9 November 1998

Physics Letters A 248 (1998) 103-108

PHYSICS LETTERS A

On the general problem of quantum phase estimation

G.M. D’Ariano, C. Macchiavello, M.E. Sacchi
Theoretical Quantum Optics Group, Universita degli Studi di Pavia and INFM Unita di Pavia, via A. Bassi 6, 1-27100 Pavia, Italy

Received 6 August 1998; accepted for publication 8 September 1998
Communicated by P.R. Holland

Abstract

The problem of estimating a generic phase-shift experienced by a quantum state is addressed for a generally degenerate
phase-shift operator. The optimal positive operator-valued measure is derived along with the optimal input state. Two relevant
examples are analyzed: (i) a multi-mode phase-shift operator for multi-path interferometry; (ii) the two-mode heterodyne

phase detection. (€ 1998 Elsevier Science B.V.

PACS: 03.65.—w; 03.65.Bz; 42.50.Dv; 42.50.—p

1. Introduction

The problem of estimating the phase shift experi-
enced by a radiation beam has been the object of hun-
dreds of studies in the last forty years [1]. The prob-
lem arises because for a single mode of the electro-
magnetic field there is no self-adjoint operator for the
phase. This is due to the semiboundedness of the num-
ber operator [2,3], which is canonically conjugated to
the phase as a Fourier-transform pair [4]. The most
general and, at the same time, concrete approach to the
problem of the phase measurement is quantum estima-
tion theory [5], a framework that has become popular
only in the last ten years in the field of quantum in-
formation. The most powerful method for deriving the
optimal phase measurement was given by Holevo [6]
in the covariant case. In this way the optimal posi-
tive operator-valued measure (POM) for phase esti-
mation has been derived for a single-mode field. Re-
garding the multi-mode case, only little theoretical ef-
fort has been spent [3], mostly devoting attention to
the Lie algebraic structure for two modes [3,7,8]. For

two modes, one can adopt the difference between their
photon numbers as the phase-shift operator, which
thus is no longer bounded from below. This opens
the route toward an exact phase measurement based
on a self-adjoint operator [9], with a concrete exper-
imental setup using unconventional heterodyne detec-
tion [10,11]. The problem is, however, complicated
by the (infinite) degeneracy of the shift operator, and
for this reason the optimal states for this case have
never been derived.

In this paper the general problem of estimating the
phase shift ¢ is addressed for any degenerate shift
operator with discrete spectrum, either § = Z (un-
bounded), or § = N (bounded from below), or S =
Z4 (bounded), generalizing the Holevo method for
the covariant estimation problem. We find the optimal
POM for estimating the phase shift of a state |¢f,), and
then we optimize the state itself. The degeneracy of the
shifting operator is removed through a simple projec-
tion technique. The case of mixed input state, which is
generally very difficult, is considered in some special
situations. Two sections are devoted to the analysis of
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two relevant examples: one concerning a multi-mode
phase estimation problem that arises in multi-path in-
terferometry; the other involving a shift operator that
is the difference between the number of photons of
two modes, corresponding to unconventional hetero-
dyne detection of the phase.

2. Optimal POM for the phase-shift estimation

We address the problem of estimating the phase-
shift ¢ pertaining to the unitary transformation

Py = e_i(bﬁ Po ei"”’, (1)

where H is a self-adjoint operator degenerate on the
Hilbert space H with discrete (un)bounded spectrum
S=2%Z o S=NorS=12Z,q >0 and p is a
generic initial state (actually in the following we will
mostly restrict to the pure state case). The estimation
problem is posed in the most general framework of
quantum estimation theory [5] on the basis of a cost
function C (¢., ¢), which weights the errors for the
estimate ¢, given the true value ¢. For a given a priori
probability density po(¢) for the true value ¢ the
estimation problem consists in minimizing the average
cost,

27 27
C=/d¢Po(¢)/d¢*C(¢*,¢)P(¢*|¢)» 2)
0 0

where p(¢.|¢) is the conditional probability of esti-
mating ¢, given the true value ¢. The average cost is
minimized by optimizing the positive operator-valued
measure (POM) [S5] du(é.) which gives the condi-
tional probability by the Born rule

P(b.]d) ddpn = Tr[du(b.) e o], (3)

We consider the general situation in which ¢ is a pri-
ori uniformly distributed, i.e. with probability density
po(¢) = 1/24r. Moreover, we want to weight errors
independently on the value ¢ of the phase, but only
versus the size of the error ¢, — ¢, so that the cost
function becomes an even function of only one vari-
able, i.e. C(¢u, d) = C(d.— ). It follows that also
the optimal conditional probability will depend only
on ¢, — ¢, and the optimal POM can be obtained re-

stricting attention only to phase-covariant POMs, i.e.
of the form

iHg. %

27’
where £ is a positive operator. satisfying the complete-
ness constraints needed for the normalization of the
POM [*" du(¢) = 1. In fact, using Eq. (3) and the
invariance of trace under cyclic permutations one can
easily recognize that p(¢.|¢p) = p(d. — ¢) if and
only if du(¢.) is covariant. Hence the optimization
problem resorts to finding the best positive operator &
for a given cost function C(¢) and a generic given
state po. As we will see, the POM obtained in this
way is optimal for a whole class of cost functions and
initial states pg. Once the best POM is obtained, one
further optimizes the state po. This resorts to solving
a linear eigenvalue problem. In fact, the average cost
can be written as the expectation value of the cost op-
erator C , 1.€.

du(g,) =e d-ge (4)

C =Tr[Cpol, (5)
where
é=/dn(¢)C(¢)- (6)

Using the Lagrange multipliers method to account for
normalization and mean energy one has to minimize
the function

L{po] =Tr[Cpo]l — ATr[po], (7)

which for a pure state o) (0| is a quadratic form
whose minimum is given by the eigenvalue equation

Clipo) = Altpo) (8)

with the Lagrange parameter A playing the role of an
eigenvalue. The linear problem can be easily extended
to account also for finite mean energy.

In summary, our problem is to minimize the cost C
for a given cost function C(¢) in Eq. (2). This is done
in two steps: (i) by optimizing the positive operator
¢ for given generic fixed state po: this will give a
POM which is optimal for an equivalence class of
states £(pg); (ii) by further optimizing the state in the
equivalence class £(pg). Since the original state was
arbitrarily chosen, this will give the absolute minimum
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cost and the corresponding set of optimal states and
POM’s.

The solution of the optimization problem is conve-
niently posed in the representation where H is diag-
onal. The operator H is generally degenerate, and we
will denote by |n), a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, v being a de-
generacy index, and by 7, the projector onto the cor-
responding degenerate eigenspace. The problem for
an input generally mixed state po is too difficult to ad-
dress: therefore, we focus our attention on the case of
pure state po = |ifo) (o], and we will leave some gen-
eral assertions on the mixed state case for the follow-
ing. The problem is restricted to the Hilbert space H|
spanned by the (normalized) vectors |n) oc IT,|yro) #
0 with the choice of the arbitrary phases such that
{n|po) > 0. Hence the POM can be chosen of the
block diagonal form on H = Hy ® H, ie. du(¢) =
du)(¢) ®du1 (@) with du, (¢) any arbitrary POM
on K, . For the optimization of the POM we consider
o) #+ 0Vn € 8, as it is clear that the resulting
POM will be optimal also for states having zero pro-
jection for some n € S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-
lem restricted to H: [o) — exp(iH; @) |ho), where
Hy =3, csnin)(nl and [ho) = 3, cswaln). Now the
problem is to find the positive operator £ that min-
imizes the cost C in Eq. (2). On the |n) basis the
operator &) is written as

&= In){mlém. (9)

nmes

For a generic even 2-periodic function C(¢) =
— Yoo cicosle the average cost is given by

C = —Cg — % ZCI Z ¢0|n <m|¢0>§nm (10)

oo
I=

1 |n—m|=t

Positivity of £ implies the generalized Schwartz in-
equalities

Ifnm‘ <V fnnfmm =1, (11)

where the last equality comes from the POM com-
pleteness fd,u”(gb) =1). One can write

sign(cy) Z (holn)(msho) Enm

n—m|=l
> woln)llimlio), (12)
|n—m|=t

and the equality is obtained only for

Enm = Sign(qn—m! )

(notice that we chose (p|n) > 0 Vn € S). The mini-
mum cost is

o

C':—co—‘Zicll Y [wolmllimigo)l,  (13)

=1 |n—m|=t

where we put sign(0) = 1, since the cost C is in-
dependent of & for ¢|,n = 0. Notice that positiv-
ity of £ is not generally guaranteed for any set of
sign(c;). However, one can easily check that &; > 0
if sign(c|y—m|) = explim(e, — €)1, €, being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator £
optimized with all ¢; > 0 VI > 1 (the parameter cg
is irrelevant). The particular choice ¢; 2 0 VI > 1
has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most
popular optimization criteria, as (i) the likelihood cri-
terion for C(¢) = —82,(¢); (ii) the 2a-periodic
“variance” for C(¢) = 4sin2(¢/2); (iii) the fidelity
optimization C (¢) = 1 — |{o|e'"®|1ho)|? (here ¢; =
23 u—mj=t Wnl*|Wal?). For the Holevo class of cost
functions the optimal POM becomes

a1($) = S2le(®)le()], (14)

where the (Dirac) normalizable vectors |e(¢)) are
given by

le($)) = €"|n). (15)

nes

The vectors |e(¢)) generalize the Susskind-
Glogower representation |e'¢) = 32 &"¥|n) for
generic integer spectrum. Therefore, the optimal
POM du(¢) is the projector on the state |e(¢h)) in
the Hilbert space Hj, and it is orthogonal for either
§ =127, or § = Z,, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix pp which is a mixture of states in H), with the
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additional constraint of having constant phase along
the diagonals. This can be easily proved by re-phasing
the basis |n) in such a way that all matrix elements of
po become positive. Then the assertion easily follows
in a way similar to the derivation from Eq. (10) to
Eq. (13). Moreover, it is easy to see that the pure
state case minimizes the cost, which for the optimal
POM is given by C = =Y 5 a2 ,es{nlpoln + 1)
(remember that py > O implies that |{n|po|m)|> <
{n|po|n){m|po|lm), and the bound is achieved by the
pure state case {n|po|m) = wiw,,). Finally, we want
to emphasize that for the bounded spectrum § = Z,
there is no need for considering a continuous phase
du(e). In fact, it is easy to show [12] that the
same average cost is achieved by restricting ¢ to
the set of discrete values {¢; = 27s/q, s € Z,},
(g = dim(H)), and using as the optimal POM the
orthogonal projector-valued operator |e( ;) ){e(¢s)|.

Once the form of the optimal POM is fixed, one
can optimize the state |o) solving the linear problem
in Eq. (8). In the following we show two examples
of estimation of the phase shift pertaining to highly
degenerate integer operators (finite dimensional cases
are considered in Ref. [12]) In the ﬁrst example
we consider the operator A = El lla, a; that de-
scribes a multi-path interferometer, involving M dif-
ferent modes of radiation. In the second, we focus our
attention on the two-mode phase estimation using un-
conventional heterodyne detection, where the phase-
shift operator H = ata— b'b is given by the difference
of photon numbers of the two modes.

3. Optimal POM for multi-path interferometer

We consider the operator
M
A= Z la,T a; (16)

as the generator of the phase shift in Eq. (1). Such
phase shift affects an M-mode state of radiation in a
multi-path interferometer, where contiguous paths suf-
fer a fixed relative phase shift ¢ [13] (this is also a
schematic representation of the phase shift accumu-
lated by successive reflections in a Fabry-Perot cav-
ity). The operator A in Eq. (1) has an integer de-
generate spectrum S = N. We can take into account

the degeneracy by renaming the number of photons of
different modes as follows,

Hl")u =n|n)u, (17)
with ¥ = (12,73, ...,vy), and
M
|n>vi n—ZlVl>®|V2>®IV3>®...®|VM). (18)
=2

The allowed values of v are restricted to the set &

given by
k k—2V2
H,w_o,l,...,[ : ]

k—SM-1
wﬁ{__i%]}’ (19)

where [x] denotes the integer part of x.

For the unshifted initial state |¢g) we choose a
linear symmetrized superposition of eigenvectors in
Eq. (17), namely

Ekﬁ{vz=0,1,...,

o) =D Wal)eym. (20)
where
1
|n)5}’m = \/N_-
M
X Za(sz - n)m Y ® 1) ®...® [vu),
{m} I=1
(21)

N, being the number of elements » € £,. Without
loss of generality, the basis |n)¢m has been chosen
such that the coefficients w, in Eq. (20) are real and
positive. According to Eqs. (14) and (15) the optimal
POM readily reads as follows,

d¢
du(e) = % Z eltn-m¢ In>sym sym(ml- (22)

n,.m=0

One can now choose a cost function and then mini-
mize the average cost for the POM (22) upon vary-
ing the coefficients w), of the state (20). By choosing
the cost function C(¢) = 4sin’(¢/2) and by impos-
ing the normalization constraint through the Lagrange
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multiplier A, the eigenvalue equation (8) gives the re-
cursion for the coefficients w, of the form

Wy + Wi — 2AW,41 = 0. (23)

The solutions of Eq. (23) can be found in terms of
the Chebyshev’s polynomials, and the corresponding
optimal state written as follows,

2 1/2 oo
&) = (7—7_) gsm[(n + 1)0])|1)sym.
# = arccos A. (24)

The state in Eq. (24) is Dirac normalizable. It is for-
mally equivalent to the eigenstate of the cosine oper-
ator C of the phase of a single mode [ 14]. The Dirac
normalizability comes from the non-existence of nor-
malizable states that minimize the uncertainty relation
for cosine and sine operators,

AC AS > L([€, 81)] = L(joy(o]), (25)

as proved in Ref. [15].

4. Phase difference of two-mode fields

In the previous example, A was bounded from be-
low and S = N, such that the degenerate case is re-
duced to the standard Holevo’s problem. For the dif-
ference operator A = ata — b'b one has § = Z, and
the set of eigenvectors |d), can be written in terms of
the joint eigenvector |n)|m) for the number operators
ata and bTb with eigenvalues n and m as follows,

ld), =1d +»)|v),
deZ, ve[max(0,—d),+o0). (26)
We consider an initial state |y) of the form

+0oo

[0) = 10l0)[0) + Y _ (ha[m}{0) + h—y[0)[m}),  (27)

n=1

where the basis has been chosen to have A, > 0,
Vn. The optimal POM can be written in the form of
Eq. (14) in terms of the vectors [A,), n € Z, where

[An) = |n)o = [n)|0),  n >0,
= |n) = [0){In]), n<O. (28)

Here, the generalized Susskind-Glogower vector
le(#)) is given by

le(#)) =Y €"%|A,) =10)|0)

n€Z

+o0
+ D (&9 1d)[0) + e 10)|d)). (29)
d=1

Notice that, differently from the usual case of spectrum
S = N, now the POM is orthogonal (in the Dirac
sense),

+00
(e(P)le(d)= Y "4 =8,0(¢ — &),

n=—0o0

(30)

where 8,2, (@) is the Dirac comb. This means that in
this case it is possible to define a self-adjoint phase
operator

+
é= / ddle($))(e(d)|8. (31)

as already noticed by Hradil and Shapiro [9,10].

We now address the problem of finding the nor-
malized state of the form (27) with a finite mean
photon number that minimizes the average cost evalu-
ated through the ideal POM (14). As a cost function
we choose again C () = 4 sin’(¢ /2) (periodicized-
variance criterion), corresponding to the cost operator

C=2-¢"-e, (32)

where

et = )Ml €7 = (eD)N. (33)
n€Z

Introducing the energy operator £ = ata + bth and
an additional Lagrange parameter accounting for finite
mean energy (E), the eigenvalue problem in Eq. (8)
can be rewritten as follows,

(€ — X —u(ala+ bTb) ] |go) =0, (34)

where A" and u' are the Lagrange multipliers for nor-
malization and mean energy, respectively. The follow-
ing recursion relations for the coefficients %, are ob-
tained,

hnit + by — p(A + [n)) by = 0, (35)
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with A = (A’ —2)/u’ and u = —p'. The solution of
Eq. (35) is given in terms of Bessel functions of the
first kind in the following form,

By = k(A 1) Tacin (2/ 1), (36)

k(A, u) being the constant of normalization,

+00o —-1/2
k(A p) = ( J§+|n|(2/#)> . (37)

n=—

The matching of the recursion for positive and negative
indices leads to the condition

A2/ 1) — (2 ) a1 (2/ )
d
= (2/u) —=—=J(2/u) = 0. (38)
( /“)d(Z/,u) A(2/u
Eq. (38) has infinitely many solutions u = u(A),
and one needs to further minimize the average cost in
Eq. (2) versus the average photon number N param-
eterized by A and u = u(A)

+o0
N = 2k(A,u)2> anfﬂ(z/u)). (39)
n=0

In this way one can find the normalized and finite-
energy states that achieve the minimum cost for the
optimal POM.

The solution (36) of the recursive relation (35)
has some similarity with the solution for the min-

imum phase-uncertainty states of a single-mode
field [14,15]. The proof of convergence of the series
in Eq. (37) can be found in Ref. [15]. However, the
matching condition (38) (instead of the vanishing
condition for h, with n < O for one mode) makes the
two-mode phase estimation problem more difficult,
since one cannot exploit the properties of the zeros of
the Bessel functions in an asymptotic approximation,
as done in Ref. [16] for the single-mode case.
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