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We address the problem of learning an unknown unitary transformation from a finite number of examples.
The problem consists in finding the learning machine that optimally emulates the examples, thus reproducing the
unknown unitary with maximum fidelity. Learning a unitary is equivalent to storing it in the state of a quantum
memory (the memory of the learning machine) and subsequently retrieving it. We prove that, whenever the
unknown unitary is drawn from a group, the optimal strategy consists in a parallel call of the available uses
followed by a “measure-and-rotate” retrieving. Differing from the case of quantum cloning, where the incoherent
“measure-and-prepare” strategies are typically suboptimal, in the case of learning the “measure-and-rotate”
strategy is optimal even when the learning machine is asked to reproduce a single copy of the unknown unitary.
We finally address the problem of the optimal inversion of an unknown unitary evolution, showing also in this
case the optimality of the “measure-and-rotate” strategies and applying our result to the optimal approximate
realignment of reference frames for quantum communication.
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I. INTRODUCTION

A quantum memory would be an invaluable resource for
quantum technology, and extensive experimental work is in
progress for its realization [1–3]. On a quantum memory
one can store unknown quantum states. Can we exploit it
to store an unknown quantum transformation? In this way
we could transmit the transformation to a distant party by
just transmitting a state, without the need of transferring the
device. More generally, we could process the transformation
with the usual state manipulation techniques, as noticed by
Vidal, Masanes, and Cirac, who addressed the problem in
Ref. [4].

Storing-retrieving of transformations can also be seen as
an instance of quantum learning, a topic which received
increasing attention in the past few years (see, e.g., Refs. [5–7]
for different approaches): Suppose that a user can dispose
of N uses of a black box implementing an unknown unitary
transformation U . Today the user is allowed to exploit the black
box at his or her convenience, running an arbitrary quantum
circuit that makes N calls to it. Tomorrow, however, the black
box will no longer be available, and the user will be asked to
reproduce U on a new input state |ψ〉 unknown to him or her.
We refer to this scenario as to quantum learning of the unitary
U from a finite set of N examples. Generally, the user may
be required to reproduce U more than once, i.e., to produce
M ! 1 copies of U . In this case it is important to assess how
the performance of learning decays with the number of copies
required, as it was done in the case of quantum cloning [8].

Let us consider first the M = N = 1 case. Clearly, the only
thing we can do today is to apply the black box to a known
(generally entangled) state |ϕ〉. After that, what remains is the
state |ϕU 〉 = (U ⊗ I )|ϕ〉, that can be stored in a quantum mem-
ory. Then, when the new input state |ψ〉 becomes available,

we send |ψ〉 and |ϕU 〉 to an optimal retrieving channel, which
emulates U applied to |ψ〉. If N > 1 input copies are available,
we must also find the best storing strategy: we can, e.g., opt
for a parallel strategy where U is applied on N different
systems, yielding (U⊗N ⊗ I )|ϕ〉, or for a sequential strategy
where U is applied N times on the same system, alternated
with other known unitaries, yielding (UVN−1 · · ·V2UV1U ⊗
I )|ϕ〉. The most general storing strategy is described by a
quantum circuit board, i.e., a quantum network with open slots
where the input copies can be inserted [9,10]. In summary,
solving the problem of the optimal quantum learning means
finding the optimal storing board and the optimal retrieving
channel.

An alternative to coherent retrieval is to estimate U , to
store the outcome in a classical memory, and to perform
the estimated unitary on the new input state. This incoherent
estimation-based strategy has the double advantage of avoiding
the expensive use of a quantum memory (which nowadays
cannot store information for more than few milliseconds)
and of allowing one to reproduce U an unlimited number
of times with constant quality. However, estimation-based
strategies are typically suboptimal for the similar task of
quantum cloning [8], and, by analogy, one would expect a
coherent retrieval to achieve better performances. Surprisingly,
we find that whenever the unknown unitary is randomly drawn
from a group the incoherent strategies already achieve the
ultimate performances for quantum learning. In particular, we
show that the performance of the optimal retrieving channel
is equal to that of optimal estimation. For example, for a
completely unknown qubit unitary the optimal fidelity behaves
as F = 1 − O(N−2) asymptotically for large N . Our result can
be also extended to solve the problem of optimal inversion of
the unknown U , in which the user is asked to perform U †.
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In this case, we provide the optimal approximate realignment
of reference frames for the quantum communication scenario
considered by Ref. [11], reaching the above asymptotic fidelity
without ancilla. The article is structured as follows: in Sec. II
we introduce the notation and the theoretical framework used
to solve the problem of optimal learning. The optimization
is then presented in Sec. III by first addressing the case of
a single output copy (Sec. III A), and subsequently showing
how to generalize the argument to the case of M > 1 output
copies (Sec. III B). In Sec. IV we discuss the problem of the
optimal inversion of an unknown quantum dynamics, which
can be regarded as a small variation of our learning problem.
Section V concludes the article with a summary of the main
results.

II. NOTATION AND THEORETICAL FRAMEWORK

To derive the optimal learning we use the method of
quantum combs [9], briefly summarized here. For more details
and for an extensive presentation of the method we refer to
Ref. [10].

Let Lin(H) denote the space of linear operators acting on the
Hilbert spaceH, and Lin(H,K) be the space of linear operators
from H to K. In the following we will use the one-to-one
correspondence between bipartite vectors |A〉〉 ∈ K ⊗ H and
linear operators A ∈ Lin(H,K) given by

|A〉〉 =
dim(K)∑

m=1

dim(H)∑

n=1

〈m|A|n〉|m〉|n〉, (1)

where {|m〉}dim(K)
m=1 and {|n〉}dim(H)

n=1 are two fixed orthonormal
bases for K and H, respectively.

If A and B are two commuting operators in Lin(H) it is
simple to derive from Eq. (1) the equality

(A ⊗ IH)|B〉〉 = (IH ⊗ AT )|B〉〉, (2)

where IH is the identity operator on H and AT denotes the
transpose of A with respect to the orthonormal basis {|n〉}.

A quantum channel C from Lin(H) to Lin(K) is a com-
pletely positive trace-preserving map, and is conveniently
described by its Choi-Jamiołkowski operator, namely by the
positive operator C ∈ Lin(K ⊗ H) defined by

C = (C ⊗ IH)(|IH〉〉〈〈IH|), (3)

where IH is the identity map on Lin(H), and, according
to Eq. (1), |IH〉〉 is the maximally entangled vector |IH〉〉 =∑dim(H)

n=1 |n〉|n〉 ∈ H⊗2.
The composition of two channels is represented in terms of

their Choi-Jamiołkowski operators by the link product [9,10].
Precisely, if D is a channel from K to L, the Choi operator of
the channel D ◦ C resulting from the composition of C and D
is given by the product

D ∗ C = TrK[(D ⊗ IH)(IL ⊗ CTK )], (4)

with TrK denoting partial transpose on K. Viewing states as
a special kind of channels with one-dimensional input space,
Eq. (4) yields C(ρ) = C ∗ ρ = TrH[C(IK ⊗ ρT )]. A channel
C from H to K is trace preserving if and only if it satisfies the

normalization condition

IK ∗ C ≡ TrK[C] = IH. (5)

For two channels with multipartite input and output, one
can decide to connect only some particular output of the first
channel to some input of the second one: for example, if C is a
channel from Lin(H ⊗ A) to Lin(K ⊗ B) and D is a channel
from Lin(A′ ⊗ K) to Lin(B′ ⊗ L) we can connect the wires
with the same label K, thus obtaining the new channel (D ⊗
IB)(IA′ ⊗ C), which is a channel from Lin(A′ ⊗ H ⊗ A) to
Lin(B′ ⊗ L ⊗ B). Accordingly, the connections of quantum
channels in a network will be encoded in the labels assigned to
the Hilbert spaces: whenever two spaces have the same label,
two channels acting on these spaces will be connected, and
their Choi-Jamiołkowski operators will be contracted with the
link product as in Eq. (4).

Remark (reordering of Hilbert spaces and commutativity
of the link product). Encoding the connections in the labeling
of the Hilbert spaces turns out to be very convenient in the
treatment of multipartite quantum networks, because some
formulas take a much simpler form if we suitably rearrange
the ordering of the Hilbert spaces in the tensor product. For
example, it may be convenient to rewrite the tensor product⊗2N+1

i=1 Hi putting all spaces with even labels on the left and
all spaces with odd labels on the right. This reordering can be
done safely as long as different Hilbert spaces have different
labels. Note that the link product of two Choi-Jamiołkowski
operators is commutative up to this reordering of Hilbert
spaces: for example, given two operators C ∈ Lin(K ⊗ H) and
D ∈ Lin(L ⊗ K) with H * K * L, we have D ∗ C = SWAP
(C ∗ D) SWAP, where SWAP is the operator that exchanges the
Hilbert spaces L and H in the tensor product L ⊗ H. The
reader should not be confused by fact that the link product is
commutative (up to reordering of the Hilbert spaces), whereas
the composition of channels is not (C ◦ D is in general different
from D ◦ C). The fact that the output of C is connected with
the input of D (and not the other way round) is encoded in
the fact that the output space of C has the same label of the
input space of D (here they are both labeled as K). In order to
express the different composition of channels corresponding
to C ◦ D we would have had to choose a different labeling, in
which the output of D is identified with the input of C.

A quantum circuit board is the quantum network resulting
from a sequence of multipartite channels where some input of
a channel is connected to some output of the previous one, as
we just illustrated. A quantum comb is the Choi-Jamiołkowski
operator associated to a quantum circuit board and is obtained
as the link product of all component channels. The fact that the
the circuit board represents a sequence of (trace-preserving)
channels is expressed by a set of linear equations [9,10], and,
therefore, optimizing a quantum circuit board is equivalent
to optimizing a positive operator subject to these linear
constraints. The constraints will be given explicitly for the
case of learning in the next section.

III. OPTIMIZATION OF LEARNING

In this section we show that the optimal quantum learning of
an unknown unitary randomly drawn from a group has a very
simple and general structure: (i) in order to store the unitary it is
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FIG. 1. The learning process is described by a quantum comb (in
white) representing the storing board, in which the N uses of a unitary
U are plugged, along with the state |ψ〉 (in gray). The wires represent
the input-output Hilbert spaces. The output of the first comb is stored
in a quantum memory, later used by the retrieving channel R.

enough to apply the available examples in parallel on a suitable
entangled state, (ii) the optimal state for storage has the same
form of an optimal state for estimation of the unknown unitary,
and (iii) the optimal retrieval can be achieved via estimation
of the unknown unitary, namely by measuring the quantum
memory, producing an estimate for the unknown unitary and,
finally, applying the estimate M times.

A. The M = 1 case

We tackle the optimization of learning starting from the
case where a single output copy is required. Referring to Fig. 1,
we label the Hilbert spaces of quantum systems according to
the following sequence: (H2n+1)N−1

n=0 are the inputs for the N

examples of U , and (H2n+2)N−1
n=0 are the corresponding outputs.

We denote by Hi =
⊗N−1

n=0 H2n+1 (Ho =
⊗N−1

n=0 H2n+2) the
Hilbert spaces of all inputs (outputs) of the N examples. The
input state |ψ〉 belongs to H2N+2, and the output state finally
produced belongs to H2N+3. All spaces Hn considered here
are d-dimensional, except the spaces H0 and H2N+1 which
are one-dimensional and are introduced just for notational
convenience. The comb of the whole learning process is an
operator L ! 0 on the tensor of all Hilbert spaces and satisfies
the normalization condition [9,10]:

Tr2k+1[L(k)] = I2k ⊗ L(k−1) k = 0, 1, . . . , N + 1, (6)

where L(N+1) = L, L(−1) = 1, and L(k) is a positive operator
on the spaces (Hn)2k+1

n=0 . When the N examples are connected
with the learning board, the user obtains a channel CU with
Choi operator given by

CU = L ∗ |U 〉〉〈〈U |⊗N

= Tri,o[L(I2N+3 ⊗ I2N+2 ⊗ (|U 〉〉〈〈U |⊗N )T )], (7)

as it follows from the definition of link product in Eq. (4).
As the figure of merit we maximize the fidelity of the

output state CU (|ψ〉〈ψ |) with the target state U |ψ〉〈ψ |U †,
uniformly averaged over all input pure states |ψ〉 and all
unknown unitaries U in the group G. Apart from irrelevant
constants, such optimization coincides with the maximization
of the channel fidelity between CU and the target unitary (i.e.,
the fidelity between the Choi-Jamiołkowski states CU/d and
|U 〉〉〈〈U |/d) averaged over U :

F = 1
d2

∫

G

Tr{L[|U 〉〉〈〈U | ⊗ (|U 〉〉〈〈U |⊗N )T ]} dU

= 1
d2

∫

G

〈〈U |〈〈U ∗|⊗NL|U ∗〉〉⊗N |U 〉〉 dU, (8)

U ∗ being the complex conjugate of U in the computational
basis, and dU denoting the normalized Haar measure. From

the expression of F it is easy to prove that there is no loss of
generality in requiring the commutation

[L,U2N+3 ⊗ V ∗
2N+2 ⊗ (U ∗ ⊗ V )⊗N ] = 0 ∀U, V ∈ G.

(9)

Moreover, using Eq. (6) for k = N + 1 we obtain
TrH2N+3 [L] = I2N+2 ⊗ L(N), where L(N) is a positive operator
acting on

⊗2N+1
n=0 Hn (recall that, however, H0 and H2N+1 are

one-dimensional). Reordering the Hilbert spaces in the tensor
product by putting all input spaces of the examples on the right
and all output spaces on the left and using Eq. (9) we then get

[
L(N), U ∗⊗N

o ⊗ V ⊗N
i

]
= 0 ∀U, V ∈ G. (10)

Here the subscripts i, o recall that U⊗N acts on the tensor prod-
uct of all output spaces Ho =

⊗N−1
n=0 H2n+1, while V ⊗N acts

on the tensor product of all input spaces Hi =
⊗N−1

n=0 H2n+1.
This leads to the following.

Lemma 1 (optimality of parallel storage). The optimal
storage of U can be achieved by applying U⊗N

o ⊗ I⊗N
i on

a suitable input state |ϕ〉 ∈ Ho ⊗ Hi .
Proof. According to Fig. 1, the learning board L re-

sults from the connection of the storing board S with
the retrieving channel R. In terms of the correspond-
ing Choi-Jamiołkowski operators L, S,R, respectively, one
has L = R ∗ S. Denoting by HM the Hilbert space of
the quantum memory in Fig. 1, we have that R is a
channel from (H2N+2 ⊗ HM ) to H2N+3 and satisfies the
normalization condition I2N+3 ∗ R = I2N+2 ⊗ IM . Using this
fact, one gets Tr2N+3[L] ≡ I2N+3 ∗ L = (I2N+3 ∗ R) ∗ S =
(I2N+2 ⊗ IM ) ∗ S = I2N+2 ⊗ TrM [S], which compared with
Eq. (6) for k = N + 1 implies TrM [S] = L(N). Now, without
loss of generality we take the storing board S to be a
sequence of isometries [9,10], which implies that S is rank
one: S = |$〉〉〈〈$|. With this choice, the state S/dN is a
purification of L(N)/dN . Again, one can choose w.l.o.g. S/dN

to be a state on (Ho ⊗ Hi) ⊗ (H′
o ⊗ H′

i), with H′
o * Ho and

H′
i * Hi and assume |$〉〉 = |L(N) 1

2 〉〉. Taking V = I in Eq.
(10) and using Eq. (2) we get (U⊗N

o ⊗ Ii,o′,i ′)|$〉〉 = (Io,i ⊗
UT

o′
⊗N ⊗ Ii ′ )|$〉〉. When the examples of U are connected to

the storing board, the output is the state ρU = S ∗ |U 〉〉〈〈U |⊗N
o,i .

Using the above relation we find that ρU is the projector on
the state |ϕU 〉 = (U⊗N

o′ ⊗ Ii ′ )|ϕ〉, where |ϕ〉 = 〈〈I⊗N |o,i |$〉〉 ∈
Ho′ ⊗ Hi ′ * Ho ⊗ Hi . This proves that every storing board
gives the same output that would be obtained with a parallel
scheme. In other words, every storing board can be simulated
applying (U⊗N

o ⊗ I⊗N
i ) to a suitable input state |ϕ〉 ∈ Ho ⊗

Hi . "
Optimizing learning is then reduced to finding the optimal

input state |ϕ〉 and the optimal retrieving channel R. The
fidelity can be computed substituting L = R ∗ S in Eq. (8) and
using the relation 〈〈U |〈〈U ∗|⊗N (R ∗ S)|U 〉〉|U ∗〉〉⊗N = 〈〈U |R|
U 〉〉 ∗ 〈〈U ∗|⊗NS|U ∗〉〉⊗N = 〈〈U |R|U 〉〉 ∗ |ϕU 〉〈ϕU |, which gives

F = 1
d2

∫

G

〈〈U |〈ϕ∗
U |R|U 〉〉|ϕ∗

U 〉dU. (11)
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Lemma 2 (optimal states for storage). The optimal input
state for storage can be taken of the form

|ϕ〉 =
⊕

j∈Irr(U⊗N )

√
pj

dj

|Ij 〉〉 ∈ H̃, (12)

where pj are probabilities, the index j runs over the set
Irr(U⊗N ) of all irreducible representations {Uj } contained in
the decomposition of {U⊗N }, and H̃ =

⊕
j∈Irr(U⊗N )(Hj ⊗ Hj )

is a subspace of Ho ⊗ Hi carrying the representation Ũ =⊕
j∈Irr(U⊗N)(Uj ⊗ Ij ), Ij being the identity in Hj .
Proof. Using Eqs. (2) and (10) it is possible to show that

the marginal state ρ = Tri[|ϕ〉〈ϕ|] is invariant under U⊗N .
Decomposing U⊗N into irreducible representations (irreps)
we have U⊗N =

⊕
j (Uj ⊗ Imj

), where Imj
is the identity

on an mj -dimensional multiplicity space Cmj . Therefore, ρ
must have the form ρ =

⊕
j pj (Ij /dj ⊗ ρj ), where ρj is

an arbitrary state on the multiplicity space Cmj . Since |ϕ〉
is a purification of ρ, with a suitable choice of basis we

have |ϕ〉 =| ρ 1
2 〉〉 =

⊕
j

√
pj/dj |Ij 〉〉|ρ

1
2
j 〉〉, which after storage

becomes |ϕU 〉 =
⊕

j

√
pj/dj |Uj 〉〉|ρ

1
2
j 〉〉. Hence, for every U

the state |ϕU 〉 belongs to the subspace H̃ =
⊕

j (H⊗2
j ⊗

|ρ
1
2
j 〉〉) *

⊕
j H

⊗2
j . "

We can then restrict our attention to the subspace H̃ and
consider retrieving channels R from (H2N+2 ⊗ H̃) to H2N+3.
The normalization of the Choi operator is then

Tr2N+3[R] = I2N+2 ⊗ IH̃. (13)

Combining the expression of the fidelity (8) with that of the
input state (12), it is easy to see that one can always use a
covariant retrieving channel, satisfying

[R,U2N+3 ⊗ V ∗
2N+2 ⊗ Ũ ∗Ṽ ′] = 0 ∀U, V ∈ G, (14)

where Ṽ ′ =
⊕

j (Ij ⊗ Vj ) acts on H̃. We now exploit the de-
compositions U ⊗ U ∗

j =
⊕

K∈Irr(U⊗U∗
j )(UK ⊗ Im

(j )
K

) and V ∗ ⊗
Vj =

⊕
L∈Irr(V∗⊗Vj)(V

∗
L ⊗ Im

(j )
L

), which yield

U2N+3 ⊗ V ∗
2N+2 ⊗ Ũ ∗Ṽ =

⊕

K,L

(
UK ⊗ V ∗

L ⊗ ImKL

)
. (15)

Here ImKL
is given by ImKL

=
⊕

j∈PKL
(Im

(j )
K

⊗ Im
(j )
L

), where
PKL is the set of values of j such that the irrep UK ⊗ V ∗

L

is contained in the decomposition of U ⊗ V ∗ ⊗ U ∗
j ⊗ Vj .

Relations (14) and (15) then imply

R =
⊕

K,L

(IK ⊗ IL ⊗ RKL), (16)

where RKL is a positive operator on the multiplicity space
CmJK =

⊕
j∈PKL

(Cm
(j )
K ⊗ Cm

(j )
L ). Moreover, using the equality

I ⊗ Ij =
⊕

K (IK ⊗ Im
(j )
K

) we obtain

|I 〉〉|ϕ∗〉 =
⊕

j

√
pj

dj

|I 〉〉|Ij 〉〉

=
⊕

j

⊕

K∈Irr(U⊗U∗
j )

√
pj

dj

|IK〉〉
∣∣Im

(j )
K

〉〉

=
⊕

K

⊕

j∈PKK

√
pj

dj

|IK〉〉
∣∣Im

(j )
K

〉〉

=
⊕

K

|IK〉〉|αK〉, (17)

where |IK〉〉 ∈ H⊗2
K and |αK〉 ∈ CmKK is given by

|αK〉 =
⊕

j∈PKK

√
pj/dj

∣∣Im
(j )
K

〉〉
. (18)

Exploiting Eqs. (16) and (17), the fidelity (11) can be rewritten
as

F =
∑

K

dK

d2
〈αK |RKK |αK〉. (19)

Theorem 1 (Optimal retrieving strategy). The optimal
retrieving of U from the memory state |ϕU 〉 is achieved
by measuring the ancilla with the optimal POVM PÛ =
|ηÛ 〉〈ηÛ | given by |ηÛ 〉 =

⊕
j

√
dj |Ûj 〉〉, and, conditionally

on outcome Û , by performing the unitary Û on the new input
system.

Proof. Let us denote by P
(j )
KL the projector on the tensor

product Cm
(j )
K ⊗ Cm

(j )
L and by R

(j )
KL = P

(j )
KLRKLP

(j )
KL the corre-

sponding diagonal block of RKL. Using Schur’s lemmas and
Eq. (16) we obtain

Tr2N+3[R] =
∑

K,L

∑

j∈PKL

(
dK

dj

Ij ⊗ IL ⊗ Trm(j )
K

[
R

(j )
KL

])
.

(20)

Equation (13) then becomes Im
(j )
L

=
∑

K|PKL,j
dK

dj
Trm(j )

K
[R(j )

KL]
for all L, j , which for K = L implies the bound

Tr
[
R

(j )
KK

]
# djm

(j )
K

dK

. (21)

For the fidelity (19) we then have the bound

F =
∑

K

dK

d2

∑

j,j ′∈PKK

√
pjpj ′

djdj ′

〈〈
Im

(j )
K

∣∣RKK

∣∣I
m

(j ′ )
K

〉〉
(22)

#
∑

K

dK

d2




∑

j∈PKK

√√√√pj

〈〈
Im

(j )
K

∣∣R(j )
KK

∣∣Im
(j )
K

〉〉

dj





2

(23)

#
∑

K

(∑
j∈PKK

m
(j )
K

√
pj

)2

d2
= Fest, (24)

having used the positivity of RKK for the first bound and
Eq. (21) for the second. Regarding the last equality, it can be
proved as follows. First, the Choi operator of the estimation-
based strategy is Rest =

∫
G

|Û 〉〉〈〈Û | ⊗| η∗
Û
〉〈η∗

Û
|dÛ . Using

Eq. (17) with |ϕ∗〉 replaced by |η∗
I 〉 and performing

the integral we obtain Rest =
⊕

K (I⊗2
K ⊗ R̃KK )/dK , where
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R̃KK = |βK〉〈βK |, |βK〉 =
⊕

j∈PKK

√
dj |Im

(j )
K

〉〉. Eq. (19) then
gives

Fest =
∑

K

|〈αK |βK〉|2

d2

=
∑

K

(∑
j∈PKK

m
(j )
K

√
pj

)2

d2
. (25)

"
The above theorem shows that the optimal state for storing

U is identical to the optimal state for estimating it [12] and,
moreover, that the fidelity of unitary learning with M = 1 is
precisely the fidelity of unitary estimation. Having reduced
learning to estimation, we can then exploit the expressions
for the optimal states and fidelities that are known in most
relevant cases. For example, when U is an unknown qubit
unitary in SU(2), learning becomes equivalent to optimal
estimation of an unknown rotation in the Bloch sphere
[13]. For large number of copies, the optimal input state
is given by |ϕ〉 ≈

√
4/N

∑N/2
j=jmin

sin(2πj/N)√
2j+1 |Ij 〉〉, with jmin =

0(1/2) for N even (odd), and the fidelity is F ≈ 1 − π2/4N2.
Remarkably, this asymptotic scaling can be achieved without
using entanglement between the set of N qubits that are
rotated and an auxiliary set of N rotationally invariant qubits:
the optimal storing is achieved just by applying U⊗N on
the optimal N -qubit state [13]. Another example is that of
an unknown phase-shift U = exp[iθσz]. In this case, for
large number of copies the optimal input state is |ϕ〉 =√

2/(N + 1)
∑N/2

m=−N/2 sin[π (m + 1/2)/(N + 1)]|m〉 and the
fidelity is F ≈ 1 − 2π2/(N + 1)2 [14]. Again, the optimal
state can be prepared using only N qubits.

B. Generalization to the M > 1 case

Our result can be extended to the case where the user must
reproduce M > 1 copies of the unknown unitary U . In this
case, there are two different notions of optimality induced by
two different figures of merit, namely the single-copy and the
global fidelity. In the following we will examine both cases.

1. Optimal learning according to the single-copy fidelity

Let CU be the M-partite channel obtained by the user, and
C(1)

U,+ be the local channel C(1)
U,+(ρ) = Tr1̄[CU (ρ ⊗+)], where

ρ is the state of the first system,+ is the state of the remaining
M − 1 systems, and Tr1̄ denotes the trace over all systems
except the first. The local channel C(1)

U,+ describes the evolution
of the first input of CU when the remaining (M − 1) inputs are
prepared in the state +. Of course, the fidelity between C(1)

U,+

and the unitary U cannot be larger than the optimal fidelity Fest

of Eq. (24), and the same holds for any local channel C(i)
U,+ ,

in which all but the ith input system are discarded. Therefore,
the measure-and-prepare strategy presented in Theorem 1 is
optimal also for the maximization of the single-copy fidelity
of all local channels, and such fidelity does not decrease with
increasing M .

2. Optimal learning according to the global fidelity

The results of Sec. III A can be extended to the maxi-
mization of the global fidelity between CU and U⊗M , just
by replacing U with U⊗M in all derivations. Indeed, the
role of the target unitary U in our derivations is completely
generic: we never used the fact that the unitary emulated
by the machine was equal to the unitaries provided in the
examples. Therefore, following the same proofs of Sec. III A
it is immediate to see that also for the case of M > 1 copies
with global fidelity the optimal strategy for storing consists
in the parallel application of the examples on an input state
of the form of Lemma 2 and that the optimal strategy for
retrieving consists in measuring the optimal POVM PÛ and
in performing Û⊗M conditionally on outcome Û . Therefore,
also in this case optimal learning is equivalent to optimal
estimation: precisely, the optimal learning is achieved by the
estimation strategy that maximizes the expectation value of
the goal function fM (U, Û ) = (|Tr[U †Û ]|/d)2M , given by
〈fM〉 =

∫
dU

∫
dÛfM (U, Û )〈ϕU |PÛ |ϕU 〉. Note that in this

case the coefficients {pj } in the optimal input state of Lemma
2) generally depend on M .

Remark (generalization to nonidentical group represen-
tations). Since we never used the fact that the N examples
are identical, all the results of Sec. III A hold even when the
input (output) uses are not identical copies U⊗N (U⊗M ), but
generally N (M) different unitaries, each of them belonging
to a different representation of the group G. For example,
if G = SO(3) the N examples may correspond to rotations
(of the same angle and around the same axis) of N quantum
particles with different angular momenta. Of course, the same
remark also holds when the M output copies.

IV. OPTIMAL INVERSION OF AN UNKNOWN
UNITARY EVOLUTION

We now extend our results to the optimal inversion of
an unknown unitary U : in this case the goal is not to
produce M copies of U , but, instead M copies of its
inverse U †. For this task the fidelity of the learning board is
F ′ = 1/d2

∫
G
〈〈U †|⊗M〈〈U ∗|⊗NL′|U †〉〉⊗M |U ∗〉〉⊗NdU , as ob-

tained by substituting U with U †⊗M in the target of Eq. (8).
From this expression it is easy to see that one can always
assume [L′, V ⊗M ⊗ U ∗⊗M ⊗ U ∗⊗N

o ⊗ V ⊗N
i ] = 0. Therefore,

the optimal inversion is obtained from our derivations by
simply substituting U2N+3 → V ⊗M and V2N+2 → U⊗M . Ac-
cordingly, the optimal inversion is achieved by measuring
the optimal POVM PÛ on the optimal state |ϕU 〉 and by
performing Û †⊗M conditionally on outcome Û . This provides
the optimal approximate realignment of reference frames in
the quantum communication scenario recently considered in
Ref. [11], proving the optimality of the “measure-and-rotate”
strategy conjectured therein. In that scenario, the state |ϕ〉 ∈ H̃
serves as a token of Alice’s reference frame and is sent to
Bob along with a quantum message |ψ〉 ∈ H⊗M . Due to the
mismatch of reference frames, Bob receives the decohered
state σψ =

∫
G

|ϕU 〉〈ϕU | ⊗ U |ψ〉〈ψ |U †dU , from which he
tries to retrieve the message |ψ〉 with maximum fidelity f =∫

dψ〈ψ |R′(σψ )|ψ〉dψ , whereR′ is the retrieving channel and
dψ denotes the uniform probability measure over pure states.
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The maximization of f is equivalent to the maximization of
the channel fidelity F ′ =

∫
G
〈〈U †|〈ϕ∗

U |R′|U †〉〉|ϕ∗
U 〉dU , which

is the figure of merit for optimal inversion. It is worth
stressing that the state |ϕ〉 that maximizes the fidelity is not
the state |ϕlik〉 =

⊕
j

√
dj/L|Ij 〉〉, L =

∑
j d2

j that maximizes
the likelihood [15]. For M = 1 and G = SU(2), U(1) the state
|ϕ〉 gives an average fidelity that approaches 1 as 1/N2, while
for |ϕlik〉 the scaling is 1/N . On the other hand, Ref. [11]
shows that for M = 1 |ϕlik〉 allows a perfect correction of
the misalignment errors with probability of success p = 1 −
3/(N + 1), which is not possible for |ϕ〉. The determination
of the best input state to maximize the probability of success,
and the study of the probability/fidelity trade-off remain open
interesting problems for future research.

V. CONCLUSIONS

In conclusion, in this article we found the optimal storing-
retrieving of an unknown group transformation with N
input and M output copies, proving the optimality of the
incoherent “measure-and-rotate” strategy, in strong contrast
with the case of quantum cloning. The result has been

extended to the optimal inversion of U , with application
to the optimal approximate alignment of reference frames
for quantum communication. An interesting development
of this work is the analysis of optimal learning when the
unknown unitaries do not form a group. This would be the
case, for example, of the optimal learning of the unknown
unitary transformation appearing in Grover’s quantum search
algorithm. The question whether coherent quantum strategies
can lead to an improvement in these cases remains open and
worth investigating.
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