive operators.

The nodes of a quantum network R are elementary boxes
linked by wires. Elementary boxes represent state preparations,
channels, quantum operations, or effects. The most general pic-
torial representation of a quantum network is a directed acyclic
graph, where the vertices represent elementary boxes and the ar-
rows represent the quantum systems traveling within the network
in the direction induced by the input–output relation.

By stretching the connections in the graph we can give the
quantum network the shape of a comb, i.e. any quantum network
R is equivalent to a sequence of N quantum operations {Ti}Ni=1
with some unconnected input and output subsystems, as follows

(1)

If all the N quantum operations are trace preserving (i.e. they are
quantum channels) R is a deterministic quantum network, other-
wise R is a probabilistic quantum network. The ordering of the
teeth is induced by the causal order defined by the flow of quan-
tum information inside the quantum network. Referring to the
scheme in Eq. (1) we label each wire with an integer number j:
accordingly, the Hilbert space of the system represented by wire j
is denoted as H j .

Since a quantum network R is a concatenation of quantum
operations it can be considered as a quantum operation itself
R : L(Heven) → L(Hodd) where we defined Heven = ⊗N

i=0 H2i and
Hodd = ⊗N

i=0 H2i+1. That being so, it is possible to define the
Choi–Jamiołkowsky operator of a quantum network as

R := R ⊗ I
(
|ω〉〈ω|

)
, R ∈ L(Heven ⊗ Hodd), R ! 0, (2)

where I is the identity map and |ω〉 ∈ H⊗2
even , |ω〉 = ∑

n |n〉|n〉 ({|n〉}
is an orthonormal basis of Heven). The Choi–Jamiołkowsky opera-
tor of a quantum network is called quantum comb of the network.
If R is a deterministic quantum network it is possible to prove
that its Choi–Jamiołkowsky operator R must satisfy the recursive
normalization constraint

Tr2k−1
[
R(k)] = I2k−2 ⊗ R(k−1), k = 1, . . . ,N, (3)

where R(N) = R , R(0) = 1, R(k) ∈ L(Hoddk ⊗ Hevenk ) with Hevenk =
⊗k−1

j=0 H2 j and Hoddk = ⊗k−1
j=0 H2 j+1, is the comb of the reduced

circuit R(k) obtained by discarding the last N − k teeth. It is rel-
evant to stress that each positive operator that satisfies Eq. (3)
corresponds to a valid deterministic quantum network. This gives
us a correspondence between the set of positive operators satisfy-
ing Eq. (3) and the set of deterministic quantum networks.

On the other hand, the Choi–Jamiołkowsky operator of a prob-
abilistic quantum network R, must satisfy

0 ! R ! S, (4)

where S is a Choi–Jamiołkowsky operator of a deterministic quan-
tum network. An important theorem proves [8] that any positive
operator, upon suitable rescaling, represents a probabilistic quan-
tum network.

Two quantum networks R1 and R2 can be connected by link-
ing input wires of one network with output wires of the other net-
work thus forming the network R1 ∗ R2. The Choi–Jamiołkowsky
operator of the composite network R1 ∗ R2 is the link product of
the operators R1 and R2 which is defined as follows:

R1 ∗ R2 = TrK
[
R1R

θK
2

]
, (5)

where θK denotes the partial transposition (with respect to a fixed
orthonormal basis) over the Hilbert space K of the connected
wires and TrK denotes the partial trace over K.

2.1. Generalized instrument

The aim of this Letter is to study quantum networks that repli-
cate quantum measurements. A generalized quantum instrument
is set of probabilistic quantum networks R := {Ri} such that the
set R = {Ri} of the Choi–Jamiołkowsky operators of its components
satisfies the following condition:
∑

i

Ri := RΩ, (6)

where RΩ corresponds to a deterministic quantum network. Ev-
ery probabilistic quantum network belongs to some generalized
quantum instrument, and viceversa every generalized quantum in-
strument represents some set of probabilistic quantum networks.

3. The optimization problem

The learning scenario can be formulated as a quantum network
that accepts N measurements into the open slots and works as a
POVM on the remaining system. Here is a diagram representing
the N = 2 scenario,

where the double wires carry the classical outcomes of the mea-
surements.

Since we consider the case where the unknown measurement is
a projective non-degenerate POVM E := {E1, . . . , Ed}, we can write
its element Ei in the following form

Ei = |φi〉〈φi|, (7)

where {|φi〉}di=1 is an orthonormal basis of the Hilbert space H. All
the POVM’s of this kind can be generated by rotating a reference
POVM E := {|i〉〈i|}di=1 by elements of the group of unitary transfor-
mations SU(d) as follows

E(U ) := UEU †, U ∈ SU(d), (8)

where {|i〉} is a fixed orthonormal basis and UEU † denotes the
POVM with elements E(U )

i := U EiU †. Notice the slight abuse in the
definition of E(U ) , due to the fact that there exists a stability sub-
group S ⊆ SU(d) such that for V ∈ S one has V |i〉 = |i〉 for all i.
The POVM E(U ) is then labeled by the equivalence class [U ] de-
fined by the relation

U ∼ U ′ ⇔ U = U ′V , V ∈ S, (9)

rather than by U .
It is formally convenient to encode the classical outcome i of

the POVM into a quantum system by preparing the state |i〉 from
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a fixed orthonormal basis, which is the same for each POVM.2

Within this framework the measurement device is actually de-
scribed by the following measure-and-prepare quantum channel
E (U ) : L(H) → L(H)

E (U )(ρ) =
d∑

i=1

Tr
[
E(U )
i ρ

]
|i〉〈i|, (10)

which measures the POVM E(U ) on the input state and in the case
of outcome i prepares the state |i〉 from a fixed orthonormal basis
on the output of the channel. The Choi–Jamiołkowsky representa-
tion of the channel E (U ) is the following

E(U ) =
d∑

i=1

|i〉〈i| ⊗ E(U )
i

T =
d∑

i=1

|i〉〈i| ⊗ U∗|i〉〈i|U T , (11)

where XT denotes the transpose of X in the basis {|i〉}di=1. The N
uses of the measurement device are then represented by the ten-
sor product E(U )

2N−12N−2 ⊗· · ·⊗ E(U )
10 where the input and the output

space of the k-th use of the measurement device are denoted by
2k−2 and 2k−1, respectively. We introduce the following notation

Hin :=
N⊗

k=1

H2k−2, Hcl :=
N⊗

k=1

H2k−1. (12)

Since we want the learning network R to behave as the POVM
E(U ) upon insertion of the N uses of E (U ) , we have that R is a gen-
eralized instrument where the element Ri describes the behaviour
of the network when the output of the replicated measurement
is i. The replicated POVM is then equal to

G(U ) =
[
R ∗

(
E(U )
2N−12N−2 ∗ · · · ∗ E(U )

10

)]T
,

Ri = L(Hout ⊗ Hcl ⊗ Hin), Hout = H2N , (13)

where H2N denotes the input space of the replicated measure-
ment. In this notation the normalization of the generalized instru-
ment ,R becomes

Tr2k−2
[
R(k)] = I2k−3 ⊗ R(k−1), k = 1, . . . ,N,

RΩ = I2N,2N−1 ⊗ R(N), R(0) = 1. (14)

Our task is to find the learning network R such that G(U ) is as
close as possible to E(U ) . In order to quantify the performances of
the replicating network, we introduce the following quantity that
measures the closeness between two POVM’s P and Q

D(P,Q) :=
∫

dψ
d∑

i=1

∣∣〈ψ |Pi − Q i|ψ〉
∣∣2. (15)

The interpretation of D(P,Q) as a measure of “distance” between
P and Q is provided by the following lemma.

Lemma 1 (Distance criterion for two POVMs). Let Σ := {1, . . . ,d} be
a finite set of events and P ⊆ L(H) and Q ⊆ L(H) be two POVM’s.
Consider now the quantity D(P,Q) from Eq. (15). Then the following
properties hold:

i) D(P,Q) " 0,
ii) D(P,Q) = 0 ⇔ Pi = Q i ∀i,
iii) D(P,Q) is convex with respect to POVMs.
iv) D(UPU †,UQU †) = D(P,Q) for any unitary operator U .

2 This is equivalent to a usage of a direct sum over the classical outcomes.

Proof. The non-negativity of function f (x) = x2 guarantees the
same property also for D , which is a sum and an integral of
the squares. For Pi = Q i ∀i it is obvious that D(P,Q) = 0. To
prove the converse, it suffices to realize that D(P,Q) = 0 im-
plies 〈ψ |Pi −Q i |ψ〉 = 0 ∀ψ , which by polarization identity requires
Pi = Q i ∀i. In order to prove convexity, we need to show that

D
(
P, λQ + (1− λ)Q′) ! λD(P,Q) + (1− λ)D

(
P,Q′) (16)

holds for any POVM Q′ and 0 ! λ ! 1. If we denote ai = 〈ψ |Pi −
Q i |ψ〉, bi = 〈ψ |Pi − Q ′

i |ψ〉 and utilize convexity of f (x) = x2, i.e.

(
λai + (1 − λ)bi

)2 ! λa2i + (1− λ)b2i

then the claim follows directly from the definition in Eq. (15). Sim-
ilarly, property iv) is obvious from the definition in Eq. (15). !

Assuming that the unknown POVM E(U ) is randomly drawn ac-
cording to the Haar distribution, we choose the quantity:

D :=
∫

dUD
(
E(U ),G(U )

)
(17)

as a figure of merit for the learning network. The quantity D
clearly depends on the network R, and will be denoted by D[R].
Our task is to find the optimal generalized instrument ,R , that min-
imizes D[R].

4. Symmetries of the learning network

In this section we utilize the symmetries of the figure of merit
(17) to simplify the optimization problem. The first simplification
relies on the fact that some wires of the network carry only clas-
sical information, representing the outcome of the measurement.

Lemma 2 (Restriction to diagonal network). The optimal generalized in-
strument ,R, ∑i Ri = RΩ minimizing Eq. (17) can be chosen to satisfy:

Ri =
∑

,j
R ′
i,,j ⊗ |,j〉〈,j|, (18)

where ,j = ( j1, . . . , jN), |,j〉 := | j1〉1 ⊗· · ·⊗ | jN 〉2N−1 ∈ Hcl , 0 ! R ′
i,,j ∈

L(Hout ⊗ Hin), and
∑

,j is a shorthand for
∑d

j1,..., jN=1 .

Proof. Let ,S be a generalized instrument corresponding to a quan-
tum network ,S . Let us define set of operators ,R as

Ri :=
∑

,j
R ′
i,,j ⊗ |,j〉〈,j|, (19)

with R ′
i,,j := 〈,j|Si |,j〉. We can easily prove that ,R is a generalized

instrument. Indeed, reminding Eq. (11), we have

∑

i

Ri =
∑

i

∑

,j
〈,j|Si|,j〉 ⊗ |,j〉〈,j|

=
∑

,j
〈,j|SΩ |,j〉 ⊗ |,j〉〈,j| = SΩ ∗ E(I) ∗ · · · ∗ E(I), (20)

where the link is performed only on the space Hcl . The operator
in Eq. (20) is the Choi–Jamiołkowsky operator of a determinis-
tic quantum network satisfying the same normalization conditions
as SΩ . Finally we show that ,S and ,R produce the same replicated
POVM G(U ) when linked with the N uses of E(U ) , as follows
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(
G(U )
i

)T = Si ∗ E(U )
2N−12N−2 ∗ · · · ∗ E(U )

10

=
∑

,j

(
〈,j|cl〈,j|inU †⊗N)

Si
(
|,j〉clU⊗N |,j〉in

)

=
∑

,j

(
〈,j|inU †⊗N)

R ′
i,,j

(
U⊗N |,j〉in

)

= Ri ∗ E(U )
2N−12N−2 ∗ · · · ∗ E(U )

10 . ! (21)

It is clear from Eq. (21) that also for non-diagonal networks R,
the only relevant terms of the generalized instrument both for its
normalization and for the figure of merit D[R] are

R ′
i,,j := 〈,j|clRi|,j〉cl. (22)

In the following we will use the above notation also for general
networks. As a next step, we introduce a unitary symmetry of the
learning network and we study its consequences on the form of
the replicated POVM. We will show that restriction to covariant
learning networks can be made without loss of generality. For this
purpose we introduce the following lemma.

Lemma 3 (Covariant networks). The optimal generalized instrument ,R,∑
i Ri = RΩ minimizing Eq. (17) can be chosen to satisfy

[
Ri,U

∗
out ⊗ U⊗N

in ⊗ Icl
]
= 0. (23)

Then the replicated POVM for ,R enjoys the following property

G(U ) = UG(I)U †. (24)

Proof. From an arbitrary learning network ,S by symmetrization,
we can define a covariant learning network ,R as follows

Ri :=
∫

dU
(
U∗ ⊗ U⊗N ⊗ Icl

)
Si

(
U T ⊗ U †⊗N ⊗ Icl

)
. (25)

It is easy to verify that the set ,R defines a generalized instrument.
Moreover, by the invariance of the Haar measure dU , the elements
of ,R obey Eq. (23). First we show that the replicated POVM for
the symmetrized instrument ,R enjoys the property (24). Indeed,
Eq. (21) provides the following formula for the replicated POVM

(
G(U )
i

)T =
∑

,j
〈,j|inU †⊗N

R ′
i,,jU

⊗N |,j〉in, (26)

and exploiting the expression in Eq. (25) for R ′
i,,j , we obtain

G(U ) =
∫

dWWQ(W †U )W †, (27)

where Q(U ) denotes the replicated POVM for the original learning
network ,S . Eq. (24) is a direct consequence of Eq. (27), which can
be seen via suitable shift of the invariant Haar integration measure.
We can now show that D[R] ! D[S] as follows

D[R] =
∫

dUD

(
E(U ),

∫
dWWQ(W †U )W †

)

!
∫

dWdUD
(
UEU †,WQ(W †U )W †)

!
∫

dUdWD
(
WE(U )W †,WQ(U )W †)

= D[S],
where we used properties iii), iv) of D and shifted the Haar in-
variant integration measure dU to d(W †U ). !

Another symmetry we introduce is related to the possibility of
relabeling the outcomes of a POVM. We shall denote by σ the el-
ement of Sd , the group of permutations of d elements, and by Tσ

the linear operator that permutes the elements of basis {|i〉} ac-
cording to this permutation, in formula Tσ |i〉 = |σ(i)〉. Let us note
that the complex conjugation and transposition are defined with
respect to the basis {|i〉}, so Tσ = T ∗

σ .

Lemma 4 (Relabeling symmetry). The optimal covariant generalized in-
strument ,R, ∑i Ri = RΩ minimizing Eq. (17) can be chosen to satisfy
Eq. (23) and the following condition

Ri =
(
Iout ⊗ I in ⊗ T T

σ
⊗N)

Rσ (i)
(
Iout ⊗ I in ⊗ Tσ

⊗N)
, (28)

where σ(,j) := (σ ( j1), . . . , σ ( jM)). Then the seed of replicated POVM
satisfies

G(I)
σ = TσG(I)T †

σ ∀σ ∈ Sd, (29)

where Xσ denotes the ordered set with elements (Xσ )i := Xσ(i) .

Proof. For a given covariant learning network S satisfying Eq. (23),
let us define

Ri :=
1
d!

∑

σ∈Sd

(
Tσ ⊗ T⊗N

σ ⊗ T⊗N
σ

)T
Sσ (i)

(
Tσ ⊗ Tσ

⊗N ⊗ Tσ
⊗N)

= 1
d!

∑

σ∈Sd

(
Iout ⊗ I in ⊗ T T

σ
⊗N)

Sσ (i)
(
Iout ⊗ I in ⊗ Tσ

⊗N)
, (30)

where the last identity follows from the commutation rela-
tion (23) with U = T T

σ . The generalized instrument R corre-
sponds to a covariant quantum network ,R, because it repre-
sents a convex combination of well-normalized covariant net-
works. The quantum network ,R operationally corresponds to a
random simultaneous relabeling of the outcomes of the inserted
and replicated measurements by permutation σ . Let us now prove
Eq. (29).

Since generalized instrument ,R inherits commutation property
(23) from ,S (see definition (30)) it is obvious that the introduced
permutation symmetry will not spoil the existing covariance from
Eq. (24). Thus, it suffice to investigate how the seed of the repli-
cated POVM changes, when we introduce permutation symmetry.

Inserting definition (30) into Eq. (21) we find

(
G(I)
i

)T = 1
d!

∑

σ∈Sd

T T
σ

∑

,j

〈
σ(,j)

∣∣
inS

′
σ (i),σ (,j)

∣∣σ(,j)
〉
inT

∗
σ

= 1
d!

∑

σ∈Sd

T T
σ

∑

,j
〈,j|inS ′

σ (i),,j|,j〉inT ∗
σ

= 1
d!

∑

σ∈Sd

T T
σ

(
Q (I)

σ (i)

)T
T ∗
σ , (31)

where we defined S ′
i,,j := 〈,j|Si |,j〉, and we denoted by Q(U ) the

POVM replicated by the original learning network ,S . Transposing
the last equation one can easily derive Eq. (29) by analyzing the
conjugation with T T

τ τ ∈ Sd .
As a next step, we show that D[R] ! D[S]. Indeed,

D[R] =
∫

dUD

(
E(U ),

1
d!

∑

σ∈Sd

U T †
σQ

(I)
σ TσU †

)

! 1
d!

∑

σ∈Sd

∫
dUD

(
E(UT †

σ )
σ ,Q(UT †

σ )
σ

)
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! 1
d!

∑

σ∈Sd

∫
dWD

(
E(W )
σ ,Q(W )

σ
)

! D[S],
where we utilized Eq. (24), convexity of D(E(U ),G(U )), and the fact
that D(E(U )

σ ,Q(U )
σ ) = D(E(U ),Q(U )) ∀σ ∈ Sd . Finally, it is easy to

prove that under the condition Eq. (30), Ri satisfy Eq. (28). !

The advantage of using the relabeling symmetry is the reduc-
tion of the number of independent parameters of the generalized
quantum instrument. Combining Eq. (22) with Eq. (28) we have
that

R ′
i,,j = R ′

σ (i),σ (,j). (32)

Let us now define the equivalence relation between strings i, ,j
and i′ , ,j′ as

i, ,j ∼ i′, ,j′ ⇔ i = σ
(
i′
)
∧ ,j = σ

(,j′
)
, (33)

for some permutation σ . Thanks to Eq. (32) there are only as
many independent R ′

i,,j as there are equivalence classes among se-

quences i, ,j. In the simplest case of N = 1 and arbitrary dimension
d " 2, there are only two classes, which we denote by xx and xy.
The reason is that for any couple i, j there is either a permu-
tation σ such that σ(i), σ( j) = 1, 1 or σ(i), σ( j) = 1, 2, thus the
classes are defined by the conditions i = j or i /= j, respectively. For
the case N = 2 the vector i, ,j has three components. Then there
are four or five equivalence classes depending on the dimension
d being d = 2 or d > 2, respectively. We denote these equivalence
classes by xxx, xxy, xyx, xyy, xyz and the set of these elements
by C3

d . In the general case, it is clear that the number of classes is
given by the number of disjoint partitions of a set with cardinality
N + 1, with number p of parts p ! d.3

It is useful to introduce the notation

Rx,,y := R ′
i,,j = R ′

σ (i),σ (,j), (34)

where (x, ,y) is a string of indices that represents one equiva-
lence class. We will denote by L the set of equivalence classes
L := {(x, ,y)} and we will use letters from the beginning of the al-
phabet to name arbitrary element in L in situations, when N is
fixed. For example when N = 1 (a,b) ∈ L ≡ {(x, x), (x, y)}.

As a consequence of Lemma 3 Eq. (23) can be written as
[
Rx,,y,U

∗
out ⊗ U⊗N

in

]
= 0. (35)

By Schur’s lemmas this implies the following structure for the op-
erators Rx,,y

Rx,,y =
⊕

ν

Pν ⊗ rνx,,y, (36)

where ν labels the irreducible representations in the Clebsch–
Gordan series of U∗

out ⊗ U⊗N
in , and Pν acts as the identity on the

invariant subspaces Hν of the representations ν , while rνx,,y acts on
the multiplicity space Cmν of the same representation.

In the simplest case N = 1 we have

Ra,b = P prpa,b + Pqrqa,b, (37)

where

3 For N+1 ! d, this number is known as Bell number BN+1. In the case N+1 < d
the solution is provided by the sum for k = 1, . . . ,d of numbers of disjoint partitions
of a set with N + 1 elements into k subsets, which is the sum of Stirling numbers
of the second kind S(N + 1,k) for 1 " k " d.

P p := 1
d
|ω〉〈ω|, Pq :=

(
I − P p) (38)

and rpa,b and rqa,b are non-negative numbers due to Ra,b " 0. In the
case N = 2 we have two different decompositions, depending on
whether d = 2 or d > 2. In the former case, we have

Rx,,y = Pα ⊗ rαx,,y + Pβrβx,,y, (39)

where rαx,,y is a positive 2 × 2 matrix, while rβx,,y is a non-negative

real number. The projections P ξ on the invariant spaces of the rep-
resentation U∗ ⊗ U ⊗ U are the following

Pα ⊗ |i〉〈 j| =
d∑

m=1

∣∣Ψ i
m
〉〈
Ψ

j
m
∣∣, i, j ∈ {+,−},

Pβ = I ⊗ P+ − Pα ⊗ |+〉〈+|, (40)

where |Ψ ±
m 〉 = (|ω〉〉|m〉 ± |m〉|ω〉〉)/[2(d ± 1)] 1

2 , and P+ , P− , are
the projections onto the symmetric and antisymmetric subspace,
respectively. When d > 2, on the other hand, we have

Rx,,y = Pα ⊗ rαx,,y + Pβrβx,,y + Pγ rγx,,y, (41)

where rαx,,y is a positive 2 × 2 matrix, while rβx,,y and rγx,,y are non-

negative real numbers. The projections P ξ on the invariant spaces
of the representation U∗ ⊗ U ⊗ U are the following

Pα ⊗ |a〉〈b| =
d∑

m=1

∣∣Ψ a
m
〉〈
Ψ b
m

∣∣, a,b ∈ {+,−},

Pβ = I ⊗ P+ − Pα ⊗ |+〉〈+|,
Pγ = I ⊗ P− − Pα ⊗ |−〉〈−|. (42)

The introduced symmetries have a deep influence on the structure
of the replicated POVM as we show in the following lemma.

Lemma 5. The properties (18), (23) and (28) induce the following struc-
ture of the replicated POVM’s:

G(U )
i = λU |i〉〈i|U † + 1− λ

d
I, (43)

which can be seen as a random mixture of a perfect replica with a triv-
ial measurement (i.e. a measurement producing equiprobably any of the
outcomes) with mixing coefficient λ, which is a function of R.

Proof. Because of the property (24) it is sufficient to prove the
statement for U = I . Since (G(I)

i )T = ∑
,j〈,j|Ri,,j |,j〉 (see Eq. (26)) we

have:

〈k|G(I)
i |l〉 = 〈l|

∑

,j
〈,j|Ri,,j|,j〉|k〉

= Tr
[∑

,j
Ri,,j

∫
dU U⊗N ⊗ U∗|,jk〉〈,jl|

(
U⊗N ⊗ U∗)†

]

= Tr
[∑

,j
Rθ2N

i,,j

(∫
dU U⊗N+1|,jl〉〈,jk|U †⊗N+1

)θ2N ]
,

(44)

where we used the property (23) in the equality (44) and θ2N de-
notes the partial transpose on H2N . Thanks to the Schur’s lemmas
we have
∫

dU U⊗N+1|,jl〉〈,jk|U †⊗N+1 =
∑

ν

Pν ⊗ O ν
,j,l,k,
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where

O ν
,j,l,k = TrHν

[(
Pν ⊗ Imν

)
|,jl〉〈,jk|

]
.

We now notice that for k /= l {,j,k} and {,j, l} are two different
sets of indices and then there exists no permutation S such that
〈,j,k|S|,j, l〉 /= 0. Since any operator of the form Pν ⊗ A, A ∈ Cmν

can be written as a linear combination of permutations Pν ⊗ A =∑
n anSn we have

Tr
[(
Pν ⊗ A

)
|,jl〉〈,jk|

]
= 〈,jk|

∑

n

anSn|,jl〉 = 0 (45)

for k /= l. From Eq. (45) it follows for ∀k /= l that O ν
,j,l,k = 0 and

hence also

〈k|G(I)
i |l〉 = 0 ∀k /= l ⇒ G(I)

i =
∑

n

gin|n〉〈n|. (46)

Reminding Eq. (29) we have

G(I)
i = Tσ G

(I)
i T †

σ ∀σ ∈ Sd s.t. σ(i) = i.

This implies

〈k|G(I)
i |k〉 = 〈l|G(I)

i |l〉 ∀k, l /= i. (47)

Eq. (47) combined with Eq. (46) and (29) finally leads to

G(I)
i = λ|i〉〈i| + 1− λ

d
I, 0 ! λ ! 1, (48)

where λ is a function of R. Rewriting Eq. (48) one has

λ =
(
d〈i|G(I)

i |i〉 − 1
)
/(d − 1). (49)

Let us note that 〈i|G(I)
i |i〉 has the same value independently

of i. !

We have shown that the optimization can be restricted with-
out lost of generality to learning networks obeying Eqs. (18), (23)
and (28). Further in the Letter we always assume that all the con-
sidered networks have the aforementioned properties. This allows
us to express the figure of merit D[R] in a different form that will
be more useful for calculations. The expression (43) for the repli-
cated POVM allows us to write

D[R] =
∫

dUD
(
E(U ),G(U )

)

= (1− λ)2
∑

i

∫
dU dψ

∣∣∣∣〈ψ |
(
U |i〉〈i|U † − 1

d
I
)

|ψ〉
∣∣∣∣
2

= (1− λ)2
∑

i

∫
dU

∣∣〈0|U |i〉
∣∣4 − 2

d

∣∣〈0|U |i〉
∣∣2 + 1

d2

= d − 1
d(d + 1)

(1− λ)2.

It is now clear that minimization of the figure of merit D[R] is
equivalent to the maximization of parameter λ = λ[R], which is
by Eq. (49) directly related to the maximization of the following
quantity:

F [R] := 1
d

d∑

i=1

〈i|G(I)
i |i〉 ≡ 〈 j|G(I)

j | j〉 ∀ j. (50)

The relation of D[R] and F [R] is given by the following equation

D[R] = d
d2 − 1

(
1− F [R]

)2
. (51)

The quantity F [R], which we actually need to maximize can
be finally written using Eqs. (50), (34), (26) as

F [R] = 1
d

∑

i

∑

,j
〈i|out〈,j|inR ′

i,,j|,j〉in|i〉out

= 1
d

∑

(x,,y)∈L

n(x, ,y)〈Rx,,y〉, (52)

where n(x, ,y) is the cardinality of the equivalence class denoted by
the couple (x, ,y), and 〈Rx,,y〉 = 〈i|〈,j|R ′

i,,j|i〉|,j〉 for any string i, ,j in

the equivalence class denoted by (x, ,y).

5. Optimization

In this section we derive optimal quantum learning of a von
Neumann measurement for the scenarios analyzed in the following
subsections.

5.1. 1 → 1 learning

Suppose that today we are provided with a single use of a mea-
surement device, and we need its replica to measure a state that
will be prepared only tomorrow. Such a scenario is described by
the following scheme.

(53)

Using the labeling from Eq. (53) and the results of Section 4 for
N = 1, we have

L =
{
(x, x), (x, y)

}
,

Ri210 = |i〉〈i|1 ⊗ Rx,x20 +
(
I − |i〉〈i|

)
1 ⊗ Rx,y20 ,

Ra,b = P prpa,b + Pqrqa,b, (a,b) ∈ L. (54)

We use the identity 〈i|〈 j|P p|i〉| j〉 = δi j1/d, n(x, x) = d and n(x, y) =
d(d − 1), to rewrite the figure of merit in Eq. (52) as

F = 〈Rx,x〉 + (d − 1)〈Rx,y〉
=

∑

ν∈{p,q}

(
rνx,x2

ν
x,x + (d − 1)rνx,y2

ν
x,y

)
, (55)

where 2
p
x,x = 1

d , 2
p
x,y = 0, and 2

q
a,b = 1 − 2

p
a,b . Let us now write

the normalization conditions for the generalized instrument in
terms of operators R ′

i, j . We have that RΩ := ∑
i Ri has to be the

Choi–Jamiołkowsky operator of a deterministic quantum network
and must satisfy Eq. (14), that is

RΩ = I2 ⊗ I1 ⊗ ρ, Tr[ρ] = 1, ρ " 0. (56)

The commutation relation (23) implies [ρ,U ] = 0 and conse-
quently the Schur’s lemma requires ρ = 1

d I . We take this into
account in Eq. (56) and with the help of Eq. (54) we get

I1 ⊗ Rx,x + (d − 1)I1 ⊗ Rx,y = I
d
, (57)

which can be equivalently written as (see Eq. (54))

rpx,x + (d − 1)rpx,y = rqx,x + (d − 1)rqx,y = 1
d
. (58)

The above constraint implies the following bound
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F =
∑

ν

(
rνx,x2

ν
x,x + (d − 1)rνx,y2

ν
x,y

)

!
∑

ν∈{p,q}
2ν(

rνx,x + (d − 1)rνx,y
)
= d + 1

d2
, (59)

where 2ν := max(a,b)∈L 2ν
a,b . This bound is achieved by

rqx,x = rpx,y = 0, rpx,x = 1
d
, rqx,y = 1

d(d − 1)
,

which corresponds to a generalized instrument

Ri = |i〉〈i|1 ⊗ 1
d
P p +

(
I − |i〉〈i|

)
1 ⊗ 1

d(d − 1)
Pq, (60)

that replicates the original von Neumann measurement as

G(U )
i =

(
Ri ∗ E(U )

10

)T = 1
d(d − 1)

U |i〉〈i|1U † + d2 − d − 1
d2(d − 1)

I. (61)

Based on Eq. (51) we conclude that the optimal value of D[R]
achieved by the aforementioned network is

Dopt = d
d2 − 1

(
1− d + 1

d2

)2

. (62)

The optimal learning strategy can be realized by the following
network

(63)

that operates as follows. The storing part of the strategy consists of
preparing maximally entangled state 1

d |ω〉〈ω| and measuring one
part of it by the unknown measurement that we want to learn.
Application of the learned POVM on some system H2 is achieved
by measuring two outcome POVM P := {P p, Pq} on the system H2
and on the unmeasured part of the state 1

d |ω〉〈ω|. The last step of
the optimal learning strategy consists in a classical processing f of
the outcome k of E(U ) and of the outcome n of P. The function f
that produces the actual outcome of the replicated measurement
is defined as follows

f (k,n) =
{
k if n = p,
j /= k if n = q,

(64)

where the outcome j in the second case is randomly generated
with flat distribution.

When the outcome n = p of the measurement ,P occurs, we
achieved a teleportation of the input state from system H2 to the
system H2. In this sense the optimal 1 3→ 1 learning is achieved
using the optimal teleportation to the past [11,12]. We stress that
the optimal scheme differs from the one in which one optimally
estimates E(U ) and then reproduces the estimated POVM. In con-
trast to the optimal learning of unitaries, it is possible to prove
that the optimal estimate and prepare strategy for measurements
achieves strictly lower performance than the strategy derived in
this section.

5.2. 2 → 1 learning

We now consider the case in which we have two uses of the
unknown von Neumann measurement at our disposal

(65)

As a consequence of the symmetries introduced in Section 4 we
have

L =
{
(x, xx), (x, xy), (x, yx), (x, yy), (x, yz)

}
,

Ri =
∑

j,k

| j〉〈 j|3 ⊗ |k〉〈k|1 ⊗ R ′
i, jk, (66)

[
Ri, jk,U

∗
4 ⊗ U2 ⊗ U0

]
= 0, (67)

R ′
i, jk =






Rx,xx if i = j = k,
Rx,xy if i = j /= k,
Rx,yx if i = k /= j,
Rx,yy if j = k /= i,
Rx,yz if i /= j /= k /= i.

(68)

The figure of merit (52) becomes

F = 1
d

∑

(a,bc)∈L

n(a,bc)〈Ra,bc〉. (69)

Let us now consider the normalization condition of the optimal
generalized instrument

∑

i

Ri = I4 ⊗ I3 ⊗ S210, Tr2[S] = I1 ⊗ ρ0. (70)

Thanks to Eq. (66) we have

∑

i

Ri =
∑

i, j,k

| j〉〈 j|3 ⊗ |k〉〈k|1 ⊗ R ′
i, jk = I4 ⊗ I3 ⊗ S210,

∑

i,k

|k〉〈k|1 ⊗ R ′
i, jk = I4 ⊗ S210 ∀ j,

∑

i

R ′
i, jk = I4 ⊗ 〈k|S210|k〉1 ∀ j,k. (71)

Using the property (32) we obtain

I4 ⊗ 〈k|S210|k〉1 =
∑

i

R ′
i, jk

=
∑

i

R ′
σ (i),σ ( j)σ (k)

= I4 ⊗
(
〈k|T †

σ
)
S210

(
Tσ |k〉1

)
∀ j,k, (72)

which implies

∑

i

R ′
i, jk = I4 ⊗ T20 ∀ j,k, Tr20[T ] = 1. (73)

The commutation relation (23) implies [I4⊗ T20,U∗
4 ⊗U2 ⊗U0] = 0

and by taking the trace on H4 we get

[T20,U0 ⊗ U2] = 0, (74)

which due to Schur’s lemmas requires T20 = t+P+ + t−P− . The
normalization Tr20[T ] = 1 becomes

d+t+ + d−t− = 1, (75)

where d± ≡ Tr[P±] and Eq. (73) now reads for all j,k
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∑

i

R ′
i, jk = I4 ⊗

(
t+P+ + t−P−)

= t+
(
Pα ⊗ |+〉〈+| + Pβ

)
+ t−

(
Pα ⊗ |−〉〈−| + Pγ )

.

(76)

As a consequence of Eq. (73) the optimal strategy can be paral-
lelized.

(77)

Eq. (77) provides a further symmetry of the problem:

Lemma 6. The operator R ′
i, jk in Eq. (66) can be chosen to satisfy:

R ′
i, jk = SR ′

i,kjS ∀k, j (78)

where S is the swap operator S|k〉2| j〉0 = | j〉2|k〉0 .

Proof. The proof consists in the standard averaging argument. Let
us define Ri, jk := 1

2 (R ′
i, jk + SR ′

i,kjS). It is easy to prove that {Ri, jk}
satisfies the normalization (73) and that gives the same value of
F [R] as R ′

i,kj . !

Eq. (78) together with the decomposition (41) gives for ∀(a,
bc) ∈ L

σzrαa,bcσz = rαa,cb, rβa,bc = rβa,cb, rγa,bc = rγa,cb (79)

where σz =
( 1 0
0 −1

)
.

Considering that n(x, xx) = d, n(x, xy) = n(x, yx) = n(x, yy) =
d(d − 1), and n(x, yz) = d(d − 1)(d − 2), and that SRx,xyS = Rx,yx ,
the figure of merit in Eq. (52) can be written as

F = 〈Rx,xx〉 + (d − 1)〈Rx,yy〉 + 2(d − 1)〈Rx,xy〉
+ (d − 1)(d − 2)〈Rx,yz〉

=
∑

ν

Tr
[
2ν

x,xxr
ν
x,xx + (d − 1)2ν

x,yyr
ν
x,yy + 2(d − 1)2ν

x,xyr
ν
x,xy

+ (d − 1)(d − 2)2ν
x,yzr

ν
x,yz

]
(80)

where

2ν
a,bc := TrHν

[
|i jk〉〈i jk|

]
, (81)

and i, jk is any triple of indices in the class denoted by a, bc.
Notice that in the case d = 2 the last term in the sum of Eq. (80)
is 0.

The optimization of F [R] can be carried out in two steps: first
we maximize F [R] for any fixed value of t+ that satisfies Eq. (75);
finally we optimize the value of t+ . The optimization of F [R] for
fixed t+ is carried out in Appendix A. According to Eq. (A.14) we
can write the figure of merit as

F [R] = d2 + 3d
2(d + 1)

t+ +
√

(d − 1)t+t−√
d + 1

+ d
2
t−. (82)

The last step of the optimization can be easily done by making the
substitution t− = d−1

− (1 − d+t+) in Eq. (82) and then maximizing
F = F (t+). We will omit the details of the derivation and we rather
show a plot (Fig. 1) representing the values of D , F depending on
the dimension.

Fig. 1. Optimal learning of a measurement device: we present the values of D , F for
different values of the dimension d. The squared dots represent the optimal learning
from a single use (1 → 1 learning) while the round dots and triangles represent the
optimal learning from two uses (2 → 1 learning).

Fig. 2. Optimal learning of a measurement device: we present the values of λ, the
admixture of perfect replica to white noise in the produced measurement for dif-
ferent values of the dimension d. The squared dots represent the optimal learning
from a single use (1 → 1 learning) while the diamonds represent the optimal learn-
ing from two uses (2 → 1 learning).

Due to Lemma 5 the replicated POVM has the following form:

G(U )
i = λE(U )

i + (1− λ)
1
d
I = dF − 1

d − 1
U |i〉〈i|U † + 1− F

d − 1
I,

where the values of the coefficient λ describing the random mix-
ing of a perfect replica with a trivial measurement are depicted in
Fig. 2.

5.3. 3 → 1 learning

In this section we consider a learning network, which exploits
3 uses of the measurement device and produces a single replica:

(83)

In order to simplify the problem we restrict ourselves to the qubit
case, that is we set d = 2. The derivation of the optimal learning
network turns out to be very involved although it follows the same
lines as for the 2 → 1 case. We made the calculations analytically
with the help of a symbolic mathematical program.
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The 3 → 1 scenario deserves interest because the optimal solu-
tion does not allow a strategy having the 3 uses of the measure-
ment device in parallel. In other words the optimal strategy needs
to be adaptive.

Let us consider the normalization condition for the generalized
instrument {Ri}:
∑

i jkl

| jkl〉〈 jkl|531 ⊗ Ri, jkl = I65 ⊗ S43210,

Tr4[S] = I3 ⊗ T210. (84)

This implies
∑

i

Ri, jkl = I6 ⊗ 〈kl|S43210|kl〉31 ∀ j,

〈kl|Tr4[S]|kl〉 = 〈l|T |l〉1 ∀k. (85)

From the relabeling symmetry Ri, jkl = Rσ(i),σ ( j)σ (k)σ (l) we have
〈kl|S|kl〉 = 〈σ(k)σ (l)|S|σ(k)σ (l)〉, and consequently

〈kl|Tr4[S]|kl〉31 = 1
d2

Tr431[S] =: T̃20 ∀k, l. (86)

This fact along with Eq. (84) allows us to conclude that

Tr4[S] = Tr4

[∑

kl

|kl〉〈kl|31 ⊗ 〈kl|S43210|kl〉
]

=
∑

kl

|kl〉〈kl|31 ⊗ T̃20 = I31 ⊗ T̃20 (87)

which means that the first two uses can be in parallel. We notice
that in general 〈kl|S|kl〉 = 〈σ(k)σ (l)|S|σ(k)σ (l)〉 does not imply
that 〈kl|S|kl〉 = S̃ is independent of k, l, but only that 〈kl|S|kl〉 =
S̃ab , where a, b denotes the equivalence class of the couple (k, l).
Consequently, we cannot in general assume that all the examples
can be used in parallel. In fact, the optimal learning network has
the following causal structure

(88)

where the state of system 4 depends on the classical outcome in
system 3 and 1. The optimal value of F [R] is approximately 0.87
(we remind that for the 1 → 1 learning we had F = 0.75, while
for the 2 → 1 case we had F = 0.81). The corresponding value of
coefficient λ (see Eqs. (49), (50)) are depicted in Fig. 2.

Remark 1. One can wonder whether without assuming any sym-
metry it is possible to find a non-symmetric parallel strategy {Ri}
that achieves the optimal value of F [R]. However we remind that
for any strategy {Ri} we can build a symmetric one with the same
normalization, that is without spoiling the parallelism, and giving
the same fidelity. Since the optimal symmetric network cannot be
parallel, we have that any other optimal network has to be sequen-
tial as well.

6. Conclusions

We analyzed optimal learning of a measurement device. Our
approach to the problem is based on the formalism of quan-
tum combs and generalized quantum instruments, introduced in
Refs. [8–10]. The original problem can be significantly simplified by
utilizing the symmetries provided by the figure of merit. In partic-
ular, covariance and relabeling symmetry allow us to significantly

decrease the number of parameters, without affecting the figure of
merit. As a consequence of the symmetry of the learning network
the replicated measurement can be seen as a random mixture of a
perfect replica of the measurement device to be learnt with weight
λ and of a trivial measurement producing all possible outcomes
with the same probability independently of the input state with
weight 1 − λ. For 2 → 1 and 3 → 1 learning the first two uses of
the unknown measurement device can be parallelized, and this re-
sult can be generalized to N → 1 learning. However, the optimal
learning algorithm cannot be further parallelized, namely the ex-
amples exceeding the second one must be used sequentially. This
feature is very unusual, and it occurs in few cases of quantum al-
gorithms [13,14]. For example, while the quantum part of Shor’s
algorithm can be parallelized, Grover’s algorithm cannot, as was
proved in Ref. [15]. Our results prove that quantum learning of
a von Neumann measurement shares with Grover’s algorithm the
impossibility of parallelizing without affecting optimality. The par-
allelization of the first two examples from this point of view is a
curious exception.

An obvious extension of the work would be to study the scaling
of the performance of the optimal learning strategy with respect to
N . However, our results show that optimal learning networks with
different N do not share the same the initial steps. This means
that the optimization of N → 1 learning cannot be done induc-
tively building on the results from N − 1 → 1 case. The complexity
of the optimization in general case rises mainly due to the causal
influence of steps of the learning strategy on the remaining part
of the network, which is reflected in the recursive structure of the
normalization constraints.
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Appendix A. Calculations for 2 → 1 learning

The explicit expression of 2ν
a,bc in Eq. (81) is given by

2α
x,xx =

( 2
d+1 0
0 0

)
, 2α

x,xy = 1
2

( 1
d+1

1√
d2−1

1√
d2−1

1
d−1

)

,

2α
x,yy = 2α

x,yz = 0, 2α
x,yx = σz2

α
x,xyσz,

2
β
x,xx = d − 1

d + 1
, 2

β
x,xy = 2

β
x,yx = d

2(d + 1)
,

2
β
x,yy = 1, 2

β
x,yz = 1

2
,

2
γ
x,xx = 2

γ
x,yy = 0, 2

γ
x,xy = 2

γ
x,xy = d − 2

2(d − 1)
,

2
γ
x,yz = 1

2
. (A.1)

Introducing the notation

sνx,xx := rνx,xx, sνx,xy := (d − 1)rνx,xy,

sνx,yx := (d − 1)rνx,yx, sνx,yy := (d − 1)rνx,yy,

sνx,yz := (d − 2)(d − 1)rνx,yz, (A.2)

the figure of merit (80) becomes

F = Fα + Fβ + Fγ ,

Fν ≡
∑

(a,bc)∈L

Tr
[
2ν

a,bcs
ν
a,bc

]
, ν ∈ {α,βγ }. (A.3)
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We express R ′
i, jk through Ra,bc (a,bc) ∈ L and Eq. (39). Depending

on j = k or j /= k Eq. (76) is equivalent to the following relations

j = k ⇒

sαx,xx + sαx,yy =
(
t+ 0
0 t−

)
,

sβx,xx + sβx,yy = t+,

sγx,xx + sγx,yy = t−,

j /= k ⇒

sαx,xy + σzsαx,xyσz + sαx,yz =
(

(d − 1)t+ 0
0 (d − 1)t−

)
,

2sβx,xy + sβx,yz = (d − 1)t+, (A.4)

2sγx,xy + sγx,yz = (d − 1)t−, (A.5)

where we utilized Eq. (79) implied by Lemma 6. We now derive
the optimal learning network for a fixed value of t+ (remember
that t− = (1− d+t+)/d−).

First we maximize Fβ and Fγ for the case d " 3. Using the
expressions for the 2ν

i, jk from Eq. (A.1) we have:

Fβ =
∑

(a,bc)∈L

Tr
[
2

β
a,bcs

β
a,bc

]
! max

(
2

β
x,xx,2

β
x,yy

)
t+

+max
(
2

β
x,xy,2

β
x,yz

)
(d − 1)t+

= 2
β
x,yyt+ + 2

β
x,yz(d − 1)t+

= t+ + (d − 1)t+
2

= (d + 1)t+
2

(A.6)

and

Fγ =
∑

(a,bc)∈L

Tr
[
2

γ
a,bcs

γ
a,bc

]
! max

(
2

γ
x,xx,2

γ
x,yy

)
t−

+max
(
2

γ
x,xy,2

γ
x,yz

)
(d − 1)t−

= 2
γ
x,yz(d − 1)t− = (d − 1)t−

2
, (A.7)

where we used the normalizations constraints (A.4). The upper
bounds (A.6) and (A.7) can be achieved by taking

sβx,xx = sβx,xy = sβx,yx = sγx,xx = sγx,xy = sγx,yx = 0,

sβx,yy = t+, sβx,yz = (d − 1)t+,

sγx,yy = t−, sγx,yz = (d − 1)t−.

For d = 2 the irreducible representation denoted by γ and the x,
yz class do not exist and the optimization yields sβx,xy = t+(d − 1).

Let us now consider Fα (in this case there is no difference be-
tween d " 3 and d = 2). Based on the expression of 2α

i, jk we have:

Fα =
∑

(a,bc)∈L

Tr
[
2α

a,bcs
α
a,bc

]

= Tr
[
2α

x,xxs
α
x,xx

]
+ Tr

[
2α

x,xys
α
x,xy

]
+ Tr

[
2α

x,yxs
α
x,yx

]

= Tr

[( 2
d+1 0
0 0

)
sαx,xx +

( 1
d+1

1√
d2−1

1√
d2−1

1
d−1

)

sαx,xy

]

! 2
d + 1

t+ + Tr

[( 1
d+1

1√
d2−1

1√
d2−1

1
d−1

)

sαx,xy

]

, (A.8)

and the bound can be achieved by taking

sαx,xx =
(
t+ 0
0 t−

)
. (A.9)

Let us now focus on the expression Tr[2α
x,xys

α
x,xy]. The normal-

ization constraint (A.4) for the operator sαx,xy can be rewritten as:

sα,+,−
x,yz = sα,−,+

x,yz = 0,

sα,+,+
x,yz + 2sα,+,+

x,xy = (d − 1)t+,

sα,−,−
x,yz + 2sα,−,−

x,xy = (d − 1)t−, (A.10)

where we denoted sα,±,±
a,bc := 〈±|sαa,bc|±〉. Then we have

Tr
[
2α

x,xys
α
x,xy

]
= sα,+,+

x,xy

d + 1
+ sα,+,−

x,xy√
d2 − 1

+ sα,−,+
x,xy√
d2 − 1

+ sα,−,−
x,xy

d − 1

! sα,+,+
x,xy

d + 1
+ 2

√
sα,+,+
x,xy sα,−,−

x,xy√
d2 − 1

+ sα,−,−
x,xy

d − 1
(A.11)

! (d − 1)t+
2(d + 1)

+
√

(d − 1)t+t−√
d + 1

+ t−
2

(A.12)

where we used the positivity of the operator sαx,xy for the inequal-
ity (A.11) and the normalization (A.10) for the second inequality
(A.12). The upper bound in Eq. (A.12) can be achieved by taking

sαx,xy = (d − 1)
2

(
t+

√
t+t−√

t+t− t−

)
. (A.13)

Finally, combining the optimal values of Fα , Fβ , and Fγ we have

F [R] = d2 + 3d
2(d + 1)

t+ +
√

(d − 1)t+t−√
d + 1

+ d
2
t−. (A.14)
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