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A general method is presented for estimating the ensemble average of all operators of an
arbitrary quantum system from a set of measurements of a quorum of observables. The
quorum—i. e. a “complete” set of noncommuting observables for determining the quantum
state of the system—is generated from a maximal commuting set of observables—the “seed
observables”—under the action of a dynamical group of the quantum system. A method for
deconvolving noise of any kind in the measurement is given in terms of the completely pos-
itive (CP) map pertaining the noise. This approach leads to a group theoretical classification
of physically realizable quantum tomographic machines. These are made of two devices: 1)
a measuring apparatus for the seed observables; 2) a transformation apparatus that achieves
the dynamical group. Examples of applications are given in different physical contexts.

PACS: 03.65.Bz, 03.65.Fd, 42.50.-p

1 Introduction

The name quantum tomography originated in quantum optics, where the set of quadrature prob-
ability distributions for varying phase was recognized [1] to be the Radon transform of the
Wigner function, the Radon transform being the basic imaging tool in computerized medi-
cal tomography. Such analogy gave the name to a first qualitative technique for measuring
the matrix elements of the radiation density operator [2]. Then, a first quantitative technique
has been presented [3] (for a review, see Ref. [4]), which is now used in the lab [5]. The
method has been then generalized to the estimation of an arbitrary observable of the field [6].
Finally, very recently, the route for a generalization to arbitrary quantum systems has been rec-
ognized [7, 8]. In this paper this route is pursued, and a general group theoretical approach is
presented for estimating the ensemble average of all operators of an arbitrary quantum system
from a set of measurements of a quorum of observables. The quorum—a concept introduced by
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U. Fano [9]—is a “complete” set of noncommuting observables for determining the quantum
state of the system. In this paper this set will be generated from a maximal commuting set of
observables—the “seed observables”—under the action of a dynamical group of the quantum
system. This will lead to a complete group theoretical classification of physically realizable
quantum tomographic machines, which are made of a single measuring apparatus for the seed
observables and a transformation apparatus that achieves the dynamical group. We will also
see that there is a way for deconvolving the noise in the measurement, using the CP map that
describes the noise.

After presenting the general framework and the basic concepts in Section 2, in Section 3
the group theoretical classification of quantum tomographic machines is given. In Section 4 the
group theoretical method is presented for deriving a general unbiased tomographic estimation
rule for the ensemble average of all system operators. Some examples of applications in differ-
ent physical contexts are given in Section 5. The max-likelihood estimation method is shortly
discussed in Section 6. Finally, Section 7 closes the paper with conclusions and a list of open
problems and further developments.

2 Quantum tomography for arbitrary quantum system

In the following, I will generalize the homodyne tomography technique to a method for an
arbitrary quantum system � with Hilbert space � . I will use the name quantum tomography
to denote a technique for estimating the ensemble average ����� of all (generally complex un-
bounded) operators ���
	����� of the quantum system � from a single set of measurement
outcomes of a fixed set—socalled quorum—of observables. I call the set �����������������! 
of observables �"� (the index � ranging in the manifold � ) a “quorum” for � if there is an
unbiased tomographic estimation rule # for the quorum. An unbiased tomographic estimation
rule # : 	���$��%&�(')	���$� for the quorum � is a family of operator valued functions #+* �-,
over � labeled by �.�/	��0��� with * #+* �1,2�435�6��37,8�:9 for 3;��� , such that the ensemble average�����<� Tr * �>=?, of � for arbitrary unknown state = can be obtained by averaging over the quorum
as follows

�4���+� @BA d C<���D�E�0#+* �1,2���"�F�G�H� (1)

where C is a probability measure over � ( I A d C<���D�-�KJ , the integral is a sum for discrete � ).
Because Eq. (1) must be true for arbitrary state = , it is equivalent to

�:� @BA d C<���D�L#+* �1,2���"�B�H� (2)

where the integral convergence has to be considered in the ultra-weak sense. The function#M* �-, over � is called unbiased tomographic estimator for � . From Eq. (1) it is clear that the
unbiased tomographic estimation rule # must be linear on 	����� .

The above definition corresponds to the following

Measuring procedure: in order to estimate the ensemble average ����� of any operator �
one:

1) selects an observable � � randomly in � according to the probability measure C ;
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2) measures �"� ;
3) evaluates the function #+* �1,2��� � � ;
4) averages the result over many measurements with varying � �!� � .

Notice that the estimator rule is not unique, as there exist null estimators
�

over � satisfying
the identity@ A

d C<� � � � � � � �<�:9�� (3)

This sets an equivalence relation � between unbiased estimators: two estimators are equivalent
iff they differ by a null estimator, namely #+* �-,�� #�� * �1, iff #���* �1,�� #+* �1,
	 �

, with
�

null
estimator.

3 Classification of quantum tomographic machines

A physically realizable quorum is the group-dynamical quorum. A group-dynamical quorum� —or � -quorum—is achieved starting from a maximal commuting set of seed observables����  as the orbit of ����  under the action Ad ���F����� ����������� �
of a group � of physical

transformations, � ��� . � has unitary representation over � and is called dynamical group for� . Then, the manifold � of the � -quorum is isomorphic to the homogeneous space � ������� ,
where � denotes the (generalized) stabilizer of the seed observables Ad ��� � �!�#"$��� . For
composite systems with Hilbert space � �&%(')+* � � ) a quorum is given by the Cartesian-
product quorum �:�(%,')+* � � ) , and an estimation rule # is given by the tensor-product estima-
tion rule # �-%.')+* � # ) . This means that for tensor product operators %(')+* � � ) , one has

#+*/% ')+* � � ) ,2��� � �0�0�1� � � ' �<� '2
)+* �

# ) * � ) ,2��� ) �H� (4)

and the rule is extended to all operators in 	����� by linearity. There are, however, “entangled”
estimator rules over %3')+* � � ) (see the following).

The tomographic estimation is also possible in the presence of controlled noise, i. e. when
the dynamics of noise is known. In quantum mechanics any noise is described by a unit-
preserving CP map 4 : 	��0����' 	��0��� . In the following, the noise described by the CP
map 4 will be referred to as 4 -noise. The 4 -noise can be deconvolved for the � -estimation
if #+* �1,2� �����!5 ��46� � � and * 46� � �4#+* �1,2�435�G� � 37, � 9 for 3"� � . Then, the ensemble average of �
can be estimated in the presence of 4 -noise, using the deconvolved estimator 4�� � �0#+* �1,0� , and
we will call the tomographic estimation robust to 4 -noise. Notice that the notions of robustness
to noise and deconvolved estimation can be extended to the case when there is a new quorum �(7
isomorphic to � and a one-to-one map 8�7 : �97;:�� such that * 4 � � �4#M* �-, ��35�G�E�<8=7 ��35� ,<� 9
for 3;��� .

We are now in position to classify physical realizable tomographic machines in terms of
dynamical groups. A tomographic machine > � * �� �  �?� �A@;� #E, for the quantum system �
with Hilbert space � is given by
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1) a measuring apparatus for the seed observables ��� �  ;
2) a transformation apparatus which achieves the dynamical group � of transformations

with unitary representation @ over � ;

3) a unbiased tomographic estimation rule # to find a set of unbiased estimators #+* �1, for�
�$	���$� .
In the following section I will present a general group theoretical method to derive an unbiased
tomographic estimation rule for arbitrary system � .

4 The estimation rule

We can easily obtain an unbiased tomographic estimation rule when a group � is available that
has unitary irreducible representation (UIR) over the Hilbert space � of the quantum system � .
Here, for simplicity, I consider the case of unimodular group � . Some of the following results,
however, can be extended to groups having only left- or right-invariant measure. Let consider a
UIR @ of the group � over � , with @ ��� � � �+� @ � ���F����� ��� . The case of projective UIR can
be regarded as a central extension of � . Consider the following operator on � % �� � @ d � @

� ���F� % @ � �B�M� (5)

where d� denotes a (Haar) invariant measure over � and the integral is extended to the whole� manifold. It is clear from the form of the operator
�

in Eq. (5) that the center � of the group
is irrelevant: hence, in the following, I will consider the group � ��� , and use the same symbol� to denote it. It is easy to verify that

� � � �
is an intertwining operator, with the following

action � � %	� �
��%�� � � (6)

For square-integrable representation one also has

Tr � � � �+� Tr � � � �+�
J�
� (7)

with invariant measure d� normalized as follows@
d��� ����� @ ���F��� �L�� � �
J � (8)

for any two unit vectors � � � and � �L� in the Hilbert space (for unimodular � and square-integrable
UIR the integral in Eq. (8) is finite and is independent on the particular choice of vectors � � �
and � �B� ). One also has the useful identity on � :

� � �B� �����1%�� � � � d � ��� � � ������%�� �B� ����� . From Eqs.
(6) and (7) one gets the identity�:� Tr � * � � % J , � (9)

which, using Eq. (5) rewrites as follows

�:� Tr ��� @ d � @
� � �B�G� % @ ���F�! -� (10)
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A comparison with Eq. (2) shows that Eq. (10) is already an estimation rule for a quorum
of observables � ��� �� Lie ���"� . For this reason, I will call � a tomographic group for
the system � . However, the above quorum is redundant, because any two linearly dependent
elements in � are proportional to the same observable, and, hence, they correspond to the same
measurement. We can do much better, determining a smaller quorum that, at the same time, is
achieved through the action of a dynamical group � on a set of seed observables. We consider
� as a group of derivations of � such that ���-��� is the orbit of the maximal abelian subalgebra
� of � spanned by the finite set of seed observables ���=�  . For simplicity, here I consider
the case of a single seed observable (moreover, a set of seed observables can be treated as
a single vector-valued observable). Consider the following “polar” parametrization of � as
� � �!��� � �E�����	�
 �;������ �������
�� �� � where ���� � ���  is a basis for the Lie algebra � , and
�
 � ����� is a point on the homogeneous space ����� , � being the (generalized) stabilizer of
the seed observable. The element ���
�� �� of the (real) Lie algebra � is obtained as the rotation
of the seed observable under the action of � . Then Eq. (5) can be rewritten in the following
(Mackey-Bruhat) polar decomposition� � @ d C<���H� @ ���! d �
#" �

�%$'&)�( &) % "+* �%$'&)�( &) � (11)

for suitable measure d C<����� and invariant measure d �
 on ���+� . Notice that for semisimple Lie
group � all derivations are inner, whence a group of derivations of the Lie algebra � is Exp ��� � ,
i. e. the connected identity component of � (as a sign change belongs to the stability group,
discrete subgroups of reflections and double coverings are factorized out). By exchanging the
integrals, a comparison with Eq. (2) shows that Eq. (11) is equivalent to the following unbiased
tomographic estimation rule

#+* �1,2���
,� �� �<� Tr � � @ d C<���H� " � �%$'&)�( &) � % " * �%$'&)�( &)  � (12)

if the integral converges, or, more generally, in some distribution sense. For traceclass operators� one has

#+* �1,2���
,� �� �<� @ d C<���H� Tr * " � �%$'&)�( &) �1, "+* �-$'&).( &) � (13)

However, in the following section, we will see examples in which neither � is traceclass, nor the
integral in Eq. (12) is convergent, nevertheless an estimator exists: this is due to the existence
of null estimators, since a divergent estimator maybe equal to a convergent one plus a divergent
null estimator. Null estimators arise as a consequence of additional discrete symmetries that
enter the stability group and reduce the quorum. This is the case, for example, of the Weyl
group of a semisimple Lie algebra.

5 Examples

Example 1: Homodyne tomography. The quantum system � is the harmonic oscillator, with
annihilation and creation operators * �D� � � ,-� J acting on a infinite dimensional Hilbert space
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� (the Fock space). The tomographic group � is the Heisenberg-Weyl group of displace-
ment operators � ��� �;� � .� ��� � ��� � � �B� . The quorum is the set of field quadratures ��� ���� 	 � � " � � 		� " � � ��
 with phase �/� * 9F�� , , and uniform probability measure d C<���D�M� �� d � . The
physical group � is the group � � J � of rotations of the quadrature phase � , the maximal abelian
algebra is just the span of a single “seed” quadrature. The stability group is the  -rotation of
� , which is equivalent to the inversion symmetry � � * � � � � � . For traceclass operators, an
estimation rule is given by

#+* �1,2��� � �<� J� @ *��
� �

d ��� � �Tr * ������8������� � � , � .� � � ����� � � � (14)

The tomographic machine is a homodyne detector with tunable phase � relative to the lo-
cal oscillator (LO). The machine is robust to loss [10], nonunit quantum efficiency [11] and
Gaussian noise [10], above a bound for noise that depends on the estimated operator � (see
Refs. [6, 7]). For example, for Gaussian noise with variance � � , one has 4+* � .� ��������� � ,;�
��.� ��������� � �� � � � � � . The deconvolved estimation rule reads

4 � � �0#+* �1,2�����B� �+� J� @ *��
� �

d ��� � � " ����! #" � �" �%$ " � Tr * �'& � .� ���������L�#& , � .� � � ������� � � (15)

where &1�0�1�(& denotes normal ordering. Nonunit quantum efficiency corresponds to Gaussian
noise with � � �.� J �*) �A�B��+ ) � . It is also possible to derive estimators for unbounded operators.
In Refs. [6, 7] the estimators for monomials in the field operators are given. For example, one
has #�,B* � � � ,2�����L� �-+.� �� � J��B��+ ) � , where #�, denotes the deconvolved estimator for quantum
efficiency

)
. See also Ref. [4] for the estimators of density matrix elements. The bounds for

)
are

)0/ J�.+ for estimating density matrix elements in the number representation �.� � 
 � ��8 �
[11],

)1/ 9 for monomials in the field operators �
� � � ) ��2 [6],
)1/ J for the parity operator�:� � � �43(5�3 [6], etc. The null estimators are the operators 6  87 )� �9�  � "!:

��;  * � * � ).< � , � � 
>= 9 :
these are the basis for the adaptive homodyne tomography technique of Refs. [12,13]. They are
due to the discrete symmetry � � * � � � � � .

Example 2: Angular momentum tomography. The quantum system � is the angular mo-
mentum. For an elementary particle (i. e. a UIR of ?@� ��+ � ) the tomographic group is � �
?A� ��+ � and the physical group is � �B?DC ��E � , the Hilbert space of the UIR � is finite dimen-
sional, with dimension +�F;	.J , F being the particle spin. The quorum is the set of angular
momentum operators on the Bloch sphere � � � �F � �
 �	�
 �&� �HGJI �KGML ��N �<�.L ��OL�6 with
probability measure d C<���
 �+� �� � d �
 uniform in the solid angle. For the seed observable one can
adopt FQP . The estimation rule is

#+* �1,2� �F � �
 �<� +�F�	 J


@ � �
R d �*S4TVU � � + Tr * ������8� � ��� �F � �
 � , � .� ��� � �F � �
 � � (16)

The tomographic machine is composed by a Stern-Gerlach machine [14] for the measurement
of the seed observable F P preceded by a uniform magnetic field in the WYX plane which achieves
the physical rotation group (the polar angles on the Bloch sphere are determined by the direction
of the field in the WZX plane (azimuth) and the field intensity or particle flying time in the field
(zenith). The machine is robust to any kind of noise (as long as F\[K] , and the noise is at
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“finite temperature”). For composite systems, the case of distinguishable particles is simply
achieved by a tensor-product tomography as in Eq. (4). For indistinguishable particles, see
Ref. [8] (see also Ref. [8] for other details).

Example 3: Pauli tomography. For spin F��KJ� + a minimal quorum is given by the set of
Pauli matrices �.� � ��� � ��� � � P  . From the simple identity �4���-� �� � ���� � � Tr * �� �-, 	 Tr * �1,  
one obtains the estimation rule

#+* �1,2� ��� �<� E
+ � Tr * � ��� , ��� 	 J

+ Tr * �1,  (� (17)

The tomographic group is the discrete subgroup of SU(2) made by the Pauli matrices with the
identity. The physical group is generated by the ��.+ rotations along W , X and � axis. As a
seed observable one can choose � P . The machine is robust to any kind of noise, for example,
the “Pauli channel” noise 4
	F�����!� �GJ ��� � �-	 	 � Tr * �-,>� 9� �  J , where one has the
deconvolved estimation rule

# 	 * �1,2� ��� �<� E
+ �L� J ��� � � �

Tr * � ��� , ��� 	 J
+ Tr * �1,  (� (18)

Example 4: One-LO multimode homodyne tomography. The quantum system � is a mul-
timode e.m. field, with annihilation operators � � � � �5�1�0�0� , � ) * � acting on the Hilbert space��� ; ) * � <

tensor-product of harmonic-oscillator infinite dimensional Hilbert spaces � . The
tomographic group is � � ?@�!� 
 	�J7� . The quorum is given by the set of quadratures
�&���F� �H� � �� � � � ���F� �H� 	��"���F� ����� where �"��� � �H�!��� )� * R " � �%$�� � � ��� � � � are bosonic mode
operators, with �� representing a point on a Poincaré hyper-sphere (more precisely �:� � � � �* 9F� +! ,  ���� � ��� � �(* 9F�4��.+�,� ) with probability measure d C<���F� �H�$� � )� * R d

$ �� � d �� (for the
explicit parametrization of �� see Ref. [15]). The annihilation operators �;���F� �H� of the quorum
are achieved as the orbit of a fixed single mode, say � R , under the action of the physical group
� � ?A� � 
 	 J7� , the orbit being the complex projective space ! ) � � ?@� � 
 	.J �<� � � 
 � ,
and the quorum manifold being � �"! ) �(% * 9F�4 , . The tomographic machine is a homodyne
detector with (non monochromatic) phase-tunable and mode-tunable LO. Similarly to the one
mode case in Example 1 the tomographic machine is robust to loss, nonunit quantum efficiency
and Gaussian noise, above noise bounds that depends on the estimated operator � . For nonunit
quantum efficiency

)
, the estimation rule for traceclass operators is given by

#�,B* �-, �������F� �H� �M�$# ) * �


&% @ �R d ' " ��( ' ) " � �*) + (�, ;.- 7 $ < Tr * �'& " � � �*) + (�, ;/- 7 $ < & , � (19)

where # � �4,� , � � . As an example, from the general estimation rule (19) one can derive the
estimator for the matrix element � � 
 �  � @ � �18 �  � of the joint density matrix of modes:

#�,B* � ��8 �  �� � � 
 �  � ,2��W �0�F� ���+� " �
� �21�4365 ; ) � �%2 � < $7� # ) * �


&% )2� * R 8 * � ��9 # � � ��� �2,.: � � � �0; < � %C � %>=
% @ �R d ' " ��( * � � ) + ( � ' ) * �" � 1 �43?5 ; : � � � � < )2� * R�@ : � � � �� � * # � �� ��� �A' , � (20)
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where C � � max ��8 � � 
 � � , < � � min ��8 � � 
 � � and @ � )D��WD� denote customary generalized Laguerre
polynomials. Other examples are: the estimator of the probability distribution of the total
number of photons 6 �"� )� * R � �� � �

#�,B* � � � � � � ,2��W �0�F� ��� � # ) * �


&% @ �R d ' " ��( * � � ) + ( � ' ) @ )	 * # ' ,8� (21)

with � � � eigenvector of 6 with eigenvalue
�

; the generating function of the moments of 6 for
two modes with annihilator operators � and �

#�,B* � 3(5�3 *�� 5 � , ��W ��� � �H�M� J� � 	 � � P+ � � ��� +.� J+ � � J � ��9	 � � P+ W ��� � (22)

� ��� ��� �0�L� denoting the customary confluent hypergeometric function. In particular, for the
first two moments one has # ,B* � � � 	 � � ��,2��W ���F� �H�+� � W � 	 �+ � + , #�,B* ��� � � 		� � � � � , ��W ��� � �H�H�	 W � 	 	 � �+ � +59 
 W � 	�
+ " � ��R+ 	 �

. Notice that both operators � � �9	 � � � and ��� � � 	 � � � � � are
unbounded, and the general estimation rule (19) corresponds to an integral (12) that is a (not
tempered) distribution; nevertheless, both operators have unbiased estimators. For more details
on the one-LO multimode homodyne tomography see Ref. [15].

6 Other estimation methods

The group theoretical quorum can be used also for different estimation strategies. In the present
method the adopted strategy is the averaging procedure, namely the estimated value is the
mean value over many measurement results. Because of the existence of null estimators, there
are many equivalent unbiased estimators, which lead to different r.m.s. statistical error in the
estimation. An adaptive least-squares method has been presented in Refs. [12, 13], where the
estimator is “adapted” to each set of measured data. In addition to the averaging strategy with
minimum r.m.s. error, other strategies can be of interest in different situations. For example,
in Ref. [16] a max-likelihood strategy has been presented, which allows the estimation of the
diagonal density matrix of radiation using tomographic homodyne scans (for finite dimensional
truncated Hilbert space). Recently it has been shown [17] that this method can be extended to
the whole density matrix for arbitrary quantum system, also in the presence of noise. The basis
of the method is the Cholesky decomposition !
��� � � of a positive operator ! , where � is an
upper-triangular matrix. We use this decomposition for both the density matrix @ � � � �

and
for a quorum of positive operator valued measures (POVM) ! � �435�1�� �� �435�� � �435� . Moreover,
the CP map of the 4 -noise acting on a operator C can be written as 4+* C�, � �  � � C �  ,
with �  � � �  ��J . In estimating the matrix elements of @ , the Likelihood function is 	
�� ������� Tr �@ 4M��! ��� �43 � � �  , where the sum runs over the label of the � th measurement. Using the
above decompositions the trace argument of the logarithm can be written in the very convenient
form

Tr ��@.4+� ! ���6��3 � �G�6 ����
 
�
) 2

� � 
 � � � �  �� �435�� 8/��� � � (23)

where � 
 � and � 8/� label basis on � . Because the quorum unambiguously determines the state,
the absolute maximum of the Likelihood function must be unique for sufficiently many mea-
surements.
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7 Conclusions, open problems and further developments

We have seen a group theoretical approach to quantum tomography for arbitrary quantum sys-
tem, which provides a general method for estimating the ensemble average of all operators of
the system from a set of measurements of a quorum of observables. This approach leads to
a complete group theoretical classification of physically realizable quantum tomographic ma-
chines, which are made of a measuring apparatus for seed observable(s) and a transformation
apparatus that achieves a dynamical group of physical transformations. A method for decon-
volving noise of any kind in the measurement has been given within the CP map approach.
Examples of application of this method are the customary homodyne tomography, the spin to-
mography, and the one-LO multimode tomography. New applications are possible to different
fields of physics. Particularly interesting is the the Poincaré group tomography, because this
case exhibits all aspects of the present method in its full generality [18]. Such case corresponds
to the complete tomography of a relativistic elementary free particle. The tomographic ma-
chine is a kind of Mőssbauer variant of the Stern-Gerlach tomographic machine for the angular
momentum, where, in addition, the energy of the particle is measured in a moving frame.

The method proposed in this paper opens a set of problems that are currently under study:
I) Find the minimal quorum for a given � . For example, for spin J=1/2 the Pauli matrices
are a quorum for spin tomography. However, for larger spins, this is no longer a quorum,
and one needs the spin operators along all directions on the Bloch sphere in order to make a
quorum valid for arbitrary F . Thus, one can understand how the problem of finding a minimal
quorum for given � generally will resort to the representation theory of discrete subgroups
of Lie groups. II) Find the optimal estimator for � in the equivalence class, according to a
given criterion/strategy. It would be also particularly interesting to generalize this approach
to a generic cost-function strategy. Also, a general explicit analytical form for the estimation
rule for non trace-class operators is still lacking. III) For each tomographic machine > find the
class of noises 4 for which the machine is robust.
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