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We study the correspondence between classical and quantum measurements on a har-
monic oscillator that describes a one-mode bosonic field with annihilation and creation
operators a and a† with commutation [a, a†] = 1. We connect the quantum measure-
ment of an observable Ô = Ô(a, a†) of the field with the possibility of amplifying the
observable Ô ideally through a quantum amplifier which achieves the Heisenberg-picture
evolution Ô → gÔ, where g is the gain of the amplifier. The “classical” measurement of
Ô corresponds to the joint measurement of the position q̂ = 1/2(a† + a) and momen-
tum p̂ = i/2(a† − a) of the harmonic oscillator, with following evaluation of a function
f(α, ᾱ) of the outcome α = q + ip. For the electromagnetic field the joint measure-
ment is achieved by a heterodyne detector. The quantum measurement of Ô is obtained
by preamplifying the heterodyne detector through an ideal amplifier of Ô and rescal-
ing the outcome by the gain g. We give a general criterion which states when this
preamplified heterodyne detection scheme approaches the ideal quantum measurement
of Ô in the limit of infinite gain. We show that this criterion is satisfied and the ideal
measurement is achieved for the case of the photon number operator a†a and for the
quadrature X̂φ = (a†eiφ + ae−iφ)/2, where one measures the functions f(α, ᾱ) = |α|2
and f(α, ᾱ) = Re(αe−iφ) of the field, respectively. For the photon number operator
a†a the amplification scheme also achieves the transition from the continuous spectrum
|α|2 ∈ R to the discrete one n ∈ N of the operator a†a. Moreover, for both operators a†a
and X̂φ the method is robust to nonunit quantum efficiency of the heterodyne detector.
On the other hand, we show that the preamplified heterodyne detection scheme does
not work for arbitrary observable of the field. As a counterexample, we prove that the
simple quadratic function of the field K̂ = i(a†2 − a2)/2 has no corresponding polyno-
mial function f(α, ᾱ) — including the obvious choice f = Im(α2) — that allows the
measurement of K̂ through the preamplified heterodyne measurement scheme.

PACS number(s): 03.65.-w, 03.65.Bz, 42.50.Dv, 42.50-p
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1. Introduction

In the standard formulation of Quantum Mechanics an abstract concept of physical

observable is formulated in terms of real eigenvalues and sharp probability dis-

tributions, which leads to the well known correspondence between observables and

self-adjoint operators on the Hilbert space.1 A natural extension of this formulation

is based on the general concept of Positive Operator–Valued Measure (POVM),2,3

which allows the description of joint measurements of non-commuting observables,

with generally complex eigenvalues and probability distributions that are not sharp

for any quantum state. From an operational point of view, however, we have no

prescription on how to achieve the ideal quantum measurement (i.e. with minimum

noise) of a generic operator and the problem of finding a universal detector is still

an open one. Quantum homodyne tomography — the only known method for mea-

suring the state itself of the field — can also be regarded as a kind of universal

detection,4 however it is far from being ideal, due to the occurrence of statistical

measurement errors that are intrinsic of the method.

In this paper we study the possibility of achieving the ideal measurement of an

observable Ô = Ô(a, a†) of one mode of the electromagnetic field by means of a fixed

detection scheme — the heterodyne detector — after ideal preamplification Ô → gÔ

of the observable Ô, g denoting the amplifier gain, seeking a connection between the

problem of measuring Ô and that of amplifying Ô ideally. As heterodyne detection

corresponds to the ideal joint measurement of the canonical pair q̂ = 1/2(a†+a) and

p̂ = i/2(a†− a) of a harmonic oscillator in the phase space, in this way we also try

to set a link between classical and quantum measurements. We will give a necessary

and sufficient condition that establishes when the preamplified heterodyne detection

scheme approaches the ideal quantum measurement of Ô in the limit of infinite

gain. We show that such condition is satisfied for the photon number operator

a†a — corresponding to the function f(α, ᾱ) = |α|2 of the heterodyne outcome

α ∈ C — and for the quadrature operator X̂φ = (a†eiφ+ae−iφ)/2 — corresponding

to the function f(α, ᾱ) = Re(αe−iφ). For the photon number operator a†a the

amplification scheme also achieves the transition from the continuous spectrum

|α|2 ∈ R to the discrete spectrum Sa†a ≡ N of a†a. Moreover, for both operators a†a

and X̂φ the methods is also robust to nonunit quantum efficiency of the heterodyne

detector. On the other hand, we will see that the preamplified heterodyne scheme

does not work for arbitrary observable of the field. As a counterexample, we show

that, unexpectedly, the simple quadratic function of the field K̂ = i(a†2−a2)/2 has

no corresponding polynomial function f(α, ᾱ) — including the obvious choice f =

Imα2) — which allows the measurement of K̂ through the preamplified heterodyne

measurement scheme.

The paper is organized as follows. In Sec. 2 we derive the POVM of the het-

erodyne measurement of a function f of the field, for generally nonunit quantum

efficiency. In Sec. 3 we analyze the ideal amplification of an observable Ô and

prove that it can be always achieved by a unitary transformation. In Sec. 4 we
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give a necessary and sufficient condition for the preamplified heterodyne detection

scheme to approach the ideal measurement of Ô. Section 5 is devoted to the two

examples Ô = a†a and Ô = X̂φ which satisfy the requirements of the general cri-

terion of Sec. 3. There we also prove explicitly that the ideal measurement of Ô is

achieved by the preamplified heterodyne detection scheme in the limit of infinite

gain of the amplifier, also for nonunit quantum efficiency of the heterodyne detec-

tor. Section 6 is devoted to the counterexample K̂ = i(a†2 − a2)/2, where, in order

to prove that the preamplified heterodyne scheme does not work, we also derive the

explicit analytical form of the ideal amplification map for K̂. Section 7 concludes

the paper by summarizing the main results.

2. Heterodyne Detection

Heterodyne detection corresponds to measuring the complex field Ẑ = a+b†, a and

b denoting the signal and the image-band modes of the detector, respectively. The

measurement is an exact joint measurement of the commuting observables Re(Ẑ)

and Im(Ẑ), but can also be regarded as the joint measurement of the noncommuting

operators Re(a) and Im(a), by considering the image-band mode in the vacuum

state. In this way the vacuum fluctuations of b introduce an additional 3 dB noise,

which can be proved to be the minimum added noise in an ideal joint measurement

of a conjugated pair of noncommuting observables.5

The probability density in the complex plane p(α, ᾱ) for heterodyne detection

is given by the Fourier transform of the generating function of the moments of Ẑ,

namely

p(α, ᾱ) =

∫
d2λ

π2
〈eλẐ†−λ̄Ẑ〉eλ̄α−λᾱ =̇ 〈δ(2)(α− Ẑ)〉 , (1)

where the overbar denotes the complex conjugate, d2λ = dReλ d Imλ, 〈· · ·〉 rep-

resents the ensemble quantum average on both signal and image-band modes and

δ(2)(α) is the Dirac delta-function in the complex plane. The partial trace over the

image-band mode in Eq. (1) can be evaluated as follows

〈eλẐ†−λ̄Ẑ〉 = Tra[%̂D̂a(λ)]b〈0|D̂b(−λ̄)|0〉b = Tra[%̂D̂a(λ)]e−1/2|λ|2

=̇ Tra[%̂ :D̂a(λ):A] , (2)

where D̂(α) = exp(αa† − ᾱa) denotes the displacement operator (D̂a for mode a

and D̂b for mode b), |0〉b represents the vacuum for mode b only, %̂ is the density

matrix for the signal mode and ::A denotes anti-normal ordering. The probability

density versus the outcome α is given by

d2α p(α, ᾱ) = Tr[%̂dµ̂(α, ᾱ)] , (3)

where the probability operator-valued measure (POVM) dµ̂(α, ᾱ) can be written

as follows
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dµ̂(α, ᾱ) = d2α

∫
d2λ

π2
eλ̄α−λᾱ:D̂(λ):A

= d2α

∫
d2β

π

∫
d2λ

π2
eλ̄(α−β)−λ(ᾱ−β̄)|β〉〈β|

=
d2α

π
|α〉〈α| =̇ d2α :δ(2)(α− a):A , (4)

using the resolution of the identity in terms of coherent states 1̂ =
∫

(d2β/π)|β〉〈β|.
In a “classical” measurement of the function w = f(α, ᾱ) on the phase space,

one evaluates the function f of the outcome α of the complex photocurrent Ẑ. Cor-

respondingly, the probability distribution of w is given by the marginal probability

density

p(w) =

∫
d2α p(α, ᾱ) δ(w − f(α, ᾱ)) . (5)

The POVM dĤf (w) that provides such probability density is the marginal POVM

of dµ̂(α, ᾱ) and can be written as follows

dĤf (w) = dw

∫
dµ̂(α, ᾱ)δ(w − f(α, ᾱ)) = dw :δ(w − f(a, a†)):A . (6)

In this way one has a correspondence rule between POVM’s dĤf (w) and classical

observables w = f(α, ᾱ) on the phase space α ∈ C.

The quantum efficiency η of the heterodyne detector can be taken into account

by introducing auxiliary vacuum field modes for both the signal and the idler and

by rescaling the output photocurrent by an additional factor η1/2. The overall effect

resorts to a Gaussian convolution of the ideal POVM with variance ∆2
η = (1−η)/η.

Then, the POVM in Eq. (6) rewrites

dĤf (w) = dwΓ(1−η)/η [:δ(w − f(a, a†)):A] , (7)

where Γσ2 denotes the completely positive (CP) map that describes the effect of

additional Gaussian noise of variance σ2, namely

Γσ2 [Â] =

∫
d2β

πσ2
e−|β|

2/σ2

D̂(β)ÂD̂†(β) , (8)

for any operator Â. We do not know a priori if the measurement described by the

POVM in Eq. (6) or (7) corresponds to an approximate quantum measurement of

some observable of the field. We can argue that, for example, for f(α, ᾱ) = |α|2
the measurement would approximate the ideal detection of the number of photons

a†a. In the following we give a necessary and sufficient condition to establish when

the heterodyne POVM dĤf (w) approaches the ideal quantum measurement of an

observable Ô by preamplifying the heterodyne through an ideal amplifier of Ô

in the limit of infinite amplifier gain. In the following section we introduce the

general concept of ideal amplification of an observable, and prove that it can be

always achieved by a unitary transformation.
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3. Ideal Amplification of Quantum Observables

For a given self-adjoint operator Ŵ , the ideal amplifier of Ŵ is a device that achieves

the transformation

A(Ŵ )
g (Ŵ ) = gŴ , (9)

where g > 1 denotes the gain of the amplifier. The transformation (9) is to be

regarded as the Heisenberg-picture evolution of the field throughout the device

when the transformation is applied to Ŵ . If the spectrum SŴ of Ŵ is SŴ = R or

SŴ = R+, the evolution A(Ŵ )
g can be written as follows

A(Ŵ )
g (|w〉〈w|) = g−1|g−1w〉〈g−1w| , (10)

where |w〉 denotes the eigenvector of Ŵ pertaining to the eigenvalue w ∈ SŴ . The

corresponding Schrödinger-picture of the evolution (10) is given by the dual map

A∨(Ŵ )
g (|w〉〈w|) = g|gw〉〈gw| , (11)

where |w〉 now has to be regarded as a (Dirac-sense) normalized state vector. For

integer spectrum SŴ = N or SŴ = Z, Eq. (10) rewrites as follows

AWg (|n〉〈n|) = |g−1n〉〈g−1n| χZ(g−1n) , (12)

where χZ(x) is the characteristic function on integers, namely χZ(x) = 1 for x ∈ Z,

χZ(x) = 0 otherwise. It is easy to check that both Eqs. (10) and (12) imply Eq. (9).

In the following we will consider only the cases of spectra SŴ = R, R+, N, Z, as

these are the only ones that are left invariant under amplification, i.e. gSŴ ⊂ SŴ
(this will exclude, for example, the case of phase amplification3). Moreover, for the

sake of notation, if not explicitly written, we will assume SŴ = R.

Among all possible extensions of the amplification map (11) to all state vectors,

the following ones are physically meaningful

A∨(Ŵ )
g (|w〉〈w′|) = g|gw〉〈gw′| , (13)

A∨(Ŵ )
g (|w〉〈w′|) = g|gw〉〈gw′|δ(w − w′) . (14)

In fact, both maps in Eqs. (13) and (14) are linear normal completely positive

(CP) maps, and hence they can be realized through a unitary transformations on

an extended Hilbert space.6 The proof runs as follows. The map A is completely

positive normal if and only if one has

n∑
i,j=1

〈ξi|A∨(|ηi〉〈ηj |)|ξj〉 ≥ 0 (15)

for all finite sequence of vectors {|ηi〉} and {|ξi〉}. Upon expanding |ηi〉 and |ξi〉 on

the orthonormal basis {|w〉}, for the map (13) one has
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n∑
i,j=1

〈ξi|A∨(Ŵ )
g (|ηi〉〈ηj |)|ξj〉 = g

∫
dw1dw2dw3dw4〈w1|gw2〉〈gw3|w4〉

×
n∑

i,j=1

ξ̄i(w1)ηi(w2)η̄j(w3)ξj(w4)

= g

∣∣∣∣∣
n∑
i=1

∫
dwdw′〈w|gw′〉ξ̄i(w)ηi(w

′)

∣∣∣∣∣
2

≥ 0 , (16)

whereas for the map (14) one has

n∑
i,j=1

〈ξi|A∨(Ŵ )
g (|ηi〉〈ηj |)|ξj〉

= g

∫ +∞

−∞

dλ

2π

∣∣∣∣∣
n∑
i=1

∫
dwdw′〈w|gw′〉ξ̄i(w)ηi(w

′)eiλw
′

∣∣∣∣∣
2

≥ 0 . (17)

In the Schrödinger picture the two maps (13) and (14) are achieved by the

following unitary transformations in an extended Hilbert space

Ûg|w〉 ⊗ |ψ〉 = g1/2|gw〉 ⊗ |ψ′〉 , (18)

Ûg|w〉 ⊗ |ψ〉 = g1/2|gw〉 ⊗ |ψ′(w)〉 . (19)

with 〈ψ′(w1)|ψ′(w2)〉 = δ(w1 − w2). Equations (13) and (14) are obtained by

Eqs. (18) and (19) when the evolution is viewed as restricted to the signal mode

only, namely

A∨(Ŵ )
g (%̂) = 〈ψ|Ûg %̂⊗ 1Û†g |ψ〉 . (20)

We name the device corresponding to Eq. (18) an ideal coherence-preserving quan-

tum amplifier of Ŵ , because it achieves the ideal amplification of Ŵ without mea-

suring Ŵ (ψ′ does not depend on w; for ψ′ = ψ the device is “passive”). On the

other hand, the transformation (19) achieves the ideal amplification of Ŵ by mea-

suring Ŵ , then performing the processing w → gw and finally preparing the state

|gw〉. The measurement stage is the one which is responsible for the vanishing of all

off-diagonal elements in Eq. (14). (Equation (20) together with Eqs. (18) and (19)

imply Eqs. (13) and (14) also for a nonorthogonal set {|w〉}, however, generally not

when 〈ψ′A(w2)|ψ′A(w1)〉 6= 0 for w1 6= w2). Since we want to exploit the ideal ampli-

fication of Ŵ in order to achieve its ideal quantum measurement, we will consider

only the coherence-preserving quantum amplification in Eq. (13) or (18), since the

other kind of amplifier needs by itself the ideal measurement of Ŵ .
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4. Approaching Ideal Quantum Measurements by Preamplified

Heterodyning

Let dĤf (u) be the POVM pertaining to the heterodyne measurement of the function

f(α, ᾱ) of the field and let consider a preamplified heterodyne detection scheme

corresponding to the following procedure:

(1) the signal mode of the field is amplified by an ideal amplifier for Ŵ with gain

g;

(2) the field is heterodyne detected and the function f is evaluated;

(3) the final result is rescaled by a factor g.

The above procedure corresponds to the following transformation

dĤf (u) −→ A(Ŵ )
g [dĤf (gu)] . (21)

We say that the preamplified heterodyne detection of the function f of the field

approaches the ideal quantum measurement of the observable Ŵ in the limit of

infinite gain g if

lim
g→∞

A(Ŵ )
g [dĤf (gu)] = duδ(u− Ŵ ) , (22)

where the limit is to be regarded in the weak sense (i.e. for matrix elements) and

the operator Dirac delta explicitly writes as follows

δ(u− Ŵ ) =

∫
SŴ

dw|w〉〈w|δ(u − w) , (23)

and the integral is to be understood as a sum for discrete spectrum SŴ . A necessary

and sufficient condition for validity of Eq. (22) is the following

lim
g→∞

∫
A(Ŵ )
g [dĤf (gu)]ul = Ŵ l , l = 0, 1, 2, . . . , (24)

where again the limit holds for expectations on any state. One can prove that

condition (24) is necessary — i.e. Eq. (22) implies Eq. (24) — by simply substituting

Eq. (22) into Eq. (24) and exchanging the integral with the limit. On the other hand

Eq. (24) implies

lim
g→∞

∫
A(Ŵ )
g [dĤf (gu)] exp(iku) = exp(ikŴ ) , (25)

and taking the Fourier transform of both sides of the last identity one finds Eq. (22),

proving that Eq. (24) is also a sufficient condition. Another sufficient condition in

a form more convenient than Eq. (24) is the following∫
dĤf (u)ul = Ŵ l + o(Ŵ l) , (26)

where o(g(x)) is an asymptotic notation equivalent to the vanishing of the

limit limx→∞ o(g(x))/g(x) = 0,7 whereas, for an operator V̂ , by o(V̂ ) we mean
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limκ→∞ κ−1o(κV̂ ) = 0 in the weak sense. In fact, by amplifying both sides of

Eq. (26) and rescaling the variable u by the gain g one obtains∫
A(Ŵ )
g [dĤf (gu)]ul = Ŵ l + g−lo(glŴ l) , (27)

which implies Eq. (24).

5. Two Examples

In this section we show that condition (24) holds for both the photon number

Ŵ = a†a and the quadrature W = Re(ae−iφ), corresponding to the functions of

the field f(α, ᾱ) = |α|2 and f(α, ᾱ) = Re(αe−iφ) respectively. This means that

both the quadrature and the photon number operators can be ideally measured

through the preamplified heterodyne detection scheme in the limit of infinite gain.

We also show that in both cases the detection scheme is robust to non-unit quantum

efficiency of the heterodyne detector.

5.1. Measurement of the quadrature

The POVM dĤ(x) that corresponds to the function f(α, ᾱ) = Re(αe−iφ) of the

field is given by

dĤf (x) = dx:δ

(
x− 1

2
(a†eiφ + ae−iφ)

)
:A = dx

∫
du

2π
eiu(x−X̂φ)e−(1/8)u2

= dx

√
2

π
e−2(X̂φ−x)2

. (28)

Non-unit quantum efficiency introduces additive Gaussian noise and replaces the

POVM (28) with the following one

dĤf (x) = dx

√
2η

π(2− η)
e−(2η/2−η)(X̂φ−x)2

. (29)

We can see that the POVM in Eq. (29) satisfies the sufficient condition (26) for

approaching the ideal quantum measurement of X̂φ. In fact, the moments of the

POVM (29) are given by∫
dĤf (x)xl =

∫ +∞

−∞
dx

√
2η

π(2− η)
e−(2η/2−η)x2

(X̂φ + x)l = X̂ l
φ +O(X̂ l−2

φ ) , (30)

where O(g(x)) is the customary asymptotic notation equivalent to the condition

limx→∞O(g(x))/g(x) < ∞,7 implying that O(X̂ l−2) ≡ o(X̂ l). On the other hand,

one can directly verify the limit in Eq. (22) as follows

AX̂φg [dĤf (gx)] = dx

√
2g2η

π(2− η)
e−(2g2η/2−η)(X̂φ−x)2 g→∞−−−−→ dxδ(X̂φ − x) . (31)
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The ideal amplification of the quadrature operator X̂φ is achieved by means of

a phase-sensitive amplifier8,10 which rescales the couple of conjugated quadratures

as follows

X̂φ →
1

g
X̂φ , X̂φ+(π/2) → gX̂φ+(π/2) , (32)

g being the gain at the amplifier. The Heisenberg transformations in Eq. (32) are

achieved by the unitary operator

Ûg = exp[−i log g(X̂φX̂φ+(π/2) − X̂φ+(π/2)X̂φ)] . (33)

5.2. Measurement of the photon number

The case of the ideal measurement of the photon number a†a through preamplified

heterodyning is more interesting than the case of the quadrature X̂φ, because here

the amplification not only removes the excess noise due to the quantum measure-

ment, but also changes the spectrum, from continuous to discrete. We consider the

POVM that corresponds to heterodyning the function f(α, ᾱ) = |α|2 of the field.

This can be written as follows

dĤf (h) = dh:δ(h− a†a)):A = dh

∫
du

2π
e−iuh

∞∑
n=0

(iu)nana†n

= dh

∫
du

2π
e−iuh

∞∑
n=0

(iu)n
(
a†a+ n

n

)
= dh

∫
du

2π
e−iuh(1− iu)−a

†a−1

= dhe−h
ha
†a

(a†a)!
. (34)

The POVM in Eq. (34) satisfies the sufficient condition (26). In fact, one has∫
dhe−h

ha
†a+l

(a†a)!
=

(a†a+ l)!

(a†a)!

= (−)l
l∑

k=0

s
(k+1)
l+1 (−a†a)k = (a†a)l +O[(a†a)l−1] , (35)

where s
(k)
l denotes a Stirling number of the first kind. Hence, if the field is amplified

through an ideal photon number amplifier9–11 and then heterodyne detected, in the

limit of infinite gain the scheme achieves ideal photon number detection. Indeed,

using the ideal photon number amplification map12,13

a†a −→ V̂ †a†aV̂ = ga†a , (36)

with the isometry V̂ given by

V̂ =
∞∑
n=0

|gn〉〈n| , (37)
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one obtains the preamplified POVM

Aa†ag [dĤf (gh)] = V̂ †dĤf (gh)V̂ = dhge−gh
∞∑
n=0

(gh)gn

(gn)!
|n〉〈n| . (38)

In the limit of infinite gain g →∞ the POVM in Eq. (38) achieves the ideal POVM

for the photon-number operator measurement. This can be shown as follows. Upon

writing the POVM (38) in the form

Aa†ag [dĤf (gh)] = dh

∞∑
n=0

p(g)
n (h)|n〉〈n| , (39)

we need to show that the function

p(g)
n (h) = ge−gh

(gh)gn

(gn)!
, (40)

approaches a Dirac delta-comb over integer values h ∈ N. Using the Stirling’s

inequality

√
2πn

(n
e

)n
< n! <

√
2πn

(n
e

)n(
1 +

1

12n− 1

)
, (41)

one obtains

γ(g)
n (h)

(
1 +

1

12gn− 1

)−1

< p(g)
n (h) < γ(g)

n (h) , (42)

where

γ(g)
n (h) =

1√
2πg−1n

exp

[
gn

(
1− h

n
+ log

h

n

)]
. (43)

From the inequality logx ≤ x− 1 (with equality iff x = 1) it follows that

lim
g→∞

γ(g)
n (h) =

{
0 h 6= n

+∞ h = n
, (44)

and hence, from Eq. (42), one has

lim
g→∞

p(g)
n (h) =

{
0 h 6= n

+∞ h = n
. (45)

Moreover, from the expansion for h near to n

1− h

n
+ log

h

n
= −1

2

(
1− h

n

)2

+O

((
1− h

n

)3
)
, (46)

one has the Gaussian asymptotic approximation for g →∞

p(g)
n (h) ' 1√

2πg−1n
exp

[
− (h− n)

2

2g−1n

]
g→∞−→ δ(h− n) , (47)

which proves the statement.
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Fig. 1. Probability density p(h) for a coherent state with mean photon number 〈a†a〉 = 12
obtained through heterodyne detection of f(α, ᾱ) = |α|2, preamplified by an ideal photon number
amplifier. Different line-style denote different value of the gain g at the amplifier: the dashed line
corresponds to g = 1 (no amplification); the thick line corresponds to g = 102; the thin line to
g = 103.

In Fig. 1 we show the probability distribution of the outcome h = |α|2 form

preamplified heterodyne detection of a coherent state, for different values of the

amplifier gain g. Notice the emergence of a discrete spectrum from a continuous

one for increasingly large gains, in agreement with Eq. (47).

It is easy to show that the preamplified heterodyne detection scheme is robust

to non-unit quantum efficiency also in the present case of measuring a†a. In fact,

the sufficient condition (26) is still satisfied for nonunit quantum efficiency, as one

can check through Eqs. (8) and (35) as follows∫
d2β

π

η

1− η e
−η/1−η|β|2D̂(β){(a†a)l +O[(a†a)l−1]}D̂†(β)

=

∫
d2β

π

η

1− η e
−η/1−η|β|2{[(a† − β̄)(a− β)]l +O[((a† − β̄)(a− β))l−1]}

= (a†a)l +O[(a†a)l−1] . (48)

6. A Counterexample

The necessary and sufficient condition (24) establishes when a self-adjoint operator

Ŵ is approximated by the classical observable f using a preamplified heterodyne

scheme. One could now address the inverse problem, namely: Given a self-adjoint

operator Ŵ is it possible to find a function of the field such that the preamplified

heterodyne measurement approximates the measurement of Ŵ? As we have shown
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in the previous section, this is certainly true for X̂φ and a†a. For a generic observable

Ŵ , the problem becomes very difficult. However, on the basis of a counterexam-

ple, we will prove that the inverse problem has no solution for some operator Ŵ ,

namely there are observables which cannot be measured through the preamplified

heterodyne detection scheme.

Consider the operator

K̂ ≡ − i
2

(a2 − a†2) = X̂Ŷ + Ŷ X̂ , (49)

where X̂ and Ŷ are the conjugated quadratures X̂ ≡ X̂0 and Ŷ = X̂π/2. We show

that there is no polynomial function of the field that satisfies either the necessary

condition (24).

In order to construct the CP amplification map for K̂, one has to find the

eigenstates of K̂. These are given in Ref. 14 and here we report them. One has

K̂|ψµ±〉 = µ|ψµ±〉 , (50)

with

ψµ±(x) =̇ 〈x|ψµ±〉 =
1√
2π
|x|iµ−1/2θ(±x) , (51)

where |x〉 denotes the eigenvector of the quadrature X̂, and θ(x) is the customary

step-function (θ(x) = 1 for x > 0, θ(x) = 1/2 for x = 0, θ(x) = 0 for for x < 0).

The vectors |ψµs 〉 form a complete orthonormal set

〈ψµr |ψνs 〉 = δrsδ(µ− ν) . (52)

The amplification of K̂ is achieved by the unitary operator Ûg satisfying the

relations

Û†g K̂Ûg = gK̂ , Ûg|ψµs 〉 = g1/2|ψgµs 〉 . (53)

In terms of the eigenvectors of K̂ the unitary operator Ûg has the form

Ûg =
∑
s=±

∫ +∞

−∞
dµg1/2|ψgµs 〉〈ψµs | = g1/2

∫ +∞

−∞
dx|x|1/2(g−1)|x〉〈x∗g | , (54)

where in the last identity in Eq. (54) we have written Ûg in terms of the eigenstates

|x〉 of the quadrature X̂, upon introducing the notation

x∗g ≡ x|x|g−1 = sgn(x)|x|g , (55)

where sgn(x) denotes the customary sign function. The analytic form (54) of Ûg is

derived as follows

Ûg = g1/2
∑
s=±

∫ +∞

−∞
dµ|ψgµs 〉〈ψµs |

= g1/2

∫ +∞

−∞
dx

∫ +∞

−∞
dx′|x′〉〈x|

∑
s=±

∫ +∞

−∞
dµψgµs (x′)ψ̄µs (x)
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= g1/2

∫ +∞

−∞
dx

∫ +∞

−∞
dx′|x′〉〈x| |x′|1/2(g−1)

∑
s=±

∫ +∞

−∞
dµψµs (x′∗g)ψ̄µs (x)

= g1/2

∫ +∞

−∞
dx|x|1/2(g−1)|x〉〈x∗g | . (56)

The Heisenberg evolution of the conjugated quadratures X̂ and Ŷ by the amplifi-

cation Ûg can be evaluated through the following steps

Û†g X̂Ûg = g

∫ +∞

−∞
dx

∫ +∞

−∞
dx′x|xx′|1/2(g−1)|x∗g〉〈x|x′〉〈x′∗g |

= g

∫ +∞

−∞
dxx∗g |x∗g〉〈x∗g | = X̂∗1/g ; (57)

Û†g Ŷ Ûg = Û†g

∫ +∞

−∞
dx|x〉

(
− i

2
∂x

)
〈x|Ûg

= g

∫ +∞

−∞
dx|x|1/2(g−1)|x∗g〉

(
− i

2
∂x

)
〈x∗g ||x|1/2(g−1)

= − i
4

(g − 1)X̂∗(−1/g) +

∫ +∞

−∞
du|u〉

(
− i

2
|u|1−(1/g)∂u

)
〈u|

= − i
4

(g − 1)X̂∗(−1/g) + gX̂∗(−1/g)X̂Ŷ

= X̂∗(−1/g)

(
1

2
gK̂ +

i

4

)
=

(
1

2
gK̂ − i

4

)
X̂∗(−1/g) . (58)

For what follows we also need to evaluate the Heisenberg evolution of the operator

X̂2 + Ŷ 2 = a†a+ 1/2. From Eqs. (57)–(58) one has

Û†g

(
a†a+

1

2

)
Ûg = |X̂|2/g +

1

4

(
gK̂ − i

2

)
|X̂|(−2/g)

(
gK̂ +

i

2

)

= |X̂|2/g +
1

4
X̂∗(−1/g)

(
g2K̂2 +

1

4

)
X̂∗(−1/g) . (59)

Now, let us consider a quadratic function of the field f(α, ᾱ) = −i(α2 − ᾱ2 +

ic|α|2)/2, c an arbitrary constant, and let us evaluate the corresponding POVM

dĤf (u) pertaining to heterodyne detection of the function f of the field. From

Eq. (6) one has
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dĤf (u) = du:δ(u− f(a, a†)):A

= du

∫ +∞

−∞

dλ

2π
e−iλueλ(a2/2):eiλ(c/2)a†a:Ae

−λ(a†2/2)

= du

∫ +∞

−∞

dλ

2π
e−iλueλ(a2/2)

(
1− iλ c

2

)−(a†a+1/2)

e−λ(a†2/2)
(

1− iλ c
2

)−1/2

,

(60)

where we used the relation

:eza
†a:A =

∞∑
n=0

zn

n!
ana†n =

∞∑
n=0

zn
(
a†a+ n

n

)
= (1− z)−a

†a−1 . (61)

The product of operators in the last equality of Eq. (60) can be recast in the form of

a single exponential function using the Baker–Campbell–Hausdorff (BCH) formula

for the su(1, 1) algebra [see Appendix]. According to the prescription in Eq. (21),

we need to evaluate the preamplified POVM

A(K̂)
g [dĤf (gu)] ≡ gÛ†g (dĤf (gu))Ûg , (62)

in the limit of infinite gain g →∞. As shown in the Appendix, for the leading term

in g one has

A(K̂)
g [dĤf (gu)] = du

∫
dλ

2π
exp

(
−iλu+ iλK̂ +

1

8
iλcgK̂2

)

× exp

[
−1

8
λ2

(
1 +

c2

4

)
K̂2

]
, g � 1 . (63)

The preamplified POVM in the limit of infinite gain writes as follows

A(K̂)
g [dĤf (gu)]

g→∞−−−−→ du

∫
dλ

2π
exp

(
−iλu+ iλK̂ +

i

8
λgcK̂2

)

× exp

(
−1

8
λ2K̂2

)

= du

√
2

πK̂2
exp

(
−

2(K̂ + 1
8gcK̂

2 − u)2

K̂2

)
. (64)

The POVM in Eq. (64) satisfies the necessary condition (24) for l = 0, 1 upon

choosing c = 0. However, the same condition for l = 2 is not satisfied, because

one has ∫
duu2

√
2

πK̂2
exp

(
−2(K̂ − u)2

K̂2

)
=

5

4
K̂2 . (65)

Therefore, there is no quadratic function f(α, ᾱ) of the field that allows to approx-

imate the ideal quantum measurement of the operator K̂ = −i(a2 − a†2)/2. It is
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clear that also higher-degree polynomial functions of the field cannot satisfy condi-

tion (24), since in such case higher powers in a† and a will appear in Eq. (60) and

the BCH formula will have no longer closed form. In conclusion of this section we

notice that Eq. (64) for c = 0 can also be easily obtained by the following formal

asymptotic analysis

dĤf (gu) = du

∫ +∞

−∞

dλ

2π
e−iλueg

−1λ(a2/2)eg
−1−λ(a†2/2)

= du

∫ +∞

−∞
e−iλu exp

{
ig−1λ

1

2
(a2 − a†2)− 1

8
g−2λ2[a2, a†2] +O(g−3)

}

= du

∫ +∞

−∞
e−iλu exp

{
ig−1λK̂ − 1

2
g−2λ2

(
a†a+

1

2

)
+O(g−3)

}
. (66)

By amplifying the first and last members of Eq. (66) and using Eq. (59) one has

A(K̂)
g [dĤf (gu)]

= du

∫ +∞

−∞
e−iλu exp

{
iλK̂ − 1

8
λ2X̂∗(−1/g)

(
K̂2 +

1

4g2

)
X̂∗(−1/g) +O(g−3)

}

= du

∫ +∞

−∞
e−iλu exp

{
iλK̂ − 1

8
λ2K̂2 +O(g−1)

}
, (67)

namely Eq. (64).

7. Conclusions

One may think that the heterodyne detector could be regarded as a universal de-

tector, as it achieves the ideal measurement of the field operator a and hence, in

principle, it should achieve the measurement of any operator Ô = Ô(a, a†) of the

field. However, due to the fact that the measurement of a corresponds to a joint

measurement of two noncommuting conjugate observables, an intrinsic unavoidable

3 dB noise is added to the measurement, even in the ideal case. We have considered

the possibility of reducing such noise by means of a suitable ideal preamplification

of Ô, which we have shown to be feasible through a unitary transformation. We

have shown that in the limit of infinite gain such preamplified heterodyne detection

scheme can achieve the ideal measurement of a†a and X̂φ, even for non-unit quan-

tum efficiency, also realizing the transition from continuous to discrete spectrum

in the case of the operator a†a. However, the scheme does not work for arbitrary

operator and, as a counterexample, we proved that the ideal measurement cannot

be achieved even for the simple quadratic form K̂ = i(a†2− a2)/2, apparently with

no simple physical explanation other than the algebraic nature of the operator K̂

itself and its ideal amplification map. In the present study we have seen some of

the problems that would appear in building a universal detection machine, and we

hope that this work will shed new light on the route for achieving such a challenging

task.
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Appendix. The BCH Formula

Upon defining k+ = (1/2)a†2, k− = (1/2)a2 and k3 = 1/2(a†a+1/2), one recognizes

the following commutation rules for the su(1, 1) algebra

[k̂+, k̂−] = −2k̂3 , [k̂3, k̂±] = ±k̂± . (68)

One needs the analytic form of the coefficients B±, B3 and A±, A3 in the following

identity

exp(A−k̂−) exp(2A3k̂3) exp(A+k̂+) = exp(2B3k̂3 +B+k̂+ +B−k̂−) . (69)

By using the faithful representation of the su(1, 1) algebra in terms of the Pauli

matrices with iσ̂± ≡ k̂±, σ̂3 ≡ 2k̂3, Eq. (69) can be rewritten as follows(
1 0

iA− 1

)(
eA3 0

0 e−A3

)(
1 iA+

0 1

)

= cosh Γ

(
1 0

0 1

)
+

sinh Γ

Γ

(
B3 iB+

iB− −B3

)
, (70)

where Γ = (B2
3 −B+B−)1/2. From Eq. (70) one obtains the relation

B3 =
1

2

Γ

sinh Γ

[
(1 +A+A−) eA3 − e−A3

]
, (71)

sinh Γ =

{[
(1 +A+A−) eA3 + e−A3

2

]2

− 1

}1/2

, (72)

B± =
2A±e±A3

(1−A+A−)eA3 − e−A3
B3 . (73)

For the purpose of the paper, we are just interested in the asymptotic expression

of the POVM A(K̂)
g [dĤf (gu)] in Eq. (62) for g →∞. By comparing Eqs. (69) and

(60) one has A± = ∓g−1λ and A3 = − ln[1− ig−1λ(c/2)]. From Eqs. (71)–(73) one

obtains the asymptotic values of B± and B3 for g →∞, namely

B± ' ∓g−1λ , B3 '
1

2
ig−1λc− 1

2
g−2λ2

(
1 +

c2

4

)
. (74)

Hence, from Eq. (60) it follows
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gdĤf (gu)
g�1−→ du

∫
dλ

2π

(
1 + iλg−1 c

4

)
e−iλu

× exp

{
ig−1λK̂+

1

2

[
iλg−1c− g−2λ2

(
1 +

c2

4

)](
a†a+

1

2

)}
. (75)

By applying the amplification map to the POVM dĤf (gu) through Eqs. (53) and

(59), one obtains A(K̂)
g [dĤf (gu)] in Eq. (63).
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