
ar
X

iv
:0

91
2.

01
95

v1
 [

qu
an

t-
ph

]
 1

 D
ec

 2
00

9
1

..

Beyond Quantum Computers

G. Chiribella∗, G. M. D’Ariano∗, P.Perinotti∗, B. Valiron†

∗QUIT Group, Dipartimento di Fisica “A. Volta”, via Bassi 6,
27100 Pavia, Italy
†LIX/INRIA, École Polytechnique, 91280 Palaiseau, France
..

Quantum Computers are the computers of the future.
They will be capable of computational tasks that are un-
feasible by the “classical” computers that we use everyday.
A quantum computer processes quantum bits (qubits),
whose value can be not only 0 and 1 as for a classical
bit, but also every possible “superposition” of 0 and 1.

The “information” that is processed by this new type of
computers is “quantum”. It is made of entanglement—the
most elusive feature of Quantum Mechanics. Entangle-
ment provides correlations between separate systems that
we cannot understand in classical terms as if they were
due to unknown fluctuating local variables. For this rea-
son Einstein used to address entanglement as spooky action

at a distance. It is from the magic of entanglement and
of superposition that the power of quantum computers
comes from.

Quantum information processing, however, is not the
ultimate physical model of computation that we can con-
ceive in our quantum world. A computation always trans-
forms an input into an output, but these do not have to
be necessarily qubits: one can e.g. consider a computa-
tion where the input is a physical transformation provided
as a black box, and the output is also a transformation,
obtained from the input black box by means of suitable
physical operations. This kind of “higher-order” quantum
computation includes the basic quantum information pro-
cessing as a special case and is potentially more powerful.
Here we show that there are computations that are admis-
sible in principle—i.e. their existence does not lead to any
paradoxical or unphysical effect—and yet cannot be real-
ized by a usual quantum circuit. In order to implement
this new kind of computations one needs to change the
rules of quantum circuits, also considering circuits where
the geometry of the connections can be itself in a quantum
superposition.

What is a quantum computer? And what does it compute? The
first quantum computational model was the Quantum Turing Ma-
chine introduced by Deutsch in 1985 [1] in analogy with the classi-
cal Turing machine. Quantum Turing machines however were not
very intuitive to deal with. Few years later, an alternative model
was presented, namely the quantum circuit model [2], in which the
computation is described as a sequence of transformations (logical
gates) acting on a register of input qubits. The quantum circuit
model was then proved to be equivalent to the quantum Turing
machine for a class of computations that can be described as pro-
cessing of input qubits [3]. Since then the quantum circuit model
has grown definitely more popular, due the discovery of powerful
quantum algorithms, like Shor’s one for factoring integers in poly-
nomial time, or Grover’s one for searching a database of size N in√
N steps, which have been invented in the framework of quantum

circuits.
Let us start by illustrating quantum circuits and their basic rules

in a simple example:

• •
�������� • ��������

f U g

Here each wire is drawn in space, but the path from left to right
in the circuit does not represent a path in space: instead, it is the

time evolution of a qubit from past to future. In the above example

the boxes f and g implement a quantum processing on a single

qubit, e. g. a binary function. The symbol •�������� is a C-NOT

(controlled-not) transformation: this transforms two qubits jointly,
with the target qubit (wire with ⊕) which undergoes the identity
transformation if the control-qubit (wire with •) is in the state |0〉
and the NOT transformation |0〉 ↔ |1〉 if the control-qubit is in
the state |1〉. When the control-qubit is in the superposition state
1√
2
(|0〉 + |1〉) (and the target is in the state |0〉) the two qubits

at the output become entangled in the state 1√
2
(|0〉 |0〉 + |1〉 |1〉).

The symbol
•
U

is a C-U (controlled-unitary), a generalization

of the control-not, with the transformation U replacing the NOT
transformation of the C-NOT.

It is worth stressing that the quantum circuit is a computational
circuit—not a physical one: while in the physical circuit we can
have loops (for example when a system passes twice through the
same physical device), in the computational circuit there are no
loops (when we apply twice a transformation to the same system
we just draw two times the same box). The computational cir-
cuit represents the actual flow of information during the run of a
“program”. It is also important to make clear the distinction be-
tween program and computational circuit, the former being a set
of instructions to build up the latter. In the computational circuit
the “wires” can never go backward, because this would mean to go
backward in time, whereas, on the contrary, in the program code
we can have commands pointing back to a previous instruction.

The framework of quantum circuits is used in quantum computer
science to evaluate the amount of computational resources used in
an algorithm (e. g. number of oracle calls, number of qubits, length
of the computation, etc.). We summarize here few basic rules that
characterize ordinary quantum circuits and the associated resource
counting. From now on, a circuit satisfying this set of rules will be
referred to as a computational circuit.

1. qubits are represented by wires;

2. a box on a single wire represents a transformation on the
corresponding system, whence on multiple wires generally
describes an interaction between the corresponding systems;

3. input/output relations proceed from left to right and there
are no loops in the circuit;

4. each box represents a single use of the corresponding trans-
formation.

As already mentioned, this framework has been a fertile ground
for the development of quantum algorithms. In most algorithms
the input data are encoded in a unitary transformation performed
by a black box (the oracle), which is called as a subroutine during
the computation. This is the case e.g. of Deutsch-Josza, Simon’s,
Shor’s, and Grover’s algorithms, to give just a few examples. The
core of all this algorithms can be described as a “computation” that
takes as input a certain number of calls to the oracle, and returns
as output some classical data, like the period of a function, or the
prime factors of a number. Despite the fact that the input data are
encoded in a black box, however, all these algorithms are realized
as the evolution of qubits through a quantum circuit which simply
contains the available black boxes as elements. Is this a general
rule? Do quantum circuits allow for the computation of all possi-
ble functions whose input is a box, rather than a qubit register?
This question is inspired by Church’s notion of computation [4],
which allows one to compute functions of functions, rather than
only functions of bits. We now show that the answer to the ques-
tion is negative: i) there exist functions of boxes that are clearly
computable (they are achieved by means of elementary operations),
but their computation cannot be represented by a circuit obeying
rules 1-4. Moreover, ii) there are functions that might be com-
puted in principle without leading to any unphysical effect, which
however cannot be achieved by an ordinary quantum circuit.

http://arxiv.org/abs/0912.0195v1

2

The key counterexample for point i) is provided by the following

function of boxes f and g , that depends on a control bit x:

S
“

x, f , g
”

=

8

<

:

f g x = 1

g f x = 0
(1)

The two boxes f and g —along with the classical bit x—are the

input of the function, and must be regarded as single calls to two
different oracles during the computation. The above example can
be generalized in various ways, for example by putting between f

and g a third box Ux that depends on the value of the bit x, or

by leaving between f and g an open slot in which a third arbitrary
transformation can be inserted. It is easy to imagine a physical
device that implements the function S. Consider a machine with

two slots, in which the user can plug two variable boxes f and

g at his choice, as in the following figure.

f g

The machine is programmed with the following code:
PROGRAM "SWITCH"

if x = 1
then

do f g

else

do g f
endif

We can imagine that the machine has movable wires inside, that

can connect the boxes f and g in two possible ways depending

on the value of the classical bit x, thus implementing the SWITCH

function. Ordinary quantum circuits, however, don’t have such
movable wires. They can have controlled swap operations, but

once a time-ordering between f and g has been chosen in the

circuit, there is no way to reverse it:

Theorem 1 (No-switch of boxes). The program SWITCH

cannot be achieved deterministically by a computational circuit

in which f and g represent single calls to variable oracles.

Proof. Suppose by absurd that there exists a deterministic circuit
performing the program SWITCH. Then we must have

A
f

B

g

C
|x〉

=

8

<

:

f g x = 1

g f x = 0

where A B and C are deterministic sub-circuits (possibly including
the preparation of ancillary qubits). By linearity, for x = 0 the
fixed circuit also locally switches bipartite boxes. In the case of
two swap gates, for x = 0 the output would be a circuit containing
a time loop, represented by a dashed line in the following diagram:

A

S

B

S

C
|0〉

=

S S

By simple algebra one can verify that right-hand side does not pre-
serve normalization of states. This is in contradiction with the fact
that the left-hand side is the composition of deterministic boxes,
and, therefore, it preserves normalization. �

The proof shows that a computational circuit implementing the
program SWITCH would allow one to build a closed time-like curve
within a computational circuit, thus breaking rule 4. This fact is
not a coincidence: in the following we will see that also the converse
is true, namely a qubit in a time loop would allow one to build a
computational circuit for the program SWITCH.

The program SWITCH is the prototype of a higher-order compu-
tation of the kind described in the λ-calculus by Church [4], with
the input being a function instead of a block of data. As a conse-
quence of Theorem 1, the higher-order computation represented by
the program SWITCH cannot be implemented by a quantum circuit

that contains only one use of f and g in a pre-defined order.

In fact, the realization of the program SWITCH by a computa-
tional circuit obeying rules 1-4 is impossible not only in the quan-
tum world, but also in the classical one, where qubits are replaced
by ordinary bits. However, in the classical case this realization
problem arises only in distributed computation, when the input
functions f and g are provided as “physical” machines connected
in a circuit, rather than as sets of programming data defining two
subroutines. Indeed, when functions are encoded into strings of
bits, they can be processed by a circuit in the standard way. This
is essentially the reason why in the classical case the Turing machine
and the λ-calculus give rise to equivalent notions of computation
(in particular, any higher-order function can be encoded on the
tape of the Turing machine, which emulates the evaluation of the
function).

In the quantum case the equivalence between Church’s and Tur-
ing’s notions of computation is a much more delicate issue. A quan-
tum version of λ-calculus was formulated in Ref. [6], and proved to
be equivalent to the quantum Turing machine, in the same sense
as in the classical case. However, this proposal treats only unitary
boxes, and, for example, cannot describe the program SWITCH if the
input functions f and g are not unitaries. Another quantum version
of λ-calculus, presented in Ref. [7], describes quantum computa-
tion assisted by classical control, and, in particular, it is able to
express the SWITCH function with arbitrary input boxes. Whether
or not a quantum Turing machine can emulate all higher-order
computations allowed by this language is still an open question.

It is worth stressing that the relevance of the no-switch theorem
is independent of the problem of establishing a formal equivalence
between different notions of computation: the main point here is
the physical implementation of the SWITCH program as an actual
transformation of physical boxes. From this point of view, hav-
ing an abstract encoding of the functions f, g into quantum states
|f〉, |g〉 is not a satisfying solution: one use of the unknown boxes

f and g is a very different physical resource from one copy of

the states |f〉, |g〉 . Indeed, the conversion f ↔ |f〉 cannot be

achieved in a physically reversible way, since if it were, it would
violate the no-programming theorem [5].

Focusing attention on the quantum circuit model, the origin of
the problem in realizing the program SWITCH as a computational
circuit obeying rules 1-4 is twofold. The first limitation arises from
the fact that the oracles f and g are restricted to be called once,

so that the circuit must contain boxes f and g only once (rule

4) and in a definite time order (rule 4). Indeed, a computational
circuit that produces the same output of the program SWITCH ac-
tually exists, but it requires two calls to both oracles f and g, e. g.

3

as follows

|x〉 • •

S

g f
S

f g

This circuit achieves the desired transformation over the qubit in
the middle wire depending on the state of the controlling qubit

at the top wire. Here
•
S

is a control-swap gate, exchanging

the two input qubits depending on the state of the control qubit.

On the other hand, if the input are two black boxes f , g , the

possibility of achieving two uses from a single one is ruled out by
the no-cloning theorem for boxes [8]. Again, the limitation due to
the single call constraint is strictly related to the “physical” nature

of the unknown black boxes f and g . If we knew what f and

g are, we would be able to duplicate them, thus making possible

the computation of the function S(x, f , g) through the above

circuit.

Another factor that prevents the implementation of the program
SWITCH as a computational circuit is the requirement that the pro-
gram succeeds deterministically. Indeed, rules 1-5 do not forbid
achieving the task with some probability. In particular, a compu-
tational circuit that uses probabilistic teleportation succeeds in the
task with probability 1/4

• X •

S

g

S

Φ+

76
01

f
E
54
23

Here Φ+ is a maximally entangled state of two qubits and E de-
notes the projection on Φ+, which is a the outcome of a Bell mea-
surement. When the outcome E occurs in this circuit, we may say
that the third qubit (from the top) has been teleported from the
future back to the past. In this case it is easy to see that if the

control qubit is in state |1〉 one obtains the sequence “ f followed

by g ” acting on the second input qubit, while if the control qubit

is in state |0〉 the boxes are exchanged. What’s more, if one puts
the control qubit in the superposition |0〉 + |1〉 one would get the
superposition of the two orderings of the boxes, namely the output
of the circuit is proportional to UfUg |ψ〉 |1〉 + UgUf |ψ〉 |0〉, where
|ψ〉 is the input state of the qubit in the middle wire, and Uf and

Ug denote the unitary operators corresponding to boxes f and

g , respectively. Note, however, that the probability of achieving

the program SWITCH for f and g transforming N qubits goes to

zero exponentially as 4−N versus the number N of input qubits for
each box.

If we artificially scale the projection E to achieve the SWITCH

with unit probability of success, we introduce a loop in the cir-
cuit: The loop represents a qubit that travels backward in time,
thus violating causality as expressed by rule 4. In a sense, this
simple example is complementary to the results of Ref. [9], which
showed that closed time-like curves do not improve tasks of first-
order computation, like state discrimination. Here we have instead
an impossible higher-order computation that would become realiz-
able by a quantum circuit if a closed time-like curve were available.
Note however, that the teleportation-based model of time travel
considered here is different from the nonlinear model by Deutsch
[10], which provided the framework for the results of Ref. [9].

X

S S

g

f

The question that we address now is: what rule in the theory
of computational circuits can be modified in order to recover the

physical implementation of the function S(x, f , g) of Eq. (1),

whose computation is achieved through the program SWITCH? One
possibility is to modify rule 4, and to allow for circuits contain-
ing certain time loops. However, introducing time travels in the
model seems a rather drastic solution. A more moderate approach
is to modify rule 4: In particular, we may assume that the resource
provided by a single call to each of the two physical oracles—that

would be separately described as f and g —in a causal succes-

sion that can be decided by the user, is described in circuital terms
as a single oracle with classical control:

f/g g/f

where the wire on the bottom left denotes the control qubit, whose
general state is |ϕ〉 = α|0〉 + β|1〉 with |α|2 + |β|2 = 1. The input
x is encoded on the state |ϕ〉 as follows: for x = 0 we prepare
|ϕ〉 = |0〉, for x = 1 we prepare |ϕ〉 = |1〉. If the two qubits on the
top lines are in the states ρ1 and ρ2, respectively, the action of the
oracle is given by

Of,g(|ϕ〉〈ϕ| ⊗ ρ1 ⊗ ρ2) =|〈1|ϕ〉|2 Ufρ1U
†
f
⊗ Ugρ2U

†
g

+ |〈0|ϕ〉|2 Ugρ1U
†
g ⊗ Ufρ2U

†
f

(2)

This way of representing the oracle is consistent with the basic
properties that one expects for the resource, namely that it perform

two successive transformations, one being a call of the box f and

the other a call of the box g , with the order of such calls can be

controlled by the variable x encoded in the state |ϕ〉. During the
time interval between the calls to the oracle, any transformation
can happen, including evolutions transforming the first output into
the second input. Exploiting the latter representation of the oracle
one can clearly implement the program SWITCH, just by connecting
the output of the first box with the input of the second one, and
encoding the bit x in the state |ϕ〉 as follows

f/g g/f
|ϕ〉

If we assume that the oracle of Eq. (2) translates the resource
provided by a single use of the physical boxes corresponding to

f , g with classical control of the causal ordering, we can then

consider the function S(x, f , g) as computable by a quantum

circuit exploiting this resource.
Such an oracle can be achieved in practice, for example, by a

physical circuit in which the connections between wires are mov-
able, as in Fig. 1. While representing automated classical control
of causal sequences of operations through the above oracle allows
to recover the description of the program SWITCH within the com-
putational circuit model, it leaves unanswered the question how
quantum control of causal sequences of operations can be described.
We can of course imagine a further generalization of the oracle, al-
lowing for quantum control, with the control qubit that preserves
coherence and becomes entangled with the causal ordering of boxes

f and g as follows

f/g g/f

4

|0>

f

g

|1>

f

g

FIG. 1: Quantum machine with classical control over movable
wires.

The corresponding unitary operator is the following

Wf,g = |0〉〈0| ⊗ Uf ⊗ Ug + |1〉〈1| ⊗ Ug ⊗ Uf (3)

The above construction can be suitably generalized when f and g
are not unitary boxes, but noisy quantum channels: in this case, it
is enough to use the above formula to define the Kraus operators of
the channel with quantum control in terms of the Kraus operators
of the input channels.

The oracle with quantum control is more general and more pow-
erful than the classically controlled one introduced in Eq. (2). In-
deed, having Wf,g at disposal one can implement the classically
controlled oracle Of,g by using Wf,g and then discarding the con-
trol qubit.

How can we build the controlled gate Wf,g if we have at disposal
one use of the black boxes for f and g? Again, this is a question that
the circuit model is unable to answer. In principle, there is no phys-
ical reason to forbid the computability of the higher-order function
defined by W : f ⊗ g 7→Wf,g . This function is defined not only on
product boxes, but also on the more general class of non signaling
bipartite boxes, i.e. boxes for which the output state of each qubit
is independent of the input state of the other. The function is linear
in its argument, transforms deterministic boxes into deterministic
boxes, and can also be applied locally to multipartite boxes with-
out giving rise to unphysical effects like negative probabilities. The
computation of this function is in principle admissible, according
to the notion of admissibility originally developed in Ref. [11] for
functions that are compatible with a pre-defined causal ordering of
all quantum systems. Here, although the computation of Wf,g is
compatible with quantum mechanics, it cannot be implemented by
a circuit with the rules 1-4, due to the lack of a pre-defined causal
ordering. Moreover, it is also possible to prove that no circuit using
the oracle with classical control Of,g can simulate the oracle with
quantum control Wf,g.

To imagine a way to build up the controlled gate Wf,g from the

boxes f and g , we need to go beyond the usual language of quan-

tum circuits, and to consider also circuits with movable wires that
can be also in quantum superpositions. For example, we can con-
sider a thought experiment where the physical circuit with movable
wires depicted in Fig. 1 can be controlled by a qubit in a way that
preserves superpositions, with the control qubit interacting with
switches and controlling them in a correlated way, as represented
in Fig. 2. Like in the Schrödinger cat thought experiment, in this
case we would have a mechanism producing entanglement between
a microscopic system (the control qubit) and a macroscopic one
(the position of the switches). Notice however that quantum con-
trol of transformations is even more powerful than quantum entan-
glement, which is the feature giving rise to the classical Schrödinger
cat experiment. Indeed, a control-unitary gate can be always used
to generate a certain amount of entanglement. It is worth stressing
that the subcircuit described by the oracle with quantum control
has not to be meant as describing operations performed by a hu-
man observer: This would sound highly paradoxical, since in such
a case, we would have to cope not just with cats in a superposition
of dead/alive, but, even more dramatically, with operators whose
free will can be in superposition of taking decision A or decision B.

|0>+|1>

f

g

FIG. 2: Quantum machine with quantum control over movable
wires.

The open question now is whether quantum control over the
geometry of the connections in the circuit is enough to physically
implement all possible functions of boxes that are compatible with
Quantum Mechanics.

A circuit model in which the states of quantum systems can
control the structure of a causal network immediately suggests
the analogy with a quantum gravity scenario, in which the space-
time geometry can be entangled with the state of physical sys-
tems. We argue that exhaustive analysis of higher-order transfor-
mations in quantum mechanics will provide some insight in the
relation between quantum mechanics and general relativity, within
a framework similar to that of Ref. [12]. Moreover, the theory
of higher-order quantum computation with quantum control will
provide a computational model—which should be formalized by a
suitable generalization of quantum λ-calculus with classical control
[7]—that could possibly describe a wider range of computations
compared to the Quantum Turing Machine operating only at first-
order, thus breaking the equivalence between Church’s and Turing’s
notions of computation [13].

Besides the problem of abstract computational equivalence, the
physical implementation of higher-order functions discussed has an
interesting relation to the paradigm of the universe as a quantum
computer [14]. Indeed, one can wonder what kind of quantum com-
puter the universe is: It could be a gigantic quantum circuit, or a
quantum Turing machine, or also be a higher-order computer, that
processes information encoded in transformations (e.g. in scatter-
ing amplitudes) rather than in states. Even if these three models
turned out to be equivalent from an abstract computational point
of view, they would nevertheless remain very different from the
physical one, as they are based on different physical mechanisms.
Moreover, as we already mentioned, the third model has still to
be completely formulated: what is presently lacking is a complete
physical theory that specifies all transformations of boxes that are
possible in nature. A piece of Quantum Mechanics still needs to be
written.

In conclusion, after summarizing the main rules of computa-
tional circuits, we exhibited a higher-order function—namely a
function of physical boxes—that is computable by elementary op-
erations but whose computation cannot be described by a quantum
circuit obeying the usual rules. We proposed a minimal change of
the rule for describing the oracles, introducing classical control of
causal sequences of operations, in such a way that the computation
of the class of higher-order functions including the SWITCH can be
expressed in circuital terms. We then discussed a further level of
generality, accounting for quantum control of the causal sequence
of operations. A complete physical theory of higher-order computa-
tion has not been developed yet, we expect it to reveal unexplored
aspects of quantum theory in a non-fixed causal framework.

We wish to thank P. Selinger for stimulating criticisms and dis-
cussions, during which he independently devised the realization of
the SWITCH program by a machine with movable wires. This work
was supported by EC through the project COQUIT.

5

[1] D. Deutsch, Quantum Theory, the Church-Turing Principle
and the Universal Quantum Computer, Proc. Roy. Soc. Lond.
A 400, pp. 97-117 (1985).

[2] D. Deutsch, Quantum Computational Networks Proc. Roy.
Soc. Lond. A 425, pp. 73-90 (1989).

[3] Andrew Yao Quantum circuit complexity, Proceedings of the
34th Annual Symposium on Foundations of Computer Science,
352 (1993).

[4] H. Barendregt, Lambda Calculi with Types, in Handbook of
Logic in Computer Science, Volume 2: Computational Struc-
tures, S. Abramski, D. M. Gabbay and T. S. E. Maibaum eds.,
(Oxford University Press, New York, 1993).

[5] M. A. Nielsen and I. L. Chuang, Phys. Rev. Lett. 79, 321
(1997).

[6] A. van Tonder. A lambda calculus for quantum computation,
SIAM Journal of Computing, 33 1109 (2004).

[7] P. Selinger and B. Valiron, A lambda calculus for quantum
computation with classical control, Math. Struct. in Comp.
Sci., 16 527 (2006)

[8] G. Chiribella, G. M. D’Ariano, P. Perinotti, Optimal Cloning
of Unitary Transformation, Phys. Rev. Lett. 101 180504
(2008).

[9] C. H. Bennett, D. Leung, G. Smith, and J. A. Smolin, Can
Closed Timelike Curves or Nonlinear Quantum Mechanics
Improve Quantum State Discrimination or Help Solve Hard
Problems?, Phys. Rev. Lett. 103, 170502 (2009).

[10] D. Deutsch, Quantum Mechanics near Closed Timelike Lines
Phys. Rev. D 44, 3197 - 3217 (1991).

[11] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Theoretical
Framework for Quantum Networks, Phys. Rev. A 80, 022339
(2009).

[12] L. Hardy, Towards quantum gravity: a framework for prob-
abilistic theories with non-fixed causal structure, J Phys A:
Math. Theor. 40, 3081-3099 (2007).

[13] B. J. Copeland, The Church-Turing Thesis, in The Stanford
Encyclopedia of Philosophy, E. N. Zalta ed., (Fall 2008 Edi-
tion).

[14] S. Lloyd, Programming the Universe: A Quantum Computer
Scientist Takes On the Cosmos , (Alfred A. Knopf, NewYork,
2006).

