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Adaptive quantum homodyne tomography

Giacomo M. D’Ariano and Matteo G. A. Paris
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An adaptive optimization technique to improve the precision of quantum homodyne tomography is pre-
sented. The method is based on the existence of so-callednull functions, which have a zero average for an
arbitrary state of radiation. The addition of null functions to the tomographic kernels does not affect their mean
values, but changes statistical errors, which can then be reduced by an optimization method that ‘‘adapts’’
kernels to homodyne data. Applications to tomography of the density matrix and other relevant field observ-
ables are studied in detail.@S1050-2947~99!00707-6#

PACS number~s!: 42.50.Dv
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I. INTRODUCTION

The possibility of measuring the quantum state of rad
tion has received increasing interest in the last years@1–3#,
as it opens perspectives for new kinds of experiments
quantum optics, with the possibility of measuring phot
correlations on a subpicosecond time scale@4#, of character-
izing squeezing properties@5#, photon statistics in parametri
fluorescence@6#, quantum correlations in down conversio
@7#, and nonclassicality of states@8#, and of measuring
Hamiltonians of nonlinear optical devices@9#. Among the
many state reconstruction techniques suggested in the li
ture @10–19#, quantum homodyne tomography~QHT! @11–
13,18# of radiation fields has received much attention@1#,
being the only method which has been implemented in qu
tum optical experiments@4,5,11#. It has also recently bee
extended to estimate the expectation value of any operato
the field @18#, which makes the method the first univers
detectors for radiation.

On one hand, QHT takes advantage of amplification fr
the local oscillator in the homodyne detector, avoiding
need for single-photon resolving photodetectors, and he
created the possibility of achieving very high quantum e
ciency using photodiodes@7#. On the other hand, the metho
of QHT is very efficient and statistically reliable, and can
implemented on line with the experiment.

In principle, a precise knowledge of the density mat
would require an infinite number of measurements on id
tical preparations of radiation. However, in real experime
one has only a finite number of data at ones disposal,
thus a statistical analysis and errors estimation are nee
The purpose of this paper is to analyze the possibility
improving the current QHT technique, in order to minimi
statistical errors. We will present a method that ‘‘adapts’’ t
tomographic estimators to a given finite set of data, impr
ing the precision of the tomographic measurement.

Quantum tomography of a single-mode radiation fie
consists of a set of repeated measurements of the
quadraturex̂f5 1

2 (ae2 if1a†eif) at different values of the
reference phasef. The expectation value of a generic oper
tor can be obtained by averaging a suitable kernel func
R@Ô#(x,f) as follows@18#:
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^Ô&8Tr$%̂Ô%5E
0

pdf

p E
2`

`

dx ph~x,f!Rh@Ô#~x,f!,

~1!

where ph(x,f) denotes the probability distribution of the
outcomesx for the quadraturex̂f with quantum efficiencyh,
andRh@Ô#(x,f) is given by

Rh@Ô#~x,f!5
1

4E0

`

dr expF12h

8h
r GTr$Ô cos@Ar ~x2 x̂f!#%.

~2!

In the following we will focus attention only on theh51
case, and we will drop the subscripth in the notation. As
will become clear in the following, the method also work
equally well for nonunit quantum efficiency, and a detaile
numerical analysis versush will be given elsewhere. On the
basis of identity~1!, it follows that the ensemble average^O&
can be experimentally obtained by averagingR@Ô#(x,f)
over the set of homodyne data, namely

^Ô&5R@Ô#5
1

N (
i 51

N

R@Ô#~xi ,f i !, ~3!

N being the total number of measurements of the samp
The statistical error of the tomographic measurement in E
~3! can be easily evaluated provided that the correspondi
kernel function satisfies the hypothesis of the central lim
theorem, which assures that the partial average over a blo
of data is Gaussian distributed around the global avera
over all data. In this case, the error is evaluated by dividin
the ensemble of data into subensembles, and calculating
rms deviation of each subensemble mean value with resp
to the global average. The estimated value of such a con
dence interval is given by

dO5
1

AN
$DR2@Ô#%1/2, ~4!

whereDR2@Ô# is the variance of the kernel over the tomog
raphic probability
518 ©1999 The American Physical Society
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DR2@Ô#5E
0

pdf

p E
2`

`

dx p~x,f!R2@Ô#~x,f!

2H E
0

pdf

p E
2`

`

dx p~x,f!R@Ô#~x,f!J 2

. ~5!

Following this scheme, the tomographic precision in det
mining matrix elements of the density operator%̂ was dis-
cussed in Refs.@13,20,21#, with asymptotic estimations in
Ref. @22#, whereas relevant observablesÔ were analyzed in
Ref. @23#, also in comparison with the corresponding ide
measurement.

The crucial point of the method presented in this pape
that the tomographic kernelR@Ô#(x,f) is not unique, since
a large class ofnull functions @24,25# F(x,f) exists that
have a zero tomographic average for arbitrary state, nam

F̄5E
0

pdf

p E
2`

`

dx p~x,f!F~x,f![0. ~6!

Therefore, the addition of null functions to a generic kern
gives a kernel with the same tomographic average, he
suitable for an estimation of the same ensemble average^Ô&.
On the other hand, adding null functions would modify t
kernel variance, and so the statistical error over data.
adaptive tomography method thus consists of optimizing
kernel in the equivalence class, in order to minimize
statistical errors. In this paper, we perform such optimizat
over relevant classes of null functions, rather than over
entire equivalence class.

The paper is structured as follows. In Sec. II we introdu
the classes of null functions that will be used in the pap
and describe the adaptive optimization method in detail
Sec. III we apply the adaptive method to the tomography
the density matrix in the photon number representation
Sec. IV we analyze the improvement of precision in tomo
raphic measurement of some relevant field observables.
tion V briefly describes the effects of systematic errors on
effectiveness of the method. Finally, Sec. VI closes the pa
by summarizing the main results.

II. ADAPTIVE TOMOGRAPHY

The following functions have the vanishing tomograph
expectation@Eq. ~6!#

Gn
1~x,f!5ei (11n)2fg1~xeif!,

~7!
Gn

2~x,f!5e2 i (11n)2fg2~xe2 if!.

In Eqs.~7!, n>0 andg6(z) are analytic functions ofz. The
set G of null functions defined in Eqs.~7! forms a vector
space overC, and each classG65$Gn

6% separately is closed
under multiplication~without inverse!.

In order to prove the vanishing expectation~6! for
Gn

6(x,f), we consider the Taylor expansion of functio
g6(xeif):

g6~xeif!5 (
k50

`

ck
6xke6 ikf, ~8!
r-
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which allows us to write

Gn
65E

0

pdf

p E
2`

`

dx p~x,f!e6 i (11n)2fg6~xeif!

5 (
k50

`

ck
6E

0

pdf

p
e6 i (k1212n)f^ x̂f

k &, ~9!

where^•••& denotes the usual ensemble average. Using
Wilcox decomposition formula@26#, one can write

^x̂f
k &5

k!

2k (
p50

†[k/2]‡

(
s50

k22p
^a†sak22p2s&

2pp!s! ~k22p2s!!
ei (2p12s2k)f,

~10!

where †@x#‡ denotes the integer part ofx. Equation ~10!,
together with the identity

E
0

pdf

p
eiqf5H 0, q even

1, q50

2i

pq
, q odd,

~11!

prove that

E
0

pdf

p
e6 i (k1212n)f^x̂f

k &50, n>0,k>0. ~12!

Hence

E
0

pdf

p E
2`

`

dx p~x,f!Gn
6~x,f!50, n>0, ~13!

Gn
6(x,f) are null functions forn>0.
In the following, we will focus attention on three particu

lar sets of null functions. The type-I null functions are o
tained from Eq.~7! by choosingn50 andg(xeif)[xkeikf

for a givenk, and will be denoted byFk
I (x,f), namely,

Fk
I ~x,f!5xkei (k12)f, k50,1, . . . . ~14!

The type-II null functions correspond to the simple choi
g(xeif)[1, i.e.,

Fn
II ~f!5ei (11n)2f, n50,1, . . . . ~15!

Finally, the type-III null functions are a kind of intermedia
choice between type I and type II classes, and are define
follows:

Fl
III ~x,f!5xk[ l ]ei (k[ l ] 1212n[ l ])f, l 50,1, . . . , ~16!

wherek@ l # and n@ l # are given in Table I. In the following
we will use the notationFk(x,f), dropping the type in-
dexes I–III, when the identity under consideration hol
for all three types. Let us consider a generic real ker
R@Ô#(x,f). By addingM null functions, keeping the kerne
as real, we have a new kernelK@Ô#(x,f):
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K@Ô#~x,f!5R@Ô#~x,f!1 (
k50

M21

mkFk~x,f!

1 (
k50

M21

mk* Fk* ~x,f!, ~17!

where Fk(x,f)PG1, Fk* (x,f)PG2, and mk are complex

coefficients. By definition we haveK@Ô#5R@Ô#, whereas
the variance of the new kernelK@Ô#(x,f) is given by

DK2@Ô#5DR2@Ô#12H (
k,l 50

M21

mkm l* FkFl* 1 (
k50

M21

mkR@Ô#Fk

1 (
k50

M21

mk* R@Ô#Fk* J . ~18!

In deriving the above formula we used the fact that bothG1

andG2 are closed under multiplication.
The variance of the modified kernel function in Eq.~18!

can be minimized with respect to the coefficientsmk , lead-
ing to the linear set of equations

(
l

m lFkFl* 52R@Ô#Fk* . ~19!

It is convenient to rewrite the optimization equation~19! in
matrix form as follows:

Am5b, ~20!

whereA is the HermitianM3M matrix

Akl5FkFl* 5E
0

pdf

p E
2`

`

dx p~x,f!Fk~x,f!Fl* ~x,f!,

~21!

andb is the complex vector

bk52R@Ô#Fk*

52E
0

pdf

p E
2`

`

dx p~x,f!R@Ô#~x,f!Fk* ~x,f!.

~22!

Notice that the vectorb depends on both the kernelR@Ô#

and the state%̂ under examination, whereas the matrixA
depends on the state only.

By substituting Eq.~19! into Eq. ~18! and inverting Eq.
~20!, we obtain

TABLE I. Representation table for indices of type-III null func
tions.

l 0 1 2 3 4 5 6 7 ...

k1n 0 1 1 2 2 2 3 3 ...

k 0 1 0 2 1 0 3 2 ...
n 0 0 1 0 1 2 0 1 ...
D2@Ô#8DR2@Ô#2DK2@Ô#52 (
k,l 50

M21

mkAklm l*

52 (
k,l 50

M21

bk~A21!klbl* >0,

~23!

which expresses the variance decrease in terms ofA andb.
Let us summarize the optimization procedure for the k

nel R@Ô#(x,f). After collecting an ensemble ofN tomogra-
phic data, the quantitiesA andb are evaluated as tomogra
phic experimental averages. Then, by solving the lin
system~20!, one obtains the coefficientsmk , which are used
to build the optimized kernelK@Ô#(x,f). At this point, the
same data set is used to averageK@Ô#(x,f) and, upon di-
viding the set into subensembles, the experimental erro
evaluated, whose square now is reduced by the quan
D2@Ô#/N.

The actual precision improvement of the tomograp
measurement depends both on the state under examin
~which affects bothb andA) and on the operatorÔ, whose
kernel enters only in the expression ofb. An explicit expres-
sion for Akl can be obtained by means of Eq.~10!, and gen-
erally depends on the type of null function that are involve
For type-II null functions it reduces to the identity matri
independently of the state

Akl
II 5dkl type-II null functions, ~24!

dkl denoting the Kronecker delta. For type-I null function
one has

Akl
I 5

~k1 l !!

2k1 l (
p50

min(k,l )
^a†l 2pak2p&

2pp! ~ l 2p!! ~k2p!!

type-I null functions. ~25!

The explicit expression for coherent and Fock states is

Akl
I 5ak2 l

~k1 l !!

k!
22k22lL l

k2 l~22uau2!

coherent stateua& ~k> l !, ~26!

Akl
I 5dkl

2k2n11

n!Ap
E

0

`

dy e2y2
y2kHn

2~y! Fock stateun&,

~27!

whereHn(x) denotes Hermite polynomials. Notice that fo
Fock states the matrix is diagonal~which is true also for
type-II and -III null functions!.

III. ADAPTIVE TOMOGRAPHY
OF THE DENSITY MATRIX

In this section we apply the adaptive method to the
mographic measurement of the density matrix in the pho
number representation. We evaluate the variance reduc
D2@ P̂nm# in Eq. ~23! for P̂nm

R 5 1
2 @ un&^mu1um&^nu# and
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P̂nm
I 5(1/2i )@ un&^mu2um&^nu#, corresponding to the tomog

raphic measurement of the real and imaginary part of
matrix elements%nm5^mu%̂un&. We consider different types
of null functions, and calculateD2@ P̂nm

R # andD2@ P̂nm
I # ver-

sus the numberM of added null functions, for either cohere
states, squeezed vacuum, Fock states, and the ‘‘Schro¨dinger-
cat’’ like superposition of coherent states given by

uc&5
1

2A11exp~22uau2!
@ ua&1u2a&]. ~28!

In order to see our adaptive method at work, Monte Ca
simulated experiments are presented.

Tomographic kernels for the matrix elements in the Fo
basis were first presented in Ref.@12#, with extension to non-
unit quantum efficiency in Ref.@13#, and factorization iden-
tities for the kernel in Ref.@27#. However, none of the abov
methods allows for an explicit analytical evaluation of t
vectorb in Eq. ~22!. For this reason, we computeD2@ P̂nm#
numerically, presenting results in terms of the relative va
ance reductiong, defined as follows:

g512
DK2@Ô#

DR2@Ô#

5
D2@Ô#

DR2@Ô#

. ~29!

A complete removal of fluctuations would correspond
g51.

A. Coherent states

The adaptive method leads to a significant error reduc
for the detection of matrix elementŝmu%̂un& of coherent
states. Our results indicate that type-I null functions are
most effective, and that the larger the amplitudea of the
coherent state, the larger the noise reduction. In Fig. 1
merical results are presented for diagonal elements^nu%̂un&
for intensity uau255. In Fig. 1~a! the noise reductiong is
given versus the numberM of added type-I null functions
One can see that the noise reductiong saturates for largeM,
and better levelsg of reduction are achieved for smallern. In
Fig. 1~b! the noise reduction is reported versusn for M
530. In Fig. 2 we report the results from a Monte Ca
experiment foruau253, with optimization performed with
M56 null functions. The reduction of statistical errors f
low values ofn is evident.

The noise reduction for the off-diagonal matrix eleme
behaves similarly to the diagonal ones, being more effec
for low indices. In Fig. 3 the noise reductiong versusn and
m of the ~real! matrix element̂ mu%̂un& is plotted for a co-
herent state with a real amplitudea5A10, and for the three
types of null functions. The type-I null functions are gene
ally more effective, though not uniformly over all indicesn
andm.

B. Squeezed states and Schro¨dinger-cat states

Results for squeezed states and ‘‘cat’’ superposition
coherent states are presented in the same subsection,
they behave similarly. This is due to the fact that both sta
e

o

k

i-

n

e

u-

s
e

-

f
ince
s

have phase-dependent features reflected in a similar
even oscillation in the photon number probability distrib
tion. In Figs. 4 and 5 the noise reduction for both cases
plotted for the three types of null functions, forM510. From
the plots it is apparent that type-II null functions are now t
most effective ones, especially for off-diagonal matrix e
ments, though the same level of noise reduction for lown
and m can also be obtained using type-I and -III null fun
tions. In Fig. 6, results from a Monte Carlo simulated ada
tive tomography on a squeezed vacuum are reported

^n̂&54 andM510. Matrix elements before and after opt
mization can be compared, showing the error reduction
work.

C. Fock states

For Fock states the matrixA is diagonal for all types
of null functions, and therefore the optimization procedu
just consists of the evaluation of the vectorb. The com-
plex kernels for the matrix elements have the fo
R@ un&^mu#(x,f)5 f n,m(x)exp„i (n2m)f…, where f n,m(x)

FIG. 1. Noise reduction in the tomographic measurement of

diagonal elementŝnu%̂un& of the density matrix of a coherent sta
ua& with intensity uau255. In ~a!, noise reductiong vs the number
of added type-I null functions: the full curve represents^0u%u0&, the
dashed curvê1u%u1&, and so on, from the top to the bottom. In~b!,
noise reduction vs the indexn of the diagonal matrix element fo
M530 added null functions.
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has the parity ofn2m @2,27#. This fact, together with inte-
gral ~11!, makes it straightforward to show that

bk
I [bk

II [bk
III [0, ;k; ~30!

that is, no improvement should be expected for the precis
of quantum tomography on Fock states.

IV. ADAPTIVE TOMOGRAPHIC MEASUREMENTS
OF OBSERVABLES

The tomographic estimation of the ensemble average^Ô&
of a radiation operatorÔ can be obtained by averaging th
kernelR@Ô#(x,f) given in Eq.~2!. However, Eq.~2! needs
a procedure that exploits the null function equivalence, a
this is given in Ref.@28#. For this reason, for simplicity her
we use the Richter formula@29#, which expresses the kerne
for the normally ordered moments as follows:

R@a†nam#~x;f!5ei (m2n)f
Hn1m~A2x!

A2n1mS n1m
n D , ~31!

Hn(x) being the Hermite polynomial of ordern. We apply
the adaptive method to the tomographic detection of the m

FIG. 2. Monte Carlo simulation of adaptive tomography of
coherent state with intensityuau253. A sample of five blocks of 50
homodyne data is used for each of 25 phases~for a total number of
measurements equal to 6250!. The optimization has been performe
by addingM56 null functions. In~a! the measured diagonal matri
elements before optimization, and in~b! after optimization. The
squares indicate theoretical values.
n

d

st

relevant observables: intensity, quadrature, and comp
field amplitude. The optimization method is here particula
useful, as the tomographic detection of these observables
ing the Richter kernel is very noisy@23,30#.

In contrast to the case of matrix elements given in S
III, here some analytical evaluations can be carried out.
consider measurements performed on coherent sta
squeezed vacuum states, Fock states, and cat superpo
of coherent states. It turns out that the addition of just a f
null functions to the Richter kernels generally results in
large improvement of the tomographic precision, again w
the exception of Fock states where no improvement can
obtained.

A. Intensity

The tomographic detection of intensity is obtained by a
eraging the kernel

R@a†a#~x!52x22 1
2 . ~32!

The vectorsb needed for the optimization procedure a
given by

bk
I 52R@a†a#Fk

I* 522xk12e2 i (k12)f52
^a†(k12)&

211k
,

~33!

bn
II 52R@a†a#Fn

II *

522x2e2 i (n11)2f52H ^a†2&
2

, n50

0, nÞ0,

~34!

bl
III 52R@a†a#Fl

III *

522xk[ l ] 12e2 i (k[ l ] 121n[ l ])f52H ^a†2&
2

, l 50

0, lÞ0.
~35!

From Eqs. ~34! and ~35! it follows that only F0
II (f)

[F0
III (f)[exp(2if) are effective in reducing the variance

We analytically solved the optimization equations~20! for
type-I null functions, and also in this case it turns out that
all the states here considered, only the single null funct
F0

I (f) is needed; that is, one has

m05b0 mk50, ;k>1. ~36!

The corresponding reduction of variance is easily obtain
from Eq. ~23!, and is given by

D2@a†a#5 1
2 ^a†2&^a2&. ~37!

Actually, D2@a†a# can compensate for the leading term
the variance of the original Richter kernel@23#, which, in
turn, is given by

DR2@a†a#5^Dn2̂&1 1
2 @^a†2a2&12^a†a&11#. ~38!

This means that the variance of the optimized ker
DK2@a†a# becomes much closer to the intrinsic intens

fluctuations^Dn2̂& than the original noiseDR2@a†a#. In or-
der to appreciate such noise reduction, we compare the
noise ratios
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FIG. 3. Noise reductiong vs indicesn andm of the ~real! matrix element̂ mu%̂un& for a coherent state with intensityuau255: ~a! using
only type-I null functions,~b! using only type-II null functions, and~c! using only type-III null functions. For all plotsM510, null functions
have been used in the optimization procedure.
o

atio
at

e
ates
zed
gle
e-
dnR5ADR2@a†a#

^Dn2̂&
, dnK5ADK2@a†a#

^Dn2̂&
. ~39!

For coherent statesua&, we obtain

dnR5A21
1

2 S uau21
1

uau2D ,

~40!

dnK5A21
1

2uau2
;

that is, from an asymptotically linearly increasing function
uau the ratio becomes a constantdnK.A2. Similar expres-
f

sions are obtained for other kinds of state: the noise r
saturates atdnK.A3/2 for either squeezed vacuum or c
states.

In Fig. 7, results from a Monte Carlo simulation of th
tomographic measurement of intensity on coherent st
show the noise reduction obtained when using the optimi
kernel. The noise reduction obtained by adding the sin
null function F0(f) can also be easily evaluated for the g
neric diagonal moment̂a†nan&, using the formula

ei2fR@a†nan#~x!5
n

n11
R@a†(n11)an21#~x!, ~41!

which leads to



524 PRA 60GIACOMO M. D’ARIANO AND MATTEO G. A. PARIS
FIG. 4. Noise reduction for squeezed vacuum with^n̂&54: ~a! using only type-I null functions,~b! using only type-II null functions, and
~c! using only type-III null functions. For all plotsM510, null functions have been used in the optimization procedure.
e

t
e-

o
ns

i
it

tions
he
s
ent

the

ction
b052R@a†nan#ei2f52
n

n11
^a†(n11)an21&; ~42!

that is,D2@a†nan#52ub0u2. We just mention that optimizing
the kernelR@a†2a2#(x) is useful to improve detection of th
second-order correlation functiong(2)5^a†2a2&/^a†a&2.

B. Quadrature

The optimization procedure has also been tested on
kernelR@ x̂#(x,f)52x cosf, corresponding to the measur
ment of the quadrature operatorx̂5 1

2 (a1a†). Similarly to
the intensity case, the type-II and -III null functions do n
play a role in improving precision, whereas type-I functio
give bk5222k21^a†(11k)& in Eq. ~20!. In this way the op-
timization procedure can also be carried out analytically
this case. The results indicate that for coherent states
he

t

n
is

enough to add the first null functionF0
I (f), whereas for

squeezed vacuum and cat states only the odd-index func
F2s11

I (x,f) contribute to noise reduction. In this case t
main term is due toF1

I (x,f), whereas higher-order function
improve the variances only by a few percent. For coher
states the variance reduction fromF0

I (x,f) is given by

D2@ x̂#5 1
2 ^a†&^a&5 1

2 uau2, ~43!

which completely compensates for the leading term in
variance of the original Richter kernel@23#

DR2@ x̂#5^Dx2̂&1 1
2 ^a†a&1 1

4 . ~44!

For squeezed vacuum and cat states the variance redu
due toF1(x,f) is
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D2@ x̂#5
1

2~12u^a&u212^a†a&!
F u^a&u2S ^a†2&1^a†2&1

1

2
1^a†a& D1u^a2&u2G . ~45!

FIG. 5. Noise reduction for the catlike superposition of coherent states and for the three types of null functions in Eq.~28! with a
5A3: ~a! using type-I null functions,~b! using type-II null functions, and~c! using type-III null functions. For all plotsM510, null
functions have been used in the optimization procedure.
te
o
re

e
m-
ich

m-
Upon defining the noise ratiodxK in analogy to Eq.~39!,

dxK5ADK2@a†a#

^Dx2̂&
, ~46!

from Eqs. ~43! and ~45! we obtain the constantdxK5A2
for coherent states, independently ofuau2, whereas for
squeezed vacuum and cat states the noise ratio satura
dxK.A5/4. In Fig. 8, results from simulated experiments
tomographic measurement of the quadrature on cohe
s at
f
nt

states are shown foruau253. There the histograms of th
original Richter kernel and of the optimized kernel are co
pared. The optimized kernel has a sharper distribution, wh
is peaked at the mean value^ x̂&5A3. For this reason, it is
quite obvious that the optimized kernelK@ x̂#(x,f) gives a
more precise determination of^x̂& than the original kernel
R@ x̂#(x,f).

C. Field amplitude

The tomographic kernel for the measurement of the co
plex field amplitudea is given byR@a#(x,f)52xeif, and
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its fluctuations should be compared with those from the id
measurement ofa, which could be achieved by ideal eigh
port @32–34# or six-port @35,36# homodyne detection. The
optimization procedure depends on the choice for the de
tion of statistical error for a complex quantity. If one consi
ers the real or imaginary part separately, the procedure c
cides with the optimization of the precision in independe
measurements of two conjugated quadratures. On the o
hand, in order to take both noises into account jointly,
minimize the quantity

D* K2@a#5
1

2
$uK@a#u22uK2@a#u2% ~47!

corresponding to the average of noises for real and imagin
parts, namely, the trace of the noise covariance matrix. N
the equivalence class of kernel functions is written as

K@a#~x,f!5R@a#~x,f!1 (
p50

M21

mpFp~x,f!

1 (
p50

M21

npFp* ~x,f!. ~48!

FIG. 6. Adaptive tomography of a squeezed vacuum with^n̂&
54. The Monte Carlo sample includes five blocks of 100 data
each of 50 phases~for a total number of measurements equal
25 000!. The optimization has been performed by addingM510
type-II null functions.~a! Measured elements without optimizatio
and ~b! with optimization. The squares indicate the theoretical v
ues.
al

i-

in-
t
er

e

ry
w

mp andnp are two independent sets of complex coefficien
The optimization procedure is similar to the real case, an
reduced to solving the two linear systems

Am5b, An5c, ~49!

wherec is given by

cp52R@Ô#Fp.

By inverting Eqs.~49!, one obtains the noise reduction

D
*
2 @a#5D* R2@a#2D* K2@a#

5 (
p,q50

M21

@bp~A21!qpbq* 1cp~A21!pqcq* #. ~50!

Also in the present case it is sufficient to consider only typ
I functions. The optimization vectorb is given by bk
5222k^a†(11k)&. Similarly to the case of the quadratur
the optimization procedure shows that for coherent sta
only F0

I (f) is needed, whereas for squeezed vacuum and
states only the odd-index functionsF2s11

I (x,f) contribute to

r

-

FIG. 7. Tomographic detection of the intensity on cohere
states. The simulated experiment has been performed with
blocks of 15 data for 15 phases each~for a total number ofN
53375 measurements!. The tomographic result̂n̂& is reported vs
the theoretical valuesuau2, ~a! without and~b! with optimization.
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noise reduction, and the main term comes fromF1
I (x,f). In

this way, for coherent states one obtains

D
*
2 @a#5 1

2 uau2, ~51!

whereas for squeezed vacuum and cat states one has

D
*
2 @a#5

1

2~12u^a&u212^a†a&!

3F u^a&u2S ^a†2&1^a†2&1
1

2
1^a†a& D1u^a2&u2G .

~52!

Equations~51! and ~52! should be compared with the nois
figure of the original Richter kernel

D
*
2 R@a#5 1

2 @2^a†a&112u^a&u2#, ~53!

and with the intrinsic noise of a generalized measuremen
the amplitude

FIG. 8. Histograms of the kernel functions evaluated on
tomographic outcomes for a coherent state withuau253. The
sample has 50 phases with 100 data each.~a! Using the original
Richter kernel R@ x̂#(x,f). ~b! Using the optimized kerne
K@ x̂#(x,f) . The distribution for the optimized kernel is sharp
and peaked near the theoretical value^x̂&5A3.
of

^D* a2̂&5 1
2 @^a†a&112u^a&u2#. ~54!

The noise ratio thus equalsdaK51 for coherent states
whereas it saturates atdaK.A3/2 for both squeezed vacuum
and cat states. Remarkably, for coherent states hetero
noise is reached, that is, the tomographic detection has i
noise.

V. EFFECTS OF SYSTEMATIC ERRORS

Throughout this paper tomographic kernels have been
timized by adding low-order null functions. Higher-orde
functions oscillate more rapidly. Since the method involv
only the average of these functions on a small sample
data, fast oscillations inf and a higher power ofx would
introduce more noise, and including too many null functio
would increase the error instead of reducing it. In Fig. 9
example of such pathology is given.

Another point that should be mentioned is that in the
mographic detection here considered the phasef is a random
parameter in@0,p#. A discrete scanning by equally space

e

FIG. 9. Monte Carlo simulation of adaptive tomography with
bad choice of the number of added null functions. The state un
examination is a coherent state withuau253, and the simulated
sample of homodyne data contains five blocks of 50 data for
phases each, for a total number of 6250 measurements~as in Fig.
2!. Here the optimization has been performed by addingM532 null
functions. Large fluctuations emerge instead of error reduction.
squares indicate theoretical values.
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phases would introduce systematic errors@21,31# that would
mask the benefits from the optimization. Actually, for no
random uniform scanning, the null functionF0(f) has no
effects when added to phase-independent kernels, whe
the other null functions have a considerably reduced eff
and obviously do not eliminate the systematic error due
the finite mesh of the deterministic scanning.

VI. SUMMARY AND CONCLUSIONS

In this paper we have presented an adaptive metho
optimize tomographic kernels, improving the precision of t
tomographic measurement. The method has been analyz
detail for coherent states, Fock states, squeezed vacuum
‘‘Schrödinger-cat’’ states. With the exception of Fock stat
the method generally provides a sizable reduction of stat
cal errors. For coherent states the improvement mainly c
cerns the small-index matrix elements, whereas for squee
te
W

.

T

t.

A

s.
as
t,
o

to
e

in
and
,
ti-
n-
ed

vacuum and cat states far off-diagonal elements are also
proved.

The error reduction is much more significant for the me
surement of intensity, quadrature and field amplitude, wh
for coherent states, squeezed vacuum, and cat states the
between the tomographic noise and uncertainty of the c
sidered observable saturates for increasing energy. In
case, we can definitely assert that quantum tomography
quasi-ideal measurement, as it adds only a small amoun
noise as compared to ideal detection.
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@24# T. Opatrnỳ, M. Dakna, and D.-G. Welsch, Phys. Rev. A57,
2129 ~1998!.

@25# G. M. D’Ariano and M. G. A. Paris, Acta Phys. Slov.48, 191
~1998!.

@26# R. M. Wilcox, J. Math. Phys.8, 962 ~1967!.
@27# U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M. G

Raymer, Opt. Commun.127, 144 ~1996!.
@28# G. M. D’Ariano, in Quantum Communication, Computing, an

Measurement~Ref. @22#!.
@29# Th. Richter, Phys. Lett. A221, 327 ~1996!.
@30# G. M. D’Ariano and M. G. A. Paris, Acta Phys. Slov.47, 281

~1997!.
@31# U. Leonhardt and M. Munroe, Phys. Rev. A54, 3682~1996!.
@32# N. G. Walker, J. Mod. Opt.34, 15 ~1987!.
@33# Y. Lay and H. A. Haus, Quantum Opt.1, 99 ~1989!.
@34# G. M. D’Ariano and M. G. A. Paris, Phys. Rev. A49, 3022

~1994!.
@35# A. Zucchetti, W. Vogel, and D.-G. Welsch, Phys. Rev. A54,

856 ~1996!.
@36# M. G. A. Paris, A. Chizhov, and O. Steuernagel, Opt. Co

mun.134, 117 ~1997!.


