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A single-party strategy in a multiround quantum protocol can be implemented by sequential networks of
quantum operations connected by internal memories. Here, we provide an efficient realization in terms of
computational-space resources.
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I. INTRODUCTION

Many results in quantum-information [1] and quantum
estimation theory [2,3] have been achieved through the
general description of states and measurements in terms
of density matrices and positive-operator-valued measures
(POVMs), respectively. The advantages of this formalism
are evident in optimization tasks, e.g., state discrimination,
where one can look for the optimal measurement without
considering the specific details of the apparatus. Furthermore,
the optimization of preparation and measurement devices is
reduced to the optimization of positive operators, for which
many powerful techniques are known. Similar advantages
are provided by the description of physical transformations
as quantum channels (completely positive trace-preserving
maps), which in turn can be represented by positive operators
via the Choi-Jamiołkowski isomorphism [4].

The usage of the Choi-Jamiołkowski isomorphism is well
established in quantum-information theory [5,6] since the
early works on ancilla-assisted tomography [7,8]. Recently,
the Choi-Jamiołkowski representation has been extended to
more complex quantum devices, consisting of sequences of
channels, quantum operations, and POVMs connected by
internal wires [9–11]. In particular, Ref. [9] considered the ap-
plication of these sequential networks to represent single-party
strategies in multiround quantum games, while Refs. [10,11]
showed how these networks can implement a variety of
higher-order quantum-information processing tasks, such as
transforming states into channels, channels into channels, and
even networks into networks. References [10,11] also coined
the name quantum combs for the Choi-Jamiołkowski operators
associated with sequential networks, and developed a simple
set of rules to describe the interlinking of networks in terms of
the corresponding operators. In this framework, once a specific
task is fixed (e.g., cloning a channel [12] or estimating the
POVM of a detector [13]), one can search for the quantum
protocol that optimally realizes it. Having a simple description
now becomes indispensable: since a quantum protocol is
implemented by a complex network of devices, optimizing
each device separately is not a viable approach. In the new
framework, instead, the optimization of the protocol is reduced
to the optimization of a single positive operator subject to
linear constraints. In the simplest cases the search can be also
implemented automatically through MATLAB routines [14,15].

Once the optimal Choi-Jamiołkowski operator has been
found, however, one needs a way to unzip the information
contained in it and to find a physical implementation of the
network. In the present paper we solve this problem, providing
an automatic procedure that, given the Choi-Jamiołkowski
operator of a quantum network, allows one to construct a
concrete implementation of it as a sequence of elementary
devices. Among all possible implementations, the present
one minimizes the computational space; that is, at each
step it uses the smallest possible dimension of the Hilbert
spaces. Our procedure can be fully automatized in the form
of a computer software, accepting as an input the Choi-
Jamiołkowski representation of the network and providing as
an output the matrix representation of the operations that must
be performed at each stage of the protocol. After the operations
in the network have been determined, one can look for a further
decomposition of them into elementary gates, using, e.g., the
techniques of Refs. [16,17].

The paper is organized as follows. In Sec. II we review
the general theory of quantum combs. In Sec. III we prove
the theorem representing the main result of the paper, also
providing a simpler proof of the realization theorem for
quantum combs. In Sec. IV we consider the problem of optimal
correction of a reversible unknown noise, and then we apply
our results to reverse engineering of the optimal circuit. We
conclude the paper with a summary and comments in Sec. V.

II. QUANTUM COMBS

In this section we review the basic concepts and results
of the general theory of quantum networks as presented in
Refs. [10,11]. The most general quantum device is a quantum
circuit board, namely, a network of quantum devices with
open slots to which variable sub-circuits can be linked. By
stretching and rearranging the internal wires of the network,
we can give to each quantum circuit board the shape of a comb,
like in Fig. 1. The empty slots of the circuit board become
the empty spaces between two teeth of the comb. Referring
to Fig. 1, each wire is labeled with a natural number, which
is even for the input wires and odd for the output ones; the
corresponding Hilbert spaces are labeled in the same fashion
(that is, the Hilbert space of the system represented by the wire
i is denoted by Hi). The ordering of the slots results from the
causal ordering defined by the flow of quantum information
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FIG. 1. A quantum comb with N slots. Information flows from
left to right. The causal structure of the comb implies that the input
system m cannot influence the output system n if m > n.

from input to output; with our notation we have that input
system in wire i can influence the output system in a wire
j > i but not in a wire k < i. Two circuit boards C1 and C2

can be connected by linking some outputs of C1 with inputs
of C2, thus forming a new board C3 := C1 ∗ C2. We adopt the
convention that wires that are connected are identified by the
same label (see Fig. 2).

In the following we will often use the isomorphism between
linear operators in Lin(H) and states in H ⊗ H:

A =
∑
nm

〈n|A|m〉|n〉〈m| ↔ |A〉〉 =
∑
nm

〈n|A|m〉|n〉|m〉,

where {|n〉} is a fixed orthonormal basis.
The quantum comb C associated with a circuit board

C with N input-output systems is the Choi-Jamiołkowski
operator of the multipartite channel representing the input-
output transformation that the board performs from states
on Hin := ⊗N−1

j=0 H2j to states on Hout := ⊗N−1
j=0 H2j+1, Hn

being the Hilbert space of the nth system. A quantum comb is
then a positive operator acting on Hout ⊗ Hin and it is defined
as follows:

Cout in := (C ⊗ Iin)(|I 〉〉〈〈I |in in). (1)

[For clarity here we use the notation Hab ≡ Ha ⊗ Hb, Aab to
mean A ∈ Lin(Hab), |ψ〉b to mean |ψ〉 ∈ Hb, and |A〉〉ab to
mean |A〉〉 ∈ Hab.] It can be proved that the causal structure is
equivalent to the recursive normalization condition

Tr2k−1[C(k)] = I2k−2 ⊗ C(k−1) k = 1, . . . ,N, (2)

where C(N) = C, C(0) = 1, C(k) ∈ L(Houtk ⊗ Hink ) with
Hink = ⊗k−1

j=0 H2j and Houtk = ⊗k−1
j=0 H2j+1, is the comb of

the reduced circuit C(k) obtained by discarding the last N − k

teeth.
One can prove that the connection of two circuit boards is

represented by the link product of the corresponding combs
C1 and C2, which is defined as [11] C1 ∗ C2 = TrK[CθK

1 C2],
θK denoting partial transposition over the Hilbert space K of
the connected systems (we identify with the same labels the
Hilbert spaces of connected systems).

0 2 3 1 3

* =

=
0 5

1 4 5 2 4

FIG. 2. Linking of two combs. We identify the wires with the
same label.

III. REALIZATION ALGORITHM

One can wonder whether each positive operator which
satisfies Eq. (2) corresponds to a sequential network of
quantum channels. The answer is indeed positive, as shown in
Refs. [9–11] with the following Stinespring dilation theorem:

Theorem 1. Let C(N) be a positive operator on Hout ⊗ Hin,
with Hin := ⊗N−1

j=0 H2j and Hout := ⊗N−1
j=0 H2j+1. If C(N)

satisfies Eq. (2), then it is the Choi-Jamiołkowski operator of a
sequential network given by the concatenation of N isometries:
for every state ρ ∈ Lin(Hin) one has

C(N)(ρ) = TrAN
[V (N) · · · V (1)ρV (1)† · · · V (N)†], (3)

where V (k) is an isometry from H2k−2 ⊗ HAk−1 to H2k−1 ⊗
HAk

, and HAk
is an ancillary space, HA0 = C [in Eq. (3) we

omitted the identity operators on the Hilbert spaces where the
isometries do not act].

This result, however, provides little insight on how to
construct the isometries. We now give the explicit construction
in terms of the Choi-Jamiołkowski operator in a way that can
be automatically evaluated by a computer routine:

Theorem 2. The minimal dimension of the ancilla space
HAk

in Theorem 1 is the dimension of the support of C(k). A
choice of isometries V (k) : H2k−2 ⊗ HAk−1 → H2k−1 ⊗ HAk

with minimal ancilla space is obtained by taking HAk
=

Supp(C(k)∗), where ∗ denotes the complex conjugation in the
canonical basis, and

V (k) = I2k−1 ⊗ C(k) 1
2 ∗C(k−1)− 1

2 ∗

×|I 〉〉(2k−1)(2k−1)′T(2k−2)→(2k−2)′ , (4)

where Tn→m = ∑
i |i〉m〈i|n.

Proof. One has V (k)†V (k) = (C(k−1)∗)−
1
2 Tr2k−1[C(k)∗ ]

(C(k−1)∗)−
1
2 , and Eq. (2) yields V (k)†V (k) = I2k−2 ⊗

ISupp(C(k−1)∗) = I2k−2 ⊗ IAk−1 . Therefore, V (k) is an isome-
try. Now, define the isometry W (k) = V (k) . . . V (1), from
Hink

to Houtk ⊗ HAk
. By definition one has W (k) = [Ioutk ⊗

(C(k)∗)
1
2 ][|I 〉〉(outk ) (outk)′ ⊗ Tink→(ink )′]. However, according to

Ref. [18], this is the minimal isometry of the channel C(k).
Since the isometry is minimal, it is not possible to choose an
ancillary space smaller than HAk

. Finally, since C(N) is just the
channel associated with the network, Eq. (3) follows. �

Theorem 2 implies Theorem 1, and provides a recipe for
the concrete realization of the quantum network with minimal
dimension of the ancillas at each step. The dimension of the
ancilla is the quantum “space” of the computational network.
Note that sometimes the isometries V (k) can act trivially on
some subsystem, resulting in further simplifications of the
physical implementation.

IV. OPTIMAL INVERSION OF A UNITARY

As an application of the methods outlined above we
now consider the problem of finding the quantum network
that realizes the optimal inversion of a unitary operation.
Such a network consists of a circuit board C with an
empty slot to be linked to the unitary channel U(ρ) = UρU †

sending states on H1 to states on H2. The resulting circuit
C ∗ U has to be as similar as possible to the channel U−1

[see Fig. (3)]. The quantum comb of C is C ∈ Lin(H3210),
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FIG. 3. The quantum circuit C, when linked with the unitary
channel U : Lin(H1) → Lin(H2), tries to reproduce the action of
U−1 from input H0 to output H3.

with H3 
 H2 
 H1 
 H0 
 Cd , and, according to Eq. (2),
satisfies the normalization

Tr3[C] = I2 ⊗ C(1), Tr1[C(1)] = I0. (5)

Choi operator of the unitary channel is |U 〉〉〈〈U |21 and the
link C ∗ U gives the operator 〈〈U ∗|21C|U ∗〉〉21 ∈ Lin(H30). To
quantify the similarity between the channel C ∗ U and the
target U−1 we use the channel fidelity [19]: if A and B are two
channels and A and B are their Choi-Jamiołkowski operators
the channel fidelity F(A,B) is defined as f (d−1A,d−1B)
where f is the state fidelity f (ρ,σ ) = |Tr

√√
σρ

√
σ |2. In our

case we have

F (C,U) = f (d−1(C ∗ |U 〉〉〈〈U |21),d−1|U †〉〉〈〈U †|30)

= 1

d2
〈〈U †|30〈〈U ∗|21C|U †〉〉30|U ∗〉〉21. (6)

We assume the unknown unitary U randomly distributed
according to the Haar measure of SU(d), and, as a figure of
merit, we adopt the average of the gate fidelity:

F =
∫

SU(d)
dUF (C,U)

= 1

d2

∫
SU(d)

dU 〈〈U †|30〈〈U ∗|21C|U †〉〉30|U ∗〉〉21, (7)

where dU denotes the invariant Haar measure. The following
lemma holds:

Lemma. The operator C maximizing the fidelity (7) can be
assumed without loss of generality to satisfy the commutation
relation

[C,U3 ⊗ W2 ⊗ U1 ⊗ W0] = 0 ∀ V,W ∈ SU(d). (8)

The proof consists in the standard averaging argument:
Let C be optimal. Then take its average C = ∫

dU dW (U3 ⊗
W2 ⊗ U1 ⊗ W0)C(U3 ⊗ W2 ⊗ U1 ⊗ W0)†: it is immediate to
see that C satisfies Eqs. (8) and (5) and has the same fidelity
as C.

As an elementary consequence of Schur’s lemmas, we have
the following identities:∫

SU(d)
dU UXU † = 1

d
Tr[X]I,

∫
SU(d)

dU (U ⊗ U )X(U † ⊗ U †)

= Tr[P +X]
P +

d+
+ Tr[P −X]

P −

d−
, (9)

where P ± = 1/2(I ± E) (E representing the swap operator
E|φ〉|ψ〉 = |ψ〉|φ〉) are the projections on the symmetric and
antisymmetric subspaces of H ⊗ H. By the invariance of the
Haar measure dU , Eqs. (9) allow us to write the following

expression for C, which is equivalent to the conditions in
Eq. (8):

C =
∑

µ,ν∈S

aµνP
µ

31 ⊗ P ν
20, (10)

where S = {+,−}, P ±
ij are the projections onto the symmetric

and antisymmetric subspaces of Hi ⊗ Hj , while by positivity
of C necessarily aµν � 0 ∀ µ,ν. Moreover, using Eqs. (8) and
(10), the fidelity (7) becomes

F = 1

d2
〈〈I |30〈〈I |21C|I 〉〉30|I 〉〉21

= 1

d2

∑
ν∈S

aννdν, dν = Tr[P ν], (11)

while using the identities

Tri[P
±
ij ] = d±

d
Ij , (12)

the normalization (5) becomes
∑

µ∈S aµνdµ = 1,∀ ν ∈ S. The

last equality implies the bound F = 1
d2

∑
µ∈S aµµdµ � 2/d2,

which is saturated if and only if aµν = δµν

dµ
, that is, if and

only if

C = P +
31 ⊗ P +

20

d+
+ P −

31 ⊗ P −
20

d−

=
∫

SU(d)
dÛ |Û †〉〉〈〈Û †|30 ⊗ |Û ∗〉〉〈〈Û ∗|21. (13)

We now use Theorem 2 to construct the optimal network from
the quantum comb C. Since C(1) = d−1I10 the first isometry
is given by

V (1) = (I1 ⊗ C(1)∗ 1
2 )|I 〉〉11′ ⊗ T0→0′ = 1√

d
|I 〉〉11′ ⊗ T0→0′ ,

namely, it consists of the preparation of the maximally
entangled state 1√

d
|I 〉〉11′ while the input state is stored in a

subsystem of the ancilla space HA1 ⊂ H1′0′ .
The second isometry V (2) : H2 ⊗ HA1 → H3 ⊗ HA2 is

given by

V (2) = (
√

dI3 ⊗ C∗ 1
2 )|I 〉〉33′ ⊗ T2→2′ . (14)

Remarkably, this is the Stinespring isometry of a measure-
and-prepare channel. Indeed, consider the channel E(ρ) =
TrA2 [V (2)ρV (2)†] and the POVM

QÛ = (C∗)−
1
2 |Û T 〉〉〈〈Û T |3′0′ ⊗ |Û〉〉〈〈Û |2′1′(C∗)−

1
2 , (15)

which provides a resolution of the identity in HA2 = Supp(C∗)
due to Eq. (13). We then have

E(ρ) =
∫

SU(d)
dÛTrA2 [V (2)ρV (2)†QÛ ]

= d

∫
SU(d)

dÛÛ †〈〈Û |2′1′ρ|Û 〉〉2′1′Û , (16)

namely, the channel E can be implemented by measuring
the POVM PÛ = d|Û 〉〉〈〈Û |2′1′ on the Hilbert space H2′1′ and
subsequently performing the unitary Û † on H0′ . Therefore,
the optimal network for the inversion of an unknown unitary
channel corresponds to an “estimate and re-prepare” strategy:
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FIG. 4. Optimal circuit for the inversion of a unitary transfor-
mation. The input state in wire 0 is stored in a quantum memory.
The unitary U to be inverted is estimated and the inverted estimated
unitary is applied to the input.

first the isometry V (1) provides the optimal input for the
estimation of U (that is, the maximally entangled state
d− 1

2 |I 〉〉11′ ), then, after the unknown unitary has been applied,
the second channel E performs the optimal POVM on the
state d− 1

2 |U 〉〉11′ and, depending on the estimate Û , applies
the unitary Û † on the input state stored in wire 0′ (see Fig. 4).
The physical implementation involving measurement and
classical feed-forward is an alternative to the coherent, fully
quantum processing corresponding to the isometry V (2).

V. CONCLUSION

In conclusion, we provided a general method for recovering
all the isometries of a network from its Choi-Jamiołkowsky op-
erator minimizing the computational space. This result allows
us to formulate an algorithm for designing optimal quantum
networks for any desired task (e.g., cloning, discrimination,
estimation):

(i) Choose a suitable figure of merit F for the task of interest.
(ii) Find the positive operator C satisfying constraint in

Eq. (2) and maximizing F .

(iii) Set C(0) = 1 and IA0 = 1.
(iv) For k = 1 to k = N do the following: (a) Calculate

Iink ⊗ C(k) = Troutk [C], where IH (TrH) denotes the identity
(partial trace) over all Hilbert spaces but H. (b) Define V (k) as
in Theorem 2.

(v) The optimal network is given by the concatenation of
the V (k) in Eq. (3).

We applied the algorithm to design the optimal circuit for
the inversion of a unitary transformation. It is worth noting
that in general the numerical optimization of step (ii) can be
challenging, and that it is typically convenient to exploit the
symmetries of the problem to reduce the number of parameters,
as we did here in our example. On the other hand, the remaining
steps (iii)–(v), which represent the original result of the present
paper, can be easily programed on a computer.

Finally, we want to stress that minimality of the compu-
tational space provided by our procedure holds when one
wants to keep all ancillary systems coherent until the last
computational step. However, if one considers a nonminimal
dilation it is possible that some ancillas can be discarded at
some intermediate step, which would in principle allow for
an even more economic implementation. Moreover, a further
minimization of resources would be possible if the quantum
memories could be replaced by classical memories at any step.
However, a general analysis of these further optimization steps
looks very hard, and presently only a specific case-by-case
analysis is viable. As a direction for future research, it is
very important to provide general algebraic conditions for the
possibility of any of these two simplifications.
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