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Quantum error correction with degenerate codes for correlated noise
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We introduce a quantum packing bound on the minimal resources required by nondegenerate error-correction
codes for any kind of noise. We prove that degenerate codes can outperform nondegenerate ones in the presence
of correlated noise, by exhibiting examples where the quantum packing bound is violated.
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I. INTRODUCTION

Since its early development in 1995 [1–7], the theory of
quantum error correction has played a major role in design
strategies for protecting quantum information in the presence
of noise. This task is particularly relevant in several contexts,
such as the communication of quantum information over
quantum channels [8] and fault tolerant quantum computation
[9]. In view of the massive experimental effort in investigating
suitable quantum computational systems and of future imple-
mentations, it is of great importance to establish what are the
minimum resources needed to have successful quantum error
correction.

A useful bound that allows us to quantify them is the
quantum Hamming bound [10] for nondegenerate codes,
namely, codes for which each error is individually identifiable.
This bound holds when the dominant terms in the noise process
correspond to all the error operators that involve at most a
fixed number of subsystems. This is the case, for example,
when the noise affects independently every single subsystem
(uncorrelated noise). Intuitively, the quantum Hamming bound
can be explained from the fact that if each error is individually
identifiable, then it must send the encoded information into
orthogonal subspaces, thus setting a lower bound on the
dimension of the system. Actually, so far no degenerate code
has been proved to violate the quantum Hamming bound [11],
and for some classes of degenerate codes, the impossibility of
violating the bound has been demonstrated [12].

Here, we derive a general bound that we call a quantum
packing bound, constraining the resource requirements for
the correction of any kind of noise process. In particular,
the quantum Hamming bound is an instance of the quantum
packing bound for the case of an arbitrary noise process
affecting at most a fixed number of systems.

The assumption of uncorrelated noise may not hold in many
physical implementations of fault tolerant quantum computers,
such as ion traps [13], quantum dots [14], or solid-state
systems [15]. In this work, we study the resource requirements
of error correction codes in the presence of correlated noise,
namely, noise processes where perfect correlations among
the encoding subsystems dominate, and, therefore, not all the
strings of single-particle noisy processes are relevant. We show
that degenerate codes can outperform nondegenerate ones in
the presence of correlated noise. The resource requirements
of quantum error-correction codes for a particular class of

correlated errors, namely, spatially correlated (or burst) errors,
have been studied in [16].

The paper is organized as follows. In Sec. II, we provide
the quantum packing bound on the minimal resources required
by a nondegenerate code in the presence of any kind of
noise. We refer to such a bound as a quantum packing
bound. We prove that the quantum Hamming bound can be
recovered as a particular case. In Sec. III, we show that in the
presence of correlated noise, the quantum packing bound can
be violated by degenerate codes, which lead to a much more
compact transmission of information, unveiling the fact that,
for some noise channels, degenerate codes can work better
than nondegenerate codes in terms of the resources required.
Finally, we summarize our results in Sec. IV.

II. QUANTUM PACKING BOUND

An [[n,k,d]]q quantum error-correction code is given by a
qk-dimensional subspace of the state space H = (Cq)⊗n of n
quantum systems with q levels where it is possible to correct
all errors affecting at most (d − 1)/2 quantum systems. We
denote by PQ the projector onto the quantum code Q. Let SE

denote a subspace of linear operators on H . The quantum
code Q is able to correct all errors in SE if and only if there
exists a Hermitian matrix M such that for any pair of error
operators Li,Lj which belong to a basis on SE [17],

PQL
†
i LjPQ = MijPQ. (1)

In the above expression, known as the Knill-Laflamme
correctability condition, Mij are the entries of the Hermitian
matrix M , that depends on the choice of the Li’s. The pair
(Q,SE), consisting of a quantum code Q and a vector space
of errors SE , is called degenerate if and only if the Hermitian
matrix M in Eq. (1) is singular; otherwise, (Q,SE) is called
nondegenerate. In other words, in the case of nondegenerate
codes and with a suitable choice of error operators, the
quantum code is transformed into a set of distinct orthogonal
subspaces by applying the error operators, while for degenerate
codes it may happen that distinct error operators transform the
code into the same subspace.

We derive now a bound for nondegenerate codes, which
does not depend on the form of the noise acting on the encoding
system, and which can be reduced to the well-known quantum
Hamming bound [10] as a particular case. To this purpose,
we first give a brief overview on a few results about error
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correction. Let us denote the system by S and the encoding
subspace by Q ⊆ S. Given a stateρS , we say that a channel E is
correctable upon input ofρS if and only if there exists a channel
R such thatRE(σ ) = σ for every σ with supp(σ ) ⊆ supp(ρS).
Clearly, if supp(ρS) = Q, this is equivalent to saying that Q
is a good quantum code.

Let us introduce a purification ρSR of ρS , R being the
reference. It is easy to see that for arbitrary channels C
and D, we have IR ⊗ C(ρSR) = IR ⊗ D(ρSR) if and only if
C(σ ) = D(σ ) for any σ with supp(σ ) ⊆ supp(ρS). This fact
implies that E is correctable upon input of ρ if and only
if we have IR ⊗ RE(ρSR) = ρSR . Taking a unitary dilation
(UE , |η〉) [(UR, |ξ 〉)] of channel E (R) with environment E
(A), this is equivalent to the following equation:

ρSR

R

S

UE
UR

|ξ
A

I

|η
E

I

=

ρSR

R

S

|ξ
A

I

|η
E

I ,

(2)

where I represents the partial trace. Consider the circuit
on the left-hand side. Denote by ρS ′R′E′

, the state of S, R, and
E after the action of UE , and by ρS ′R′

(ρR′E′
), its marginal on

SR (RE). Since ρS ′R′E′
is a purification for ρR′E′

, we have

dim(S) ! rank(ρR′E′
). (3)

We now give two other necessary and sufficient conditions
for correctability, which imply the quantum packing bound.

Proposition 1. A channel E is correctable upon input of
ρS if and only if the reference R and the environment E are
uncorrelated after the interaction, i.e., ρR′E′ = ρR′ ⊗ ρE′

(see,
e.g., [18,19]).

Proof. We repeat here only the proof of necessity, since it is
the only part needed. CallingρS ′′R′′E′′A′′

the state of SREA after
the action of UE and UR, Eq. (2) is nothing but the statement
that ρS ′′R′′E′′A′′

and ρSR ⊗ ηE ⊗ ξF are both purifications of
ρRS . Therefore, there exists a unitary UP such that

ρSR

R

S

UE
UR

|ξ
A

|η
E

=

ρSR

R

S

|ξ
A

UP
|η

E
.

(4)

Discarding systems S and A on both sides, one then obtains
ρR′E′ = ρR′ ⊗ ρE′

. "
The second necessary and sufficient condition is
Proposition 2. A channel E is correctable upon input of

ρS if and only if its complementary channel Ẽ—namely the
channel from S to E′ obtained by tracing S ′ instead of E′—is
a deletion channel upon input of ρS , i.e., Ẽ(σ ) = ρE′

for every
σ with supp(σ ) ⊆ supp(ρS) [20] (see also [18] for a graphical
proof).

Proof. We reproduce here only the proof of necessity,
because it is the only part needed for our considerations.

Equation (4) implies that for every σ with supp(σ ) ⊆
supp(ρS), we have

σ
S

UE
UR

|ξ
A

|η
E

=

σ
S

|ξ
A

UP
|η

E
.

(5)

Taking the partial trace over S and A on both sides, we
then obtain Ẽ(σ ) = ρE′

, thus proving that Ẽ is a deletion
channel. "

The proofs of Propositions 1 and 2 rely only upon the
very general requirement that any mixed state admits a unique
purification up to reversible transformations, thus holding for
any probabilistic theory with a purification [18].

Restricting now Propositions 1 and 2 to the quantum case,
we derive the following bounds. Using Proposition (1), Eq. (3)
becomes

dim(S) ! rank(ρR′
)rank(ρE′

) = rank(ρS)rank(ρE′
), (6)

where the last equality holds since E does not act on
R, and R purifies ρS , so rank(ρR′

) = rank(ρR) = rank(ρS).
Proposition 2 allows us to identify the matrix M in the
Knill-Laflamme condition [Eq. (1)] with (the transpose of)ρE′

.
Indeed, for every (unnormalized) state of the form PQρPQ, the
complementary channel Ẽ acts as

Ẽ(PQρPQ) = TrS[UE (PQρPQ ⊗ |η〉 〈η|)U †
E ]

= Tr[PQρPQ]ρE′
. (7)

If E has the Kraus decomposition E(ρ) =
∑

i LiρL
†
i and

UE |η〉 =
∑

i Li ⊗ |ei〉, where |ei〉 is an orthonormal set in
E, then Eq. (7) becomes

TrS[LiPQρPQL
†
j ] = Tr[PQρPQ]ρE′

ij . (8)

Taking ρ = |ψ〉〈ψ | with an arbitrary |ψ〉 ∈ H , Eq. (8)
becomes

〈ψ | PQL
†
jLiPQ |ψ〉 = 〈ψ | PQ |ψ〉 ρE′

ij , (9)

which is equivalent to the Knill-Laflamme condition [Eq. (1)]
with ρE′ = MT . Summarizing, we proved the following result,

dim(S) ! rank(ρS)rank(M), (10)

or, equivalently,

dim(S) ! dim(Q)rank(M). (11)

Notice that rank(M) does not depend on the choice of Kraus
operators {Li}. In particular, to compute rank(M), we can
use a minimal Kraus decomposition E(ρ) =

∑rank(RE )
i=1 KiρK

†
i ,

whose cardinality is equal to the rank of the Choi-
Jamiołkowski operator RE = (E ⊗ I)(|I 〉〉〈〈I |), obtained by
applying the channel E on one side of the maximally entangled
vector |I 〉〉 =

∑d
n=1 |n〉|n〉.

We now consider the case of nondegenerate codes, i.e.,
codes for which the matrix M is nonsingular. In this case,
rank(M) equals rank(RE ), namely, the cardinality of the
minimal Kraus {Ki}.
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Proposition 3 (Quantum Packing Bound). Given a quantum
channel E with the Choi-Jamiołkowski operator RE , any
nondegenerate code Q subspace of the system S must satisfy

dim(S) ! dim(Q)rank(RE ). (12)

We refer to Eq. (12) as a quantum packing bound.
Proof. The thesis follows immediately from Propositions 1

and 2, along with the considerations above.
Here, we provide an alternative short proof that makes use

of more technicalities. Diagonalize the matrix M in Eq. (1)
to obtain a diagonal matrix D and a new error basis Ji . The
correctability condition in Eq. (1) then becomes

PQJ
†
i JjPQ = DijPQ. (13)

Make use of the polar decomposition and of the correctability
condition in Eq. (13) to obtain

JiPQ = Ui

√
PJ

†
i JiPq =

√
DiiUiPQ, (14)

where U is some unitary matrix. Thus, the action of the error Ji

is to rotate Q into the subspace defined by the projectorPi :=
UiPU

†
i = JiPU

†
i /

√
Dii . Since such subspaces are orthogonal

by Eq. (13) and are in number of rank(D) = rank(M),
Eq. (11) follows. Finally, using the nondegeneracy hypothesis,
rank(M) = rank(RE ), the statement follows. "

Notice that in Eq. (12), only the rank of the Choi-
Jamiołkowski operator describing the noise is involved, but
no assumption on the form of the noise process affecting the
encoding system has been formulated. The quantum Hamming
bound [10], which holds for noise acting independently on
the encoding systems, can be derived from Eq. (12) as a
particular case. Actually, if we look at the case of qubits
and wish to correct noise affecting at most t qubits, we
consider a basis of error operators given by products of Pauli
matrices involving up to t qubits. Then, correcting all errors is
equivalent to correcting the random-unitary channel E whose
Kraus operators are proportional to the possible products of
i # t Pauli matrices [21]. Since Pauli matrices are orthogonal,
this Kraus representation is already minimal, whence rank(RE )
can be straightforwardly derived counting the number of
independent Kraus operators [the ones affecting i qubits are
3i

(
n
i

)
], and this leads to

2n ! 2k

t∑

i=0

3i

(
n

i

)
. (15)

The above formula can be straightforwardly generalized to
q-dimensional systems by replacing powers of 2 with powers
of q, and 3 with q2 − 1.

III. DEGENERATE CODES FOR CORRELATED NOISE

We will now consider the case where noise is correlated,
i.e., it does not act independently on the encoding systems
and cannot be expressed as E1 ⊗ E2 ⊗ · · · ⊗ En, where Ei

represent the noise process acting on the ith system in
the encoding space. We will consider in the following the
case of qubits with Pauli correlated noise, i.e., correlated
channels in which each Kraus operator is the product of Pauli
matrices [22].

As a first example, consider the following completely
positive (CP) map

E(ρ) = pρ +
∑

i=1...n,j>i

(pX,ijXiXjρXjXi

+pY,ij YiYjρYjYi + pZ,ijZiZjρZjZi), (16)

where with probability p = 1 −
∑

i=1...n,j>i pX,ij + pY,ij +
pZ,ij , the input state is left unchanged, while with probabilities
pX,ij , pY,ij , and pZ,ij , pairwise Pauli operators X, Y , and Z
are applied to qubits i and j , respectively. By evaluating the
rank of the above CP map, the quantum packing bound (12) in
this case takes the simple form

2n ! 2k

[
1 + 3

(
n

2

)]
. (17)

Let us consider the simple case k = 1: the smallest integer
that satisfies the above bound is n = 7. Nevertheless, we can
easily construct error-correction codes with lower values for
n. Consider the quantum code spanned by

|0̄〉 = |000〉 |1̄〉 = |111〉 . (18)

Notice that the above states are also the code words that
saturate the Hamming bound for the classical error on at most
one qubit (t = 1) [10]. Our error correcting strategy works as
follows: we encode logical |0〉 into |0̄〉 and logical |1〉 into |1̄〉.
As mentioned above, this kind of noise either leaves the qubits
unchanged, or acts on two of them with the same Pauli operator.
Notice that the two code words are not changed by the appli-
cation of the Z matrix on any pair of qubits. As a consequence
of this, the application of pairwise Y operators gives the same
result as the application of pairwise X operators, namely, the
code is thus degenerate. Therefore, we have only to correct
errors due to the action of the X operators. To achieve this, we
perform a projective measurement on the bidimensional sub-
spaces S00 = span{|000〉 , |111〉}, S01 = span{|100〉 , |011〉},
S10 = span{|010〉 , |101〉}, and S11 = span{|001〉 , |110〉}. If
the outcome of the measurement is 00, noise has not affected
any qubit; if the result is 01, noise has affected qubits 2 and
3; if the result is 10, noise has affected qubits 1 and 3; and
if the result is 11, noise has affected qubits 1 and 2. In these
last three situations, acting with X on the corresponding pair
of qubits gives the original qubits. As we can see, this code
exploits the invariance of the coding subspace under the action
of two Z operators to allow for perfect error correction while
strongly violating the quantum packing bound.

The above error correcting strategy can be also successfully
applied to a generalization of the correlated noise [Eq. (16)],
where we can add additional terms involving products of an
even number of Pauli operators along the same direction.
For example, it is possible to correct in the same way errors
acting also on four qubits. In this case, the choice of the code
words is

|0̄〉 = |00000〉 |1̄〉 = |11111〉 , (19)

and the error correction is performed in a way similar to
the previous one. As before, this code is highly degenerate
because it is invariant under the application of the product of
an even number of Z Pauli operators. The error syndrome
is discovered by performing a projective measurement on
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the subspaces span{|00000〉 , |11111〉} corresponding to no
errors, span{|11000〉 , |00111〉} and all possible permutations
corresponding to two qubits error, and span{|11110〉 , |00001〉}
and all possible permutations corresponding to four qubits
error. Then, an error correction is performed in a similar way
to the case discussed before.

In this way we have constructed a degenerate quantum code
which violates the corresponding quantum packing bound for
nondegenerate codes

2n ! 2k

[
1 + 3

(
n

2

)
+ 3

(
n

4

)]
, (20)

which would require for k = 1, a minimum n = 14. By
generalizing this procedure, we can efficiently correct noise
acting on every even number of qubits. In fact, the strategy we
have provided allows one to correct correlated errors acting on
2,4,6, . . . ,2m qubits coding on n = 2m + 1 qubits. The two
coding states are then given by

|0̄〉 = |0〉⊗2m+1 |1̄〉 = |1〉⊗2m+1 . (21)

In this case, the quantum packing bound becomes

2n ! 2k

m∑

i=0

3
(

n

2i

)
. (22)

We emphasize that the possibility of achieving such com-
pact quantum codes for correlated noise of the form studied
here is related to the fact that we consider error operators acting
on an even number of qubits. We now consider the problem of
correcting correlated noise on three qubits. The noisy channel
is then of the form

E(ρ) = pρ +
∑

i=1...n,j>i,k>j

pX,ijkXiXjXkρXkXjXi

+pY,ijkYiYjYkρYkYjYi + pZ,ijkZiZjZkρZkZjZi.

(23)

The smallest number of physical qubits we can employ for
such a channel is n = 3, which corresponds to a nondegenerate
code which saturates the corresponding quantum packing
bound 2n ! 2k[1 + 3

(
n
3

)
]. Actually, it is possible to encode

one logical qubit on n = 3 physical ones by employing
the additional two qubits as an ancilla initially fixed in
the state |a〉〉 = |0〉 |+〉, where |+〉 = 1/

√
2(|0〉 + |1〉). After

the action of noise, the two ancilla qubits are measured in the
computational basis and in the |+〉, |−〉 basis, respectively.
From the result of this measurement, we learn exactly which
of the four Kraus operators has acted on the qubits because

the operators XX, YY , and ZZ applied to the above state
|a〉〉 = |0〉 |+〉 transform it to the mutually orthogonal states
|1〉 |+〉, |1〉 |−〉, and |0〉 |−〉, respectively. In order to correct
the errors, after learning the result of the measurement,
we either do nothing, or we apply one of the three Pauli
operators on the first qubit to recover the noiseless state. This
strategy, in contrast to what happens in quantum codes for
independent noise, does not involve multipartite entanglement
in the encoding systems as the three qubits in the encoded
state are always factorized. In this case, there seems to be an
intriguing balance between the correlations of the noise and
the entanglement in the encoding system: if the noise is fully
correlated on the three qubits, then no entanglement is needed
for encoding, while if the noise is independent, then encoding
is performed on multipartite entangled states.

The above procedure can be employed to correct correlated
noise of the form [Eq. (23)] acting on an arbitrary number n of
qubits by encoding k = n − 2 qubits. As before, the k-qubit
state to be protected is encoded, appending to it the two ancilla
qubits in state |0〉 |+〉. After the receipt of the encoded state,
the previously described measurement of the ancilla will give
the syndrome and the necessary operations to be performed
on the rest of the qubits to rescue the original state. In this
case, we again construct nondegenerate codes that saturate the
corresponding quantum packing bound.

IV. CONCLUSION

In this paper, we provided a quantum packing bound for
nondegenerate codes. The bound holds for any kind of noise
and depends on the rank of the Choi-Jamiołkowski operator
representing the noise process. The quantum Hamming bound
is then recovered in the particular case of arbitrary noise acting
independently on a fixed number of encoding systems. While
the quantum Hamming bound has not been violated so far, in
the case of correlated noise, we have shown how to exploit
degeneracy to violate the quantum packing bound and achieve
perfect quantum error correction with fewer resources than
those needed for nondegenerate codes.
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