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Adaptive quantum homodyne tomography
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An adaptive optimization technique to improve the precision of quantum homodyne tomography is pre-
sented. The method is based on the existence of so-aaliédunctions which have a zero average for an
arbitrary state of radiation. The addition of null functions to the tomographic kernels does not affect their mean
values, but changes statistical errors, which can then be reduced by an optimization method that “adapts”
kernels to homodyne data. Applications to tomography of the density matrix and other relevant field observ-
ables are studied in detaflS1050-294{®@9)00707-9

PACS numbd(s): 42.50.Dv

l. INTRODUCTION A . mde (= .
<O>iTr{eO}=f 7f dx p,(x,#)R,[O](x, ),

The possibility of measuring the quantum state of radia- 0 o 1)
tion has received increasing interest in the last yghrs3)],

as it opens perspectives for new kinds of experiments ifyhere p,(x,¢) denotes the probability distribution of the

quantum optics, with the possibility of measuring photonqtcomes for the quadrature,, with quantum efficiencyy,
correlations on a subpicosecond time sddle of character- and R,,[@](x,q&) is given by

izing squeezing properti¢§], photon statistics in parametric
fluorescencg6], quantum correlations in down conversion R 1 (= 1— R R

[7], and nonclassicality of state8], and of measuring R”[O](x,¢)=zf drex;{ }Tr{o cog \/F(x—xd))]}.
Hamiltonians of nonlinear optical devicg8]. Among the @
many state reconstruction techniques suggested in the litera-

ture [10-19, quantum homodyne tomograpl@HT) [11- |4 the following we will focus attention only on the=1
13,18 of radiation fields has received much attentidd,  case, and we will drop the subscrigtin the notation. As
being the only method which has been implemented in quanyjl become clear in the following, the method also works
tum optical experiment§4,5,11. It has also recently been equally well for nonunit quantum efficiency, and a detailed
extended to estimate the expectation value of any operator @fumerical analysis versus will be given elsewhere. On the
the field [18], which makes the method the first universal basis of identity(1), it follows that the ensemble avera¢@)
detectors for radiation. o can be experimentally obtained by averagiREO](x, ¢)

On one hand, QHT takes advantage of amplification fromyer the set of homodyne data, namely
the local oscillator in the homodyne detector, avoiding the
need for single-photon resolving photodetectors, and hence ) _ 1 N )
created the possibility of achieving very high quantum effi- (0)=R[O]= N E R[O](X; , i), ©)
ciency using photodiodds]. On the other hand, the method =1
of QHT is very efficient and statistically reliable, and can be
implemented on line with the experiment.

nl‘
87

0

N being the total number of measurements of the sample.

In principle, a precise knowledge of the density matrixThe statistical error of the tomographic measurement in Eq.

would require an infinite number of measurements on iden!3) can be easily evaluated provided that the corresponding
é(ernel function satisfies the hypothesis of the central limit

tical preparations of radiation. However, in real experiment ) :
T@eorem, which assures that the partial average over a block

one has only a finite number of data at ones disposal, an Ly s G 2 distributed d the alobal
thus a statistical analysis and errors estimation are neededl data IS Gaussian distributed around the global average

The purpose of this paper is to analyze the possibility ofoVer all data. In this case, the error is evaluated by di\{iding
improving the current QHT technique, in order to minimize the ensemble of data into subensembles, and calculating the

statistical errors. We will present a method that “adapts” the'Ms deviation of each subensemble mean value with respect

tomographic estimators to a given finite set of data, improv-to the global average. The estimated value of such a confi-

ing the precision of the tomographic measurement. dence interval is given by

Quantum tomography of a single-mode radiation field
consists of a set of repeated measurements of the field 5OZL{F[©]}1’2, (4)
quadraturex,=3(ae”'*+a'e'?) at different values of the N
reference phasé. The expectation value of a generic opera-
tor can be obtained by averaging a suitable kernel functiogyhereAR?[O] is the variance of the kernel over the tomog-
R[O]1(x,¢) as follows[18]: raphic probability
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which allows us to write

— =d « A
aR701= [°2[ axpox. 4)RAO106.9)

N =d ® i i
do 2 Grf:f 7¢f dx p(x, )" 1+ Mg, (xe?)
T * A 0 -
_[ fo 7[ dx px, H)R[O](x.4) | . (5)
% * 7rd¢ i -
_ x| 2P ik 2+2n) g3k
Following this scheme, the tomographic precision in deter- kzo : fo ~ e )

mining matrix elements of the density operamwas dis- .
cussed in Refs[13,20,2], with asymptotic estimations in Where(- --) denotes the usual ensemble average. Using the
Ref. [22], whereas relevant observabBswere analyzed in  Wilcox decomposition formul@26], one can write
Ref. [23], also in comparison with the corresponding ideal o 021 k=2 tok—2p_s
measurement. (REy= = (a™a )
The crucial point of the meAthod presented in this paperis ‘"% ok &= & 2Pp!st(k—2p—s)!
that the tomographic kern&[ O](x, ¢) is not unique, since (10
a large class ofwll functions[24,25 F(x,¢) exists that

have a zero tomographic average for arbitrary state, namelyyhere [[x]] denotes the integer part of Equation(10),
together with the identity

el (2p+25-K)¢

_ Wd¢ o
F:fo 7f7wdx p(X,d;)F(X,(;‘))EO (6) O’ g even
. _ ) md¢o 1, g=0
Therefore, the addition of null functions to a generic kernel J —eldd= . (11
gives a kernel with the same tomographic average, hence o ﬂ q odd,
suitable for an estimation of the same ensemble avei@ye ™q

On the other hand, adding null functions would modify the
kernel variance, and so the statistical error over data. ThBrove that
adaptive tomography method thus consists of optimizing the

. . . L "d¢ N ~
kernel_ in the equwalgnce class, in order to minimize the _e,|(k+z+2n)¢<xz>zo, n=0k=0. (12
statistical errors. In this paper, we perform such optimization 0o
over relevant classes of null functions, rather than over the
entire equivalence class. Hence

The paper is structured as follows. In Sec. Il we introduce
the classes of null functions that will be used in the paper, md¢p [ N
and describe the adaptive optimization method in detail. In fo 7f_wdx pPX,#)Gy (x,)=0, n=0, (13
Sec. Il we apply the adaptive method to the tomography of
the density matrix in th_e photon number repr_eserjtation. Irbﬁ(x,d;) are null functions fom=0.
Sec._IV we analyze the improvement Of. precision in tomog- In the following, we will focus attention on three particu-
raphic measurement of some relevant field observables. Seg. "< +." ¢ Uil functions. The type- null functions are ob-
tion V briefly describes the effects of systematic errors on th%ained from Eq.(7) by chéosingn:O andg(xe #) = xkelk?

effectiveness of the method. Finally, Sec. VI closes the pap : . |
by summarizing the main results. efror a givenk, and will be denoted b¥ (X, ¢), hamely,

Fi(x,¢)=xke!k*2)¢  k=0,1,.... (14)
Il. ADAPTIVE TOMOGRAPHY

The following functions have the vanishing tomographic The type-II null functions correspond to the simple choice

expectatio Eq. (6)] g(xe?%)=1,ie.,
G, (x,¢)=€1*M2%g (xe?), Fll(¢)=€l1tM2¢  n=071 .. .. (15)
. . (7
G, (x,p)=e 1ATM2¢g (xe 19, Finally, the type-Ill null functions are a kind of intermediate

choice between type | and type Il classes, and are defined as
In Egs.(7), n=0 andg-(z) are analytic functions of. The  follows:
set G of null functions defined in Eqs(7) forms a vector
space ovef’, and each clas§ “={G,} separately is closed Fi''(x,¢)=x NeiklI+2+2nhe =01, ..., (16)
under multiplication(without inverse.
In order to prove the vanishing expectatiq) for  wherek[l] andn[l] are given in Table I. In the following
G, (x,¢), we consider the Taylor expansion of functionswe will use the notationF(x,¢), dropping the type in-
g-(xe?): dexes I-Ill, when the identity under consideration holds
for all three types. Let us consider a generic real kernel

R[O](x, ). By addingM null functions, keeping the kernel

L(xe?) =D, coxke™ke, 8 .
9 ( ) k§=:0 k ® as real, we have a new kerr€[ O](x, ¢):
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TABLE I|. Representation table for indices of type-IIl null func-

tions.

| 0 1 2 3 4 5 6 7

k+n 0 1 1 2 2 2 3 3

k 0 1 0 2 1 0 3 2

n 0 0 1 0 1 2 0 1
M-1

K[O](x,¢)=R[O](x,¢)+ go pF(X, ¢)

M-1

+ > urFE(x, ),

(17)

whereF(x,¢)eG*, Fi(x,¢)eG~, and u, are complex

coefficients. By definition we havK[©]=R[©], whereas
the variance of the new kern&l[O](x, ¢) is given by

M-1 M-1
AK2[©]=ARZ[6]+2L§O i FF+ go ukRIOTFy

M-1

+ go piRIOIFE ¢ (18)

In deriving the above formula we used the fact that bgth
andG~ are closed under multiplication.

The variance of the modified kernel function in E8)
can be minimized with respect to the coefficiepts, lead-
ing to the linear set of equations

Z mFFF=—RIOIF}. (19

It is convenient to rewrite the optimization equatiti®) in
matrix form as follows:
Aup=Db, (20)

whereA is the HermitianM X M matrix

Wd %
Ak|:FkFik = fo ;fxdx p(xyd))Fk(X!d))Fl*(X’(z))’
(21)

andb is the complex vector
b= —R[O]F§

7d ) A
T fo ?ﬁ __Ax PO, BIR[O](x, $IFi (X, ).
(22

Notice that the vectob depends on both the kernB[ O]

and the statep under examination, whereas the matfix
depends on the state only.

By substituting Eq.(19) into Eq. (18) and inverting Eq.
(20), we obtain
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M-1
A’[O]=AR[O]-AKHO]=2 3 A

M-1
=2 > b (A Y)bF=0,
K=o

(23

which expresses the variance decrease in ternss afidb.
Let us summarize the optimization procedure for the ker-

nel R[O](x, ¢). After collecting an ensemble &f tomogra-
phic data, the quantitie& andb are evaluated as tomogra-
phic experimental averages. Then, by solving the linear
system(20), one obtains the coefficients,, which are used

to build the optimized kerndK[é](x,¢). At this point, the

same data set is used to average@](x,¢) and, upon di-
viding the set into subensembles, the experimental error is
evaluated, whose square now is reduced by the gquantity
A O]/N.

The actual precision improvement of the tomographic
measurement depends both on the state under examination

(which affects bothb andA) and on the operat(fD, whose
kernel enters only in the expressiontofAn explicit expres-
sion for A, can be obtained by means of Eq0), and gen-
erally depends on the type of null function that are involved.
For type-Il null functions it reduces to the identity matrix,
independently of the state

Al =36, type-Il null functions, (24)
dy denoting the Kronecker delta. For type-I null functions,
one has
| (k+4)! min(k,l)

kl—
2k+|

<aTL—pak—p>
2Ppt(1=p)t(k—p)!

type-1 null functions.

p=0
(25
The explicit expression for coherent and Fock states is

(k+DHr B
k—1 n 2 k ZIL:( |(_2|a|2)

AL|=a

coherent statp)  (k=1), (26)

k—=n+1 r

—=, dy e Y’y?H2(y)  Fock statén),
(27)

whereH,(x) denotes Hermite polynomials. Notice that for
Fock states the matrix is diagonédhich is true also for
type-Il and -1l null functions.

Ill. ADAPTIVE TOMOGRAPHY
OF THE DENSITY MATRIX

In this section we apply the adaptive method to the to-
mographic measurement of the density matrix in the photon
number representation. We evaluate the variance reduction

AP, in Eq. (23) for PR =%[|n)(m|+|m)}(n|] and
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P! .= (1/2)[|n){m|—|m)(n|], corresponding to the tomog- o 3
raphic measurement of the real and imaginary part of the ~
matrix element® = (m|@|n). We consider different types &~
of null functions, and calculata?[ PR ] and A2[ P! ] ver- 5 2
sus the numbe¥l of added null functions, for either coherent -
states, squeezed vacuum, Fock states, and the "8iclyer- ‘5
cat” like superposition of coherent states given by 8 o
= Q
) — -l @9 :
N s Trem—zap I LR I
o el T T e by by e
In order to see our adaptive method at work, Monte Carlo 5 10 15 20 25
simulated experiments are presented.
Tomographic kernels for the matrix elements in the Fock No. of type—I null functs
basis were first presented in REE2], with extension to non-
unit guantum efficiency in Refl3], and factorization iden- 9 8
tities for the kernel in Refl.27]. However, none of the above ~
methods allows for an explicit analytical evaluation of the &
vectorb in Eq. (22). For this reason, we compute?[ P,, ] g o
numerically, presenting results in terms of the relative vari- = A
ance reductiony, defined as follows: CD,J
- o
AKZO]  AZO] &9
y=1- = . (29 o)
ARTO] ARYO] 2
z
A complete removal of fluctuations would correspond to <

y=1.

A. Coherent states

The adaptive method leads to a significant error reduction FIG. 1. Noise reduction in the tomographic measurement of the

. . ~ diagonal element$n|é|n) of the density matrix of a coherent state
for the detection Of matrix elementsne|n) of c;oherent a) with intensity|@|?=5. In (&), noise reductiony vs the number
states. Our results indicate that type-I null functions are th

. . f added type-I null functions: the full curve represe(@i®|0), the
most effective, and that the larger the amplitudeof the  yashed curvél|o|1), and so on, from the top to the bottom. (i,

coherent state, the larger the noise reduction. In Fig. 1 NUsgise reduction vs the index of the diagonal matrix element for
merical results are presented for diagonal elemémitg|n) M =30 added null functions.
for intensity |a|?=5. In Fig. 4a) the noise reductiory is
given versus the numbev of added type-I null functions.
One can see that the noise reductipsaturates for largi,
and better levely of reduction are achieved for smalierin
Fig. 1(b) the noise reduction is reported versosfor M
=30. In Fig. 2 we report the results from a Monte Carlo
experiment for|a|?=3, with optimization performed with
M =6 null functions. The reduction of statistical errors for : )
low values ofn is evident. ments, though the same level of noise reduction for fow
The noise reduction for the off-diagonal matrix elements21d M can also be obtained using type-I and -Ill null func-
behaves similarly to the diagonal ones, being more effectivdons. In Fig. 6, results from a Monte Carlo simulated adap-
for low indices. In Fig. 3 the noise reductionversusn and  tive tomography on a squeezed vacuum are reported for

m of the (rea) matrix elementm|g|n) is plotted for a co- (N)=4 andM=10. Matrix elements before and after opti-
herent state with a real amplitude= /10, and for the three Mization can be compared, showing the error reduction at
types of null functions. The type-I null functions are gener-Work.

ally more effective, though not uniformly over all indicas
andm. C. Fock states

have phase-dependent features reflected in a similar odd-
even oscillation in the photon number probability distribu-
tion. In Figs. 4 and 5 the noise reduction for both cases is
plotted for the three types of null functions, fer=10. From

the plots it is apparent that type-II null functions are now the
most effective ones, especially for off-diagonal matrix ele-

For Fock states the matriA is diagonal for all types
of null functions, and therefore the optimization procedure
Results for squeezed states and “cat” superposition ofust consists of the evaluation of the vector The com-
coherent states are presented in the same subsection, simdex kernels for the matrix elements have the form

they behave similarly. This is due to the fact that both state®[ |n){m|](x, ¢) = f,, n(X)exp(i(n—m)¢), where f, ()

B. Squeezed states and Schdinger-cat states
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relevant observables: intensity, quadrature, and complex
field amplitude. The optimization method is here particularly
aV; . :
o useful, as the tomographic detection of these observables us-
ing the Richter kernel is very noig®3,30.
é In contrast to the case of matrix elements given in Sec.
x lll, here some analytical evaluations can be carried out. We
= - consider measurements performed on coherent states,
N squeezed vacuum states, Fock states, and cat superposition
of coherent states. It turns out that the addition of just a few
null functions to the Richter kernels generally results in a
large improvement of the tomographic precision, again with
o the exception of Fock states where no improvement can be
obtained.
A. Intensity
The tomographic detection of intensity is obtained by av-
g eraging the kernel
A Rla'a](x)=2x%-1. (32
=)
Q The vectorsb needed for the optimization procedure are
g given by
vV o
I_ To1El* — K2, i(K+2)¢_ (al®)
b,=—R[a'a]F,*=—2x""“e =T T
[ | | L 33
° 0 2 4 & by =—R[a'a]F,*
n <aT2> B
FIG. 2. Monte Carlo simulation of adaptive tomography of a = —2x2e i(n+1)2¢— _ 2’ : (34)
coherent state with intensity|2=3. A sample of five blocks of 50 0 n+0
homodyne data is used for each of 25 phd$asa total number of ! !
measurements equal to 625The optimization has been performed b|”' - _ R[a*a]F:” *
by addingM =6 null functions. In(a) the measured diagonal matrix +2
elements before optimization, and {b) after optimization. The (a™) =0
squares indicate theoretical values. = — oxkllI+2g—i(k[IT+2+n[I) = _ 2’
. : I 0, [#0.
has the parity oh—m [2,27]. This fact, together with inte- (35)
gral (11), makes it straightforward to show that , I
From Egs. (34) and (35 it follows that only Fy(¢)
bi=by=b.'=0, Vk; (300 =Fy' (¢)=exp(d¢) are effective in reducing the variance.

We analytically solved the optimization equatiof®0) for
that is, no improvement should be expected for the precisiotype-I null functions, and also in this case it turns out that for

of quantum tomography on Fock states. all the states here considered, only the single null function
Fi(¢) is needed; that is, one has
IV. ADAPTIVE TOMOGRAPHIC MEASUREMENTS po=by =0, Vk=1. (36)

OF OBSERVABLES
. The corresponding reduction of variance is easily obtained
The tomographic estimation of the ensemble ave(&je  from Eq.(23), and is given by

of a radlaAtlon opergtoD 'can be obtained by averaging the A?[a'a]=1(a2)(a?). 37)
kernelR[ O](x, ¢) given in Eq.(2). However, Eq(2) needs

a procedure that exploits the null function equivalence, and\ctually, A’[a'a] can compensate for the leading term of
this is given in Ref[28]. For this reason, for simplicity here the variance of the original Richter kerng23], which, in
we use the Richter formul@9], which expresses the kernels turn, is given by

for the normally ordered moments as follows: —
Y AR aTa]=(An?)+3[(a'%a? +2(ata)+1]. (39

R[a’rnam](x;(ﬁ):ei(mfnmm”m—(‘/—zx), (31) This means that the variance of the optimized kernel
/2n+m(n+m> AK?[a'a] becomes much closer to the intrinsic intensity
n gy -
fluctuations(An?) than the original nois&aR?[a'a]. In or-

H,(x) being the Hermite polynomial of order. We apply  der to appreciate such noise reduction, we compare the two
the adaptive method to the tomographic detection of the mostoise ratios
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Coherent Type T Coherent Type II

Coherent Type IIT
60

(c)
FIG. 3. Noise reductiory vs indicesn andm of the (rea) matrix element{m|@|n) for a coherent state with intensity|?=5: (a) using

only type-I null functions(b) using only type-Il null functions, angt) using only type-IIl null functions. For all plots! =10, null functions
have been used in the optimization procedure.

—ARZ[ aTa] m sions are obtained for other kinds of state: the noise ratio
SNg= ——, Sng= ———— (39 saturates abng=y3/2 for either squeezed vacuum or cat
(An?)

—

(An2> states.

In Fig. 7, results from a Monte Carlo simulation of the
For coherent statds), we obtain tomographic measurement of intensity on coherent states
show the noise reduction obtained when using the optimized
1 1 kernel. The noise reduction obtained by adding the single

Sng=\/2+ 5( ||+ —2> null function Fy(¢) can also be easily evaluated for the ge-

|al neric diagonal momenta™a"), using the formula
(40)
/ 1 N
ong= 2+ 2|a|2’ ei2¢R[aTnan](X) — _R[a‘r(n+1)anfl](x)’ (42)

n+1

that is, from an asymptotically linearly increasing function of
|a| the ratio becomes a constafit,= 2. Similar expres- which leads to



524 GIACOMO M. D'ARIANO AND MATTEO G. A. PARIS PRA 60

Squeezed Type I Squeezed Type IT

FIG. 4. Noise reduction for squeezed vacuum wiih=4: (a) using only type-I null functions(b) using only type-II null functions, and
(c) using only type-Ill null functions. For all plots =10, null functions have been used in the optimization procedure.

n HO+ ) an-11. enough to add the first null functioﬁ'o(gb), whereas for_
m<a a" ), (42 squeezed vacuum and cat states only the odd-index functions
Fle.1(X,) contribute to noise reduction. In this case the
main term is due t(F'l(x, ¢), whereas higher-order functions
improve the variances only by a few percent. For coherent
states the variance reduction frd®j(x, ¢) is given by

A’X]=3(a"Wa)=3al?, (43

bo=—R[aMa"]e'?¢= —

that is,A?[a"™a"]= 2|bg|?. We just mention that optimizing
the kernelR[a'2a?](x) is useful to improve detection of the
second-order correlation functigi?=(a'?a?)/(a'a)?.

B. Quadrature

The optimization procedure has also been tested on thehich completely compensates for the leading term in the
kernelR[X](x, ¢) = 2x cos¢, corresponding to the measure- variance of the original Richter kerng23]
ment of the quadrature operator %(a+a'). Similarly to
the intensity case, the type-Il and -l null functions do not
play a role in improving precision, whereas type-I functions
give b,=—2"K"Xal@*h) in Eq. (20). In this way the op-
timization procedure can also be carried out analytically inFor squeezed vacuum and cat states the variance reduction
this case. The results indicate that for coherent states it idue toF (X, ¢) is

ARZ[K]=(Ax?)+ Ha'a)+ 1. (44)
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Cat Type I Cat Type IT
25

20

(b)

Cat Type IITI

FIG. 5. Noise reduction for the catlike superposition of coherent states and for the three types of null function$2i8) Bith «
=/3: (a) using type-I null functions(b) using type-Il null functions, andc) using type-Ill null functions. For all plotd/ =10, null
functions have been used in the optimization procedure.

1
AX]= a)|?| (a"d+(at® + = +(afa) | +|(a?)|?|. (45)
[X] 2@t 2(a'a)) [(a)[* (@) +(a™) + 5 +(a'a) | +[(a%)]
|
Upon defining the noise ratiéxy in analogy to Eq(39), states are shown fdw|2=3. There the histograms of the
original Richter kernel and of the optimized kernel are com-
m pared. The optimized kernel has a sharper distribution, which
M=\ [ ——— (46)  is peaked at the mean valgg)= /3. For this reason, it is
(AX?) quite obvious that the optimized kern[X](x,¢) gives a

more precise determination ¢k) than the original kernel

from Egs. (43) and (45) we obtain the constanbx,=+2  RLXI(X,¢).
for coherent states, independently pf|?, whereas for

squeezed vacuum and cat states the noise ratio saturates at
Sx«=+/5/4. In Fig. 8, results from simulated experiments of The tomographic kernel for the measurement of the com-
tomographic measurement of the quadrature on cohereplex field amplitudea is given byR[a](x,¢)=2x€e'?, and

C. Field amplitude
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_ (a) _

0.4
100

<nl|pln>
<n>
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R (@]
L (b) - S
=] i
/\ - -
i
Q@ i
& o m] /c:\ o
A\ \VARTe]
o kN
| 1 1 1 1 | 1 1 1 1 |
0 5 10 o
n
FIG. 6. Adaptive tomography of a squeezed vacuum With |o(|2

=4. The Monte Carlo sample includes five blocks of 100 data for

each of 50 phaseffor a total number of measurements equal to  F|G. 7. Tomographic detection of the intensity on coherent
25000. The optimization has been performed by addMg=10  states. The simulated experiment has been performed with 15
type-Il null functions.(a) Measured elements without optimization, pjocks of 15 data for 15 phases eadbr a total number ofN

and (b) with optimization. The squares indicate the theoretical val- = 3375 measurementsThe tomographic resulth) is reported vs
ues. the theoretical valueky|?, (a) without and(b) with optimization.

its fluctuations should be compared with those from the ideahp and v, are two independent sets of complex coefficients.
measurement o, which could be achieved by ideal eight- The optimization procedure is similar to the real case, and is

port [32—34 or six-port[35,36 homodyne detection. The o4y ced to solving the two linear systems
optimization procedure depends on the choice for the defini-

tion of statistical error for a complex quantity. If one consid- Au=b, Av=c, (49)
ers the real or imaginary part separately, the procedure coin-

cides with the optimization of the precision in independentwherec is given by

measurements of two conjugated quadratures. On the other

hand, in order to take both noises into account jointly, we c :—R[é]F _

minimize the quantity P P

By inverting Egs.(49), one obtains the noise reduction

2 1 2 2 2
A KT a]= z{|K[a]|*~[KTa]|*} (47) ,
A*[a]ZA*RZ[a]—A*KZ[a]
corresponding to the average of noises for real and imaginary M-1
parts, namely, the trace of the noise covariance matrix. Now = 2 [bp(A‘l)qpba‘ +cp(A‘1)pqca‘]. (50)
the equivalence class of kernel functions is written as P.q=0
M—1 Also in the present case it is sufficient to consider only type-
— | functions. The optimization vectob is given by b
Kla](x,¢)=R[a](X,¢)+ Fo(X, e k
[al(x.¢)=R{al(x.4) pZO HoF o, ) =—2"Ka'*h) Similarly to the case of the quadrature,
M1 the optimization procedure shows that for coherent states
+ 2 Vo F* (X, ) (49) only F{)(¢) is needed, whereas for squeezed vacuum and cat
p=o P P states only the odd-index functiofis, ; (X, #) contribute to
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K[x](x.¢) FIG. 9. Monte Carlo simulation of adaptive tomography with a

FIG. 8. Histograms of the kemel functions evaluated on thebad choice of the number of added null functions. The state under

tomographic outcomes for a coherent state witi2=3. The examination is a coherent state with|>=3, and the simulated
. . A sample of homodyne data contains five blocks of 50 data for 25
sample has 50 phases with 100 data e#&hUsing the original P y I v

- - i . h h, f total f 62 t; Fig.
Richter kernel R[X](x,#). (b) Using the optimized kernel phases each, for a total number of 6250 measurentasté Fig

- N T - . 2). Here the optimization has been performed by addiing 32 null
KIX](x,¢) . The dlStrIbUtIOﬂlfOI’ therptlmlzed kemnel is sharper functions. Large fluctuations emerge instead of error reduction. The
and peaked near the theoretical va{ie= /3.

squares indicate theoretical values.

noise reduction, and the main term comes friéb(lx,¢). In —
this way, for coherent states one obtains (A a?)=3[(a'ay+1-[(a)|?]. (54)
A2la]=1%|al? (51)  The noise ratio thus equala,=1 for coherent states,

whereas it saturates &ty = \/3/2 for both squeezed vacuum
whereas for squeezed vacuum and cat states one has and cat states. Remarkably, for coherent states heterodyne
noise is reached, that is, the tomographic detection has ideal
1 noise.

2 =
Aslal 2(1-|(a)*+2(a"a))

V. EFFECTS OF SYSTEMATIC ERRORS
X

(a'?)+(a™)+ %+ (a'a)

(a)]? +(a?)[?]. Throughout this paper tomographic kernels have been op-
timized by adding low-order null functions. Higher-order

(52)  functions oscillate more rapidly. Since the method involves

only the average of these functions on a small sample of

Equations(51) and (52) should be compared with the noise gata, fast oscillations i and a higher power ok would

figure of the original Richter kernel introduce more noise, and including too many null functions
- would increase the error instead of reducing it. In Fig. 9 an
A2R[a]=3%[2(a'a)+1—|(a)|?], (53  example of such pathology is given.

Another point that should be mentioned is that in the to-
and with the intrinsic noise of a generalized measurement aihographic detection here considered the pl#asea random
the amplitude parameter in0,7]. A discrete scanning by equally spaced
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phases would introduce systematic errfd@$,31 that would  vacuum and cat states far off-diagonal elements are also im-
mask the benefits from the optimization. Actually, for non- proved.

random uniform scanning, the null functidfy(¢) has no The error reduction is much more significant for the mea-
effects when added to phase-independent kernels, whereagrement of intensity, quadrature and field amplitude, where
the other null functions have a considerably reduced effectfor coherent states, squeezed vacuum, and cat states the ratio
and obviously do not eliminate the systematic error due tdetween the tomographic noise and uncertainty of the con-

the finite mesh of the deterministic scanning. sidered observable saturates for increasing energy. In this
case, we can definitely assert that quantum tomography is a
VI. SUMMARY AND CONCLUSIONS quasi-ideal measurement, as it adds only a small amount of

) ) noise as compared to ideal detection.
In this paper we have presented an adaptive method to
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