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1. Introduction

The state of a physical system is the mathematical description
that provides a complete information on the system. In classical
mechanics it is always possible, at least in principle, to devise a
procedure made of multiple measurements which fully recovers
the state of a single system. In quantum mechanics, on the con-
trary, there is no way, not even in principle, to infer the quantum
state of a single system without having some prior knowledge on
it [1]. It is however possible to estimate the quantum state of a
system when many identical copies are available prepared in the
same state, so that a different measurement can be performed on
each copy. Such a procedure is called quantum tomography.

The problem of finding a strategy for determining the state of
a system from multiple copies dates back to 1957, when Fano [2]
called quorum a set of observables sufficient for a complete deter-
mination of the density matrix. However, quantum tomography en-
tered the realm of experiments more recently, with the pioneering
experiments by Raymer’s group [3] in the domain of quantum op-
tics. In quantum optics, in fact, using a balanced homodyne detec-
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tor one has the unique opportunity of measuring all possible linear
combinations of position and momentum — the so-called quadra-
tures — of the harmonic oscillator representing a single mode of
the radiation field.

The first technique to reconstruct the density matrix from ho-
modyne measurements — so-called homodyne tomography — origi-
nated from the observation by Vogel and Risken [4] that the collec-
tion of probability distributions achieved by homodyne detection
is just the Radon transform of the Wigner function W . Therefore,
similarly to classical imaging, one can obtain W by inverting the
Radon transform, and then from W one can recover the matrix
elements of the density operator. This original method, however,
works well only in a semi-classical regime, whereas generally for
small photon numbers it is affected by an unknown bias caused
by the smoothing procedure needed for the analytical inversion
of the Radon transform. The solution to such a problem is to by-
pass the evaluation of the Wigner function, and to evaluate the
matrix elements of the density operator by simply averaging suit-
able functions (“pattern functions”) over homodyne data: this is
the basis of the first unbiased tomographic technique presented in
Ref. [5]. A main advance has been achieved in Ref. [6], where an
efficient algorithm that uses a nontrivial factorization formula for
the pattern function has been proposed. Clearly, the state is per-
fectly recovered in principle only in the limit of infinitely many
measurements: however, for finitely many measurements one can
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estimate the statistical error affecting each matrix element. For in-
finite dimensions there is the further problem that the propagation
of statistical errors of the density matrix elements make them use-
less for estimating the ensemble average of some operators (e.g.
unbounded), and a method for estimating the ensemble average is
needed, which bypasses the evaluation of the density matrix itself,
as was first suggested in Ref. [7]. For a brief historical excursus on
quantum tomography, along with a review on the generalization to
any number of radiation modes, arbitrary quantum systems, noise
deconvolution, adaptive methods, and maximum-likelihood strate-
gies, the reader is addressed to Ref. [8].

The most comprehensive theoretical approach to quantum to-
mography uses the concept of frame of observables, i.e. a set of
observables spanning the linear space of operators, from which
one derives contextually the quorum of observables and the esti-
mation rule. The ensemble average ⟨X⟩ of any arbitrary operator X
on a Hilbert space H is estimated using measurement outcomes of
the quorum {Ol} upon expanding X over a set of functions fn(Ol)
of the observables {Ol}. What makes the general theory nontrivial
in infinite dimensions is the crucial role of the nonlinear functions
fn(Ol) in making the infinite expansion convergent. Let us denote
by P j := fn(Ol), j = (n, l), such a complete set of operators. Once
one has the P j , then the problem is reduced to the linear prob-

lem of expanding an operator as X = ∑
j⟨Q

†
j , X⟩P j , for a suitable

“dual” set of operators {Q j}. Notice that generally the index j is
continuous, whence also the operator expansion. The scalar prod-
uct in the expansion is generally not simply the Hilbert–Schmidt
one, when we need to expand operators that are unbounded. The
mathematical theory of frames [9–12] is the perfect tool for estab-
lishing completeness of {P j} and for finding dual sets {Q j}. In
most practical situations the set {P j} is over-complete, and there
are many alternate dual sets {Q j}, the non-unicity providing room
for optimization. A general theory should also classify the oper-
ators X having bounded scalar product with {Ql} and expansion
X = ∑

j⟨Q †
j , X⟩P j weakly convergent (i.e. converging in average)

for a given class of quantum states. In infinite dimensions, as for
homodyne tomography, the easy known approach works only for
trace-class operators — e.g. for estimating the matrix elements of
the density operator over an orthonormal basis. For unbounded
operators, however, such operator expansion becomes an infinite
sum of unbounded terms. On the other hand, converging (and
even finite) alternate expansions are known to exist for various
unbounded operators [13]. As we will see in this Letter, the mecha-
nism allowing “renormalization” of the expansion relies on the ex-
istence of null-estimators — namely operator-valued functions that
have zero mean over the quorum — their existence being related to
a group of symmetries of the quorum. The notion of null-estimator
was first introduced in Ref. [14], in the context of homodyne to-
mography, where the quorum is made of the quadratures of the
field mode. Here, the symmetry group of the quorum is the group
U (1) of rotations of the quadrature phase. The existence of null-
estimators leads to infinitely many alternate expansions of the
same operator over the quorum, allowing cancellations of the in-
finities in the expansion — a kind of “renormalization” procedure.

The problem of classifying all operator expansions for a given
quorum in infinite dimensions for given spaces of unbounded op-
erators is very difficult, and still remains open. It involves the
theory of frames or even more general notions of basis in Ba-
nach spaces [9–12], a yet unfinished chapter of analysis. In this
Letter we present new nontrivial operator expansions for the quo-
rum of quadratures of the harmonic oscillator, and introduce a first
preliminary general framework to generate and classify new ex-
pansions, based on the Kolmogorov construction. We hope that the
material presented here will open the way to the solution of the
problem of quantum tomography in infinite dimensions, leading

to a general mathematical framework for operator expansions over
functions of a set of spectral densities.

2. Quantum tomography and quorum of observables

The general idea of quantum tomography is that there is a set
of observables {Xξ } with ξ ∈X on the Hilbert space of the system
H — called “quorum” — by which one can estimate any desired
ensemble average by measuring the observables of the quorum,
each at the time, in a scheme of a repeated measurements. The
observables of the quorum are necessarily not commuting, namely
[Xξ ′ , Xξ ′′ ] = 0 ⇐⇒ ξ ′ = ξ ′′ . Generally, the set X parameterizing
the quorum is infinite, and most commonly, is a continuum. In
these cases, since clearly one can measure only a finite number of
observables, these are randomly picked out according to a given
probability measure on X, which, therefore, must be a probabil-
ity space. In the following, for simplicity, we will also assume a
probability density over X and denote it with the symbol dµ(ξ).
It follows that the ensemble average of a (generally not Hermitian)
operator is written in the form of double expectation

⟨X⟩=
∫

X

dµ(ξ)
〈
fξ (Xξ |X)

〉
, (1)

where the generally nonlinear function fξ (x|X) of the variable x
depends on the particular operator X . We will call the function
fξ (x|X) the tomographic estimator for X with quorum {Xξ }ξ∈X . If
we want to achieve the estimation of ⟨X⟩ = Tr[ρX] (the expecta-
tion being supposedly bounded on the state ρ) by averaging the
estimator fξ (x|X) over both the quorum and the measurement
outcomes with a bounded variance, we need to have the function
fξ (x|X) square-summable over x and ξ , more precisely
∫

X

dµ(ξ)

∫

Xξ

〈
dEξ (x)

〉 ∣∣ fξ (x|X)
∣∣2 <∞, (2)

where Xξ denotes the spectrum of Xξ , and dEξ (x) its spectral
measure. In the following, for simplicity, we will consider the
spectrum Xξ ≡ X independent on ξ . Clearly, the above square-
summability will depend again on the state ρ and on the opera-
tor X .

We first want to notice two main features of estimators:

1. The estimator fξ (x|X) is generally not unique, namely there
can be many different estimators for the same operator X . This
is equivalent to the existence of null estimators, namely func-
tions nξ (x) such that
∫

X

dµ(ξ)

∫

X

dEξ (x)nξ (x) = 0. (3)

Accordingly, the estimators can be grouped into equivalence
classes, each class corresponding to an operator X . For such
equivalence we will use the notation ≃, i.e. we will write
f ≃ g or f − g ≃ 0 to denote that the two estimators are
equivalent, namely they differ by a null estimator.

2. For fixed x and ξ the estimator fξ (x|X) must be a linear func-
tional of X , namely

fξ (x|aX + bY ) = afξ (x|X) + bfξ (x|Y ),

fξ
(
x
∣∣X†) = fξ (x|X)∗. (4)

Example 1 (Homodyne tomography). (See [8].) The quorum is given
by {Xφ}[0,π) where Xφ

.= 1
2 (a†eiφ + ae−iφ) denotes the quadrature

at phase φ, and a,a† represent the annihilation and creation op-
erators of the harmonic oscillator with commutator [a,a†] = 1.
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Estimators for the dyads |n⟩⟨m| made with the orthonormal ba-
sis of Fock states {|n⟩}, n = 0, . . . ,∞ are given by

fφ
(
x
∣∣|n⟩⟨n + d|

)

=
+∞∫

−∞

dk |k|
4

e
1−η
8η k2−ikx⟨n + d|eikXφ |n⟩

= eid(φ+ π
2 )

√
n!

(n + d)!

+∞∫

−∞
dk |k|e

1−2η
2η k2−i2kxkdLdn

(
k2

)
, (5)

where Ldn(x) denotes the generalized Laguerre polynomials.
For the unbounded operators a and a†a one can check that the

following are unbiased estimators

fφ(x|a) = 2 eiφx,

fφ
(
x
∣∣a†a

)
= 2x2 − 1

2
.

The problem of quantum tomography is to establish the general
rule for estimation, namely

Definition 1 (Estimation rule). Given the quorum {Xξ }ξ∈X find the
bijection:

fξ (x|X) ⇐⇒ X, for every operator X on H, (6)

where we possibly mean to find the whole equivalence class of
estimators fξ (Xξ |X).

Before solving this task, first one needs to know that the set
of observables {Xξ }ξ∈X is actually a quorum. The easiest thing to
do, however, is to derive both the quorum and the estimation rule
contextually, starting from a spanning-set of observables — shortly
observable spanning-set — namely a set of observables {Fω}ω∈O in
terms of which we can linearly expand operators as follows

X =
∫

O

dω cω(X)Fω. (7)

Notice that the notion of operator spanning-set used here gen-
eralizes the notion of frames for Banach spaces to unbounded
operators (see also the following), and is generally not strictly a
frame according to the definition of Refs. [9,10]. In the following
we will always assume probability distributions admitting densi-
ties. Generally, the set O is unbounded, and the measure dω is not
normalizable, whence, as such, the expansion (7) cannot be used
for quantum tomography. However, generally this feature is related
to the redundancy of the observable spanning-set, which includes
many observables Fω that are just different functions of the same
observable. Then, collecting the observables of the spanning-set
into functional equivalence classes Kξ , each corresponding to an
observable of the quorum {Xξ }ξ∈X , one can relabel the observable
spanning-set as Fκ,ξ

.= fκ (Xξ ) with κ ∈ Kξ , and write

X =
∫

X

dµ(ξ) fξ (Xξ |X), (8)

where the function fξ (x|X) is the integral over the observables
equivalent to Xξ , namely

fξ (Xξ |X)
.=

∫

Kξ

dν(κ) cκ,ξ (X) fκ (Xξ ). (9)

Notice that in terms of the spectral measure dEξ (x), the decompo-
sition of Xξ can be written as

Table 1
Table of correspondence for homodyne tomography.

General Homodyne General Homodyne General Homodyne

Xξ Xφ cω(X) Tr[D†(α)X] dµ(ξ) dφ
π

X [0,π) ω α Zξ,x |x⟩φ φ⟨x|
ξ φ Kξ R Xξ R
dµ(ξ) dφ

π dν(k) 1
4 dk |k| Z [0,π)×R

ω α cξ,κ (X) Tr[e−ikXφ X] m(ξ) 1
π

Fω D(α) fκ (Xξ |X) eikXφ Wξ,x − 1
4π

P
(x−Xφ )2

X =
∫

X

dµ(ξ)

∫

Xξ

dEξ (x) fξ (x|X), (10)

and since this expansion is linear in the spectral measure, the lat-
ter can be regarded itself as an observable spanning-set. Indeed,
by introducing the spectral density dEξ (x)

.= Zξ,x dx, and the den-
sity dµ(ξ)

.= m(ξ)dξ , and renaming ζ = (ξ, x) and Z
.= {(ξ, x), x ∈

Xξ , ξ ∈ X}, Eq. (10) can be rewritten in the same form of Eq. (7),
namely

X =
∫

Z

dζ c′ζ (X)Zζ , (11)

where the new expansion coefficients are now given by

c′ξ,x(X) =m(ξ) fξ (x|X) =m(ξ)

∫

Kξ

dν(κ) cκ,ξ (X) fκ (x). (12)

For homodyne tomography the above quantities are explicitly
given in Table 1. For Fω an operator frame, the coefficients of the
expansion (7) can be written in form of a pairing (·|·) with a dual
frame Gω , namely cω(X) = (Gω|X), in terms of which Eq. (12) be-
comes

c′ξ,x(X) =m(ξ)(Wξ,x|X), (13)

with dual frame

Wξ,x =
∫

Kξ

dν(κ)Gξ,x f ∗κ (x). (14)

From the last equation it follows that the estimator itself can be
written using the pairing fξ (x|X) = (Wξ,x|X), or, in terms of the
original observable frame, as

fξ (x|X) =
∫

Kξ

dν(κ) (Gξ,x|X) fκ (x). (15)

2.1. Unbiasing noise

It is possible to estimate the ideal ensemble average ⟨X⟩ by
measuring the quorum in the presence of instrumental noise,
when the noise map N is invertible, or, more generally, if there
exists the right inverse of N . In terms of observable frames, this
just corresponds to using a different dual frame. More precisely,
one has

⟨X⟩=
∫

X

dµ(ξ)

∫

Xξ

〈
dEξ (x)

〉
N fξ

(
x
∣∣N −1(X)

)
, (16)

where ⟨ ·⟩ .= Tr[ρ · ] denotes the ideal ensemble average, and
⟨ ·⟩N .= Tr[N τ (ρ) · ] denotes the experimental ensemble average,
N τ being the predual map of N (Schrödinger versus Heisen-
berg picture). This also means that for left invertible map N the
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noisy spectral measures N (dEξ (x)) are still a quorum. In terms
of the pairing fξ (x|X) = (Wξ,x|X), unbiasing the noise is equiv-
alent to use the new dual frame N −1 †(Wξ,x). When N is not
right-invertible one can still estimate the ensemble average of op-
erators in the range of the map. Moreover, in infinite dimension,
when the noise map N is compact its inverse map is unbounded,
and one generally cannot unbias the noise without restricting the
space of reconstructed operators. Otherwise, one has a Hadamard
ill-posed problem, for which there are biased compromises, such
as putting a cutoff on the vanishing singular values of N .

Example 2 (Pauli tomography in a Pauli channel). (See [8].) The oper-
ators [σα/

√
2 ] make an observable orthonormal basis for C⊗2. We

consider now the noise described by the depolarizing Pauli chan-
nel

N = (1− p)I + p
2

T , (17)

where I denotes the identity map and T (X)
.= I Tr(X). This

noise can be simply unbiased via noise-map inversion:

N −1† = 1
1− p

I − p
2(1− p)

T . (18)

Example 3 (Homodyne tomography with quantum efficiency η < 1).
(See [8].) The set of displacements operators D(α) := eαa

†−α∗a with
α ∈ C provides an observable Dirac-orthonormal frame for T1/2,
where

Ts =
{
X = : f

(
a,a†

)
:, s.t. lim

α→∞ f (α, ᾱ)es|α|2 = 0
}
, (19)

and : : denotes normal ordering. In the presence of noise from non-
unit quantum efficiency η, the unbiased reconstruction is possible
for operators in Ts if η⇥ (2s)−1. In fact, one uses the new dual:

D(α)→N −1†(D(α)
)
= ηD

(
η1/2α

)
e

1−η
2 |α|2 . (20)

Example 4 (Homodyne tomography in Gaussian noise). (See [8].) As
for quantum efficiency, Gaussian noise can be unbiased for mean
thermal photon number n̄ � s− 1

2 . One has the new dual:

D(α)→N −1†(D(α)
)
= D(α)en̄|α|2 . (21)

3. The case of homodyne tomography

Before addressing the general problem of deriving a general to-
mographic rule for unbounded operators, in this section we will
re-derive the known pattern function of homodyne tomography in
order to illustrate the general concepts introduced in the previous
section.

The starting point is the observable frame {D(α)}α∈C of dis-
placement operators D(α) := eαa

†−α∗a , in terms of which the de-
composition (7) for trace-class operators can be written as follows

X =
∫

C

d2α
π

Tr
[
D†(α)X

]
D(α), (22)

where Xφ = 1
2 (a†eiφ + ae−iφ) denotes the quadrature operator at

phase φ. By changing to polar variables α = (−i/2)keiφ , Eq. (22)
becomes

X =
π∫

0

dφ
π

+∞∫

−∞

dk |k|
4

Tr
[
XeikXφ

]
e−ikXφ . (23)

In terms of the quadrature spectral measure, one has

X =
π∫

0

dφ
π

+∞∫

−∞

dk |k|
4

Tr
[
XeikXφ

]
e−ikXφ

=
π∫

0

dφ
π

+∞∫

−∞
dEφ(x)Tr[XWφ,x], (24)

where

Wφ,x = e−iφa†aD(x)W0,0D†(x)eiφa
†a,

W0,0 =−1
2
P

1

X2
0

, (25)

P denoting the Cauchy principal value. On the other hand, in Sec-
tion 6 we will show that for unbounded operators we also have
the expansion

X =
π∫

0

dφ
π

∞∫

−∞
dt Tr

[
G†(t,φ)X

]
F (t,φ), (26)

with

F (t,φ) = 1√
2π

e−
1
2 (t−i2Xφ)2 ,

G(t,φ) = d
dt

te
t2
2

1∫

0

dθ
∣∣i(1− θ)teiφ

〉〈
−iθteiφ

∣∣, (27)

where the vectors in G(t,φ) are coherent states. In terms of the
quadrature spectral measure Eq. (26) can be written as

X =
π∫

0

dφ
π

∞∫

−∞
dEφ(x)Tr

[
XW ′

φ,x
]
, (28)

where now

W ′
φ,x =

∞∫

−∞
dt

1√
2π

e−
1
2 (t−i2x)2 d

dt
te

t2
2

×
1∫

0

dθ
∣∣i(1− θ)teiφ

〉〈
−iθteiφ

∣∣. (29)

Alternatively, as shown in Section 6.2 by means of the frame of
normal-ordered moments, one has the expansion

X =
∞∑

n,m=0

a†nam Tr
[
g†n,mX

]

=
π∫

0

dφ
π

+∞∫

−∞
dEφ(x)

× Tr

[

X
∞∑

n,m=0

g†n,m

(
n +m

n

)−1 Hn+m(
√
2x)√

2n+m

]

, (30)

where

gn,m =
min(n,m)∑

j=0

(−1) j

j!√(n− j)!(m− j)! |n− j⟩⟨m− j|. (31)

The above expansions in Eqs. (28) and (30) are just examples of al-
ternate expansions which are equivalent for the estimation of the
expectation values of (even unbounded) observables, but can be
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very different as regards the statistical noise affecting such esti-
mation. As a matter of fact, the problem of classifying all possible
expansions has never been solved, and, hopefully, the results of the
present Letter may suggest a unifying approach to the solution of
such a difficult problem. As we will see in the next subsection, the
existence of many alternate expansions is due to the symmetry of
the quorum of quadrature operators, and the resulting properties
of null estimator functions.

3.1. Calculus with null functions

We first notice that a null estimator function nξ ≃ 0 corre-
sponds to a null expansion over the quorum, namely
∫

X

dµ(ξ)

∫

X

dEξ (x)nξ (x) = 0 ⇐⇒
∫

X

dµ(ξ)nξ (Xξ ) = 0. (32)

Let us recall the ordering relation [15]

:a†kal:s =
(k,l)∑

j=0

k!l!
j!(k− j)!(l− j)!

(
s− r
2

) j

:a†k− jal− j:r, (33)

where (k, l) := min(k, l), and s = 1,0, and − 1 correspond to nor-
mal, symmetrical, and anti-normal ordering, respectively. We will
also write the symmetrical ordering as S{a†kal}≡: a†kal:0, and the
normal ordering as :a†kal:≡: a†kal:1.

Then we have:

Lemma 1 (Main equivalence relation). (See [14].) The following equiva-
lence relation holds

xke±i(k+2n+2)φ ≃ 0, ∀k,n ⇥ 0. (34)

Proof. Since Xk
φ = 1

2k
∑k

l=0

(
k
l

)
S{a†lak−l}eiφ(2l−k) , one has

π∫

0

dφ
π

e±i(k+2+2n)φ Xk
φ = 0, ∀k,n ⇥ 0, (35)

which is equivalent to (34). ✷

Stated differently:

Lemma 2. The following equivalence relation holds

Hk(
√
2 x)e±i(k+2n+2)φ ≃ 0, ∀k,n ⇥ 0, (36)

where Hk(x) denote the k-th Hermite polynomial.

Proof. From the definition of Hermite polynomials one has

1√
2n

Hn(
√
2Xφ) = 1√

2n
∂n

∂tn

∣∣∣∣
t=0

e−t
2+
√
2t(a†eiφ+ae−iφ)

=
n∑

k=0

(
n
k

)
a†kan−keiφ(2k−n) = 2n:Xn

φ :. (37)

Then, it follows that

π∫

0

dφ
π

e±i(k+2+2n)φHk(
√
2Xφ) = 0, ∀k,n ⇥ 0, (38)

which is equivalent to (36). ✷

Moreover, we also have

Lemma 3 (Equivalence of truncated Hermite polynomials). The follow-
ing equivalence relations hold:

e±inφH (l)
2l+n(κx)≃ e±inφH2l+n(κx), (39)

where we introduced the truncated Hermite polynomial

H (l)
n (z) =

l∑

m=0

(−)mn!(2z)n−2m

m!(n− 2m)! , n ⇥ 2l. (40)

Proof. The two identities are just the complex conjugated of each
other. Therefore, it is sufficient to prove the identity with the plus
sign. By using the un-truncated Hermite polynomial, we have [16]

einφH2l+n(κx) = einφ
l+❏n/2❑∑

m=0

(−)m(2l + n)!(2κ)2l+n−2m

m!(2l + n− 2m)!

× x2l+n−2mei[n+2(l−m)+2(m−l)]φ, (41)

where ❏ ❑ denotes the integer part. From identity (34) it follows
that all terms with m > l are equivalent to zero. ✷

Finally, one can show the Poisson identities (whose proof can
be found in Appendix A).

Lemma 4 (Poisson identities). The following identities hold

f
(
x2

)
δπ (φ)≃ 1

π

[
f (x2e2iφ)

1− e−2iφ + f (x2e−2iφ)

1− e2iφ

]
,

xf
(
x2

)
δπ (φ)≃ 1

π

[
xeiφ f (x2e2iφ)

1− e−2iφ + xe−iφ f (x2e−2iφ)

1− e2iφ

]
. (42)

In particular, we have the identity δπ (φ)≃ 1
π .

4. The Kolmogorov construction

In this section we present the so-called Kolmogorov construc-
tion [17], and its relation with the fundamental identity of quan-
tum tomography.

In the following, by L2(X) we denote the Hilbert space of
square summable functions over the space X. For example,
X = R, and L2(X) the Hilbert space of square summable func-
tions on the real axis, or X = S1, and L2(X) is the Hardy
space of square-summable complex functions on the circle. Con-
sider now a complete orthonormal set of functions [υn(x)] for
L2(X). The completeness of the set corresponds to the distribu-
tion identity

∑
n υn(x)

∗υn(y) = δ(x − y), where δ denotes the
usual Dirac-delta. Consider now a (infinite-dimensional) Hilbert
space H and denote by [wn] an orthonormal basis for it. The fol-
lowing vector |υ(x)⟩= ∑

n υn(x)|wn⟩ is Dirac-normalizable, in the
sense that ⟨υ(y)|υ(x)⟩= δ(x− y). Consider now another (infinite-
dimensional) Hilbert space K≃ H. To the orthonormal basis [υn(x)]
for L2(X) and [zn] for K we associate a map from the observ-
ables OX with spectrum X on H to operators in B(H,H ⊗ K)
given by υ(X) = ∑

n υn(X) ⊗ |zn⟩, where, as usual, we define
the operators υn(X) in terms of the spectral resolution of X , i.e.
υn(X) =

∫
X dE X (x)υn(x), where dE X (x) denotes the spectral mea-

sure of X .
For X, Y ∈OX , formally we write

υ(X)†υ(Y ) =
∑

n

υn(X)†υn(Y ). (43)

Consider now the integral kernel K (x, y), x, y ∈ X corresponding
to a positive operator K ∈ B(H), namely
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K (x, y) =
〈
υ(x)

∣∣K
∣∣υ(y)

〉
. (44)

For any two self-adjoint operators X, Y on L2(R), the expression
K (X, Y ) is well defined in the following sense

K (X, Y )
.= υ(X)†(I ⊗ K̃ )υ(Y ), (45)

where K̃ ∈ B(K) is given by K̃ = ∑
n,m |zn⟩⟨wn|K |wm⟩⟨zm|. Then,

we can also write

K (X, Y ) =
∑

n,m

υn(X)†⟨wn|K |wm⟩υm(Y )

=
∫

X

dE X (x)
∫

X

dE X (y) K (x, y). (46)

This is also equivalent to say that for any expansion of K (x, y)
in series of products of functions of single variable, K (X, Y ) is
defined as the same expansion, ordered with the functions of X
on the left and the functions of Y on the right. For commuting
X, Y , then K (X, Y ) simply represents the same analytic expres-
sion of K (x, y), now substituting the operators in place of the
variables. As an example, the identity operator K = I corresponds
to the Dirac-delta kernel, and for commuting X, Y ∈ OX we have
υ(X)†υ(Y ) = δ(X − Y ). By replacing now H→ H⊗2, even for non-
commuting X and Y , one has
(
υ(X)† ⊗ I

)(
I ⊗ υ(Y )

)
= δ(X ⊗ I − I ⊗ Y ). (47)

Moreover, similarly to Eq. (46), one has

K (X ⊗ I, I ⊗ Y )
.=

(
υ(X)† ⊗ I

)(
I⊗2
H ⊗ K̃

)(
I ⊗ υ(Y )

)

=
∑

n,m

υn(X)† ⊗ υm(Y )⟨wn|K |wm⟩

=
∫

X

dE X (x)⊗
∫

X

dE X (y) K (x, y). (48)

The fundamental identities of quantum tomography correspond to
an expansion of the swap operator E over the quorum, since for
any state ρ and observable A one has Tr[ρA] = Tr[(ρ ⊗ A)E],
where E|ψ⟩ ⊗ |φ⟩=| φ⟩ ⊗ |ψ⟩.

4.1. Homodyne tomography

From Eq. (23), it is clear the swap operator can be written as

E =
π∫

0

dφ
π

+∞∫

−∞

dk |k|
4

e−ikXφ ⊗ eikXφ . (49)

Then, the usual homodyne tomographic formula can be obtained
by the Kolmogorov construction in writing the swap operator as
follows

E =
π∫

0

dφ
π

(
υ(Xφ)† ⊗ I

)(
I⊗2
H ⊗ K̃

)
I ⊗ υ(Xφ), (50)

corresponding to the positive kernel

K
(
x, x′

)
= π

2
⟨x||Y |

∣∣x′
〉
=−P

2
1

(x− x′)2
, (51)

where Y = Xπ/2 is the quadrature conjugated to X = X0, with
[X, Y ] = i

2 . The kernel is clearly positive, since one has

∑

i, j

K (xi, x j)ξ
∗
i ξ j =

∫

R

dk
4

|k|
∣∣∣∣
∑

j

eix j ξ j

∣∣∣∣
2

. (52)

The tomographic formula consists in the following identity

E =
π∫

0

dφ
π

K (Xφ ⊗ I, I ⊗ Xφ). (53)

Using Eq. (48), one can also write

E =
π∫

0

dφ
π

∑

n

υn(Xφ)† ⊗ un(Xφ), (54)

with un(Xφ) = ∑
m υm(Xφ)⟨n||Y ||m⟩. The existence of null estima-

tor functions can be taken into account by considering any opera-
tor Nn,φ such that

π∫

0

dφ
π
υn(Xφ)† ⊗ Nn,φ = 0, (55)

and any estimation rule can be obtained by the swap operator

E =
π∫

0

dφ
π

∑

n

υn(Xφ)† ⊗ Dn,φ, (56)

with Dn,φ = un(Xφ) + Nn,φ , as follows

Tr[ρX] =
π∫

0

dφ
π

∑

n

Tr
[
ρυn(Xφ)†

]
Tr[Dn,φ X]. (57)

4.2. Spin tomography

For spin tomography the swap operator is written as follows [8]

E = 2 J + 1
2π

∫
dn⃗
4π

2π∫

0

dψ sin2 ψ

2
ei( J⃗1− J⃗2)·n⃗ψ

=
∫

dn⃗
4π

K ( J⃗1 · n⃗⊗ I, I ⊗ J⃗2 · n⃗), (58)

where the kernel is given by

K (r, s) = 1
2

(
J + 1

2

)
⟨r + J |2− e+ − e−|s + J ⟩. (59)

In Eq. (59) r, s = − J ,− J + 1, . . . , J , the set {|n⟩} denotes any
orthonormal basis of the infinite-dimensional Hilbert space H,
and e− represents the shift operator e−|n⟩=| n−1⟩, with e+ = e†− .
The basis {|n⟩} can be conveniently regarded as the Hardy space of
functions on the unit circle, with ⟨n|z⟩= zn , |z| = 1, and

∮
dz

2π iz
|z⟩⟨z|≡

2π∫

0

dψ
2π

∣∣eiψ
〉〈
eiψ

∣∣. (60)

By introducing the vectors |υ(m)⟩ .= |m + J ⟩, we can write

E =
∫

dn⃗
4π

(
υ( J⃗1 · n⃗)† ⊗ I

)
(IH⊗2 ⊗ K )

(
I ⊗ υ( J⃗2 · n⃗)

)
, (61)

where K ∈ B(K) is given by K = ( J + 1
2 )(1−C), and C = 1

2 (e+ +e−)
is the cosine operator.
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4.3. Alternate expansions

The general form of the swap operator is

E =
∑

ν

(
υ(Xν)† ⊗ I

)
(IH⊗2 ⊗ K )

(
I ⊗ υ(Xν)

)
. (62)

Introducing an invertible operator L ∈ B(K), we can write

E =
∑

ν,n,m,l

υn(Xν)† ⊗ υm(Xν)⟨n|K 1
2 L−1∣∣z(l)

〉〈
z(l)

∣∣LK
1
2 |m⟩, (63)

where {|z(l)⟩} is any orthonormal basis for K. Therefore, we have
all the alternate expansions on the quorum

Z =
∑

ν

∑

l

Tr
[
Ll(Xν)

† Z
]
Ml(Xν), (64)

where

Ml(x) =
∑

m

υm(x)
〈
z(l)

∣∣LK
1
2 |m⟩=

〈
z(l)

∣∣LK
1
2
∣∣υ(x)

〉
,

Ll(x)
∗ =

∑

m

υ∗m(x)⟨m|K 1
2 L−1∣∣z(l)

〉
=

〈
υ(x)

∣∣K
1
2 L−1∣∣z(l)

〉
. (65)

5. Canonical dual for homodyne tomography

The frame theory approach to quantum homodyne tomography
gives further insight to the structure of the quorum of quadra-
ture observables. Given a set of vectors |vn⟩ in a Hilbert space, if
the positive operator F = ∑

n |vn⟩⟨vn| is invertible, then the scalar
product between two arbitrary vectors can be written as

⟨ψ |η⟩=
∑

n

⟨ψ |un⟩⟨vn|η⟩, (66)

where the set of vectors {un ≡ F−1|vn⟩} is called “canonical dual”
of the set {|vn⟩}, and F is denoted as “frame operator”. In other
words, the set {|vn⟩}, along with its dual {|un⟩}, is a spanning
set for the Hilbert space, and provide a generalized resolution of
the identity. In this section we show that the set of (generalized)
projectors |x⟩φ φ⟨x| over the quadratures Xφ give a frame when
varying φ, and the expansion for trace-class operators in Eq. (23)
corresponds to using the canonical dual for the estimation rule.

In the following, we will make extensive use of the isomor-
phism between the Hilbert space of the Hilbert–Schmidt operators
A, B on H, with scalar product ⟨A, B⟩ = Tr[A†B], and the Hilbert
space of bipartite vectors |A⟩⟩, |B⟩⟩ ∈ H⊗ H, with ⟨⟨A|B⟩⟩ ≡ ⟨A, B⟩,
and

|A⟩⟩=
∑

n,m

Anm|n⟩ ⊗ |m⟩, (67)

where Anm = ⟨n|A|m⟩, with |n⟩ and |m⟩ fixed orthonormal bases
for H. Notice the identities [18] A ⊗ B|C⟩⟩ = |ACBτ ⟩⟩ and A ⊗
B†|C⟩⟩ = |ACB∗⟩⟩, where τ and ∗ denote transposition and com-
plex conjugation with respect to the fixed bases in Eqs. (67).

By taking ⟨n|x⟩0 as real, in the | ⟩⟩ notation the spanning set
|x⟩φ φ⟨x| corresponds to the following vectors on Ha⊗Hb of modes
a and b

∣∣(|x⟩φ φ⟨x|
)〉〉

= |x⟩φ |x⟩−φ = eiφ(a†a−b†b)|x⟩0|x⟩0. (68)

From the identities ⟨⟨D(z)|x⟩0|x⟩0 = exp(2ix Im z)δ(Re z) and
eiφ(a†a−b†b)|D(z)⟩⟩= |D(zeiφ)⟩⟩, along with the eigenvalue equation
(a − b†)|D(z)⟩⟩ = z|D(z)⟩⟩, the frame operator can be evaluated as
follows

F =
π∫

0

dφ
π

∞∫

−∞
dx |x⟩φ |x⟩−φ φ⟨x|−φ⟨x|

=
π∫

0

dφ
π

∞∫

−∞
dx

∫
d2z
π

∫
d2w
π

∣∣D(z)
〉〉〈〈
D

(
ze−iφ)∣∣

× |x⟩0|x⟩0 0⟨x|0
〈
x
∣∣D

(
we−iφ)〉〉〈〈D(w)

∣∣

= 1
π

π∫

0

dφ
π

∞∫

−∞
dt

∣∣D
(
iteiφ

)〉〉〈〈
D

(
iteiφ

)∣∣ = 1
π |a− b†| . (69)

The inverse of F is simply given by F−1 = π |a− b†|. The canonical
dual is then obtained as follows

F−1∣∣(|x⟩φ φ⟨x|
)〉〉

=
∫

d2z |z|
∣∣D(z)

〉〉〈〈
D(z)

∣∣x
〉
φ
|x⟩−φ

=
∞∫

−∞
dk |k|

∣∣D
(
ikeiφ

)〉〉
e2ikx

= 1
4

∞∫

−∞
dk |k|

∣∣eik(Xφ−x)〉〉. (70)

Hence, it follows that the usual kernel operator corresponds to the
canonical dual.

5.1. Alternate dual frames

The dual of the quadrature projectors is not unique. However,
the formula of Li [12] for characterizing all possible alternate du-
als for bounded frames and discrete indexes cannot provide any
new dual set. By denoting the frame as {|Ξ(x,φ)⟩⟩} with Ξ(x,φ) =
δ(Xφ − x), such a formula can be formally written in the form

∣∣Θ(x,φ)
〉〉
= F−1∣∣Ξ(x,φ)

〉〉
+

∣∣ f (x,φ)
〉〉

−
π∫

0

dφ′

π

∞∫

−∞
dx′

〈〈
Ξ

(
x′,φ′

)∣∣F−1∣∣Ξ(x,φ)
〉〉∣∣ f

(
x′,φ′

)〉
,

(71)

where {F−1|Ξ(x,φ)⟩⟩} is the canonical dual, and { f (x,φ)} is an
arbitrary Bessel set, namely

∞∫

−∞
dx

π∫

0

dφ
π

∣∣ f (x,φ)
∣∣2 �∞. (72)

The scalar product that appears in the integral of Eq. (71) can be
written as follows

〈〈
Ξ

(
x′,φ′

)∣∣F−1∣∣Ξ(x,φ)
〉〉

=
∫

d2z |z| 0
〈
x′

∣∣ 0
〈
x′

∣∣∣∣D(z)
〉〉〈〈
D

(
zei(ψ−φ)

)∣∣x
〉
0|x⟩0

=
∞∫

−∞
dk |k|e2ik[x cos(ψ−φ)−x′]δ

(
k sin(ψ − φ)

)

= πδ
(
x− x′

)
δπ (ψ − φ). (73)

This bi-orthogonality relation implies that the formula (71) cannot
reveal any new dual set.
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5.2. Generating new frames

We can generate different frames by changing the function of
a − b† which gives the frame operator in Eq. (69). Explicitly, we
have

f
(∣∣a− b†

∣∣)

=
π∫

0

dφ
π

∞∫

−∞

dx
π

∫
d2z

∫
d2w g

(
|z|

)
g∗

(
|w|

)

× e2ix Im z−2ix Imwδ(Re z)δ(Rew)
∣∣D

(
zeiφ

)〉〉〈〈
D

(
weiφ

)∣∣

=
π∫

0

dφ
π

∞∫

−∞
dx eiφ(a†a−b†b)√π g

(∣∣a† − b
∣∣)|x⟩0|x⟩0

× 0⟨x| 0⟨x|
√
π g∗

(∣∣a† − b
∣∣)e−iφ(a†a−b†b), (74)

where the functions g and f are related as |t| f (|t|) = |g(t)|2. Using
the identity
(
a− b†

)
|A⟩⟩=

(
|aA⟩⟩ − |Aa∗⟩⟩

)
=

∣∣[a, A]
〉〉
, (75)

for reference basis such that a∗ ≡ a, e.g. the photon number basis,
we have
∣∣a− b†

∣∣2|A⟩⟩=
(
a† − b

)∣∣[a, A]
〉〉
=

∣∣[a†, [a, A]
]〉〉

. (76)

But the double commutator can be written in terms of the (dual)
Lindblad super-operator
[
a†, [a, A]

]
=−

(
L [a] + L

[
a†

])
A, (77)

where L[W ]A .= W †AW − 1
2 (W †W A + AW †W ). Remarkably, this

is exactly the dissipative super-operator of the displacement Gaus-
sian noise, corresponding to a distributed loss compensated by a
phase-insensitive amplification.

With the aid of the following commutator rule

[
a†,

[
a, eiλX

]]
= 1

4
λ2eiλX , (78)

we easily obtain

∣∣a† − b
∣∣2|x⟩0|x⟩0 =−1

4
∂2x

∣∣δ(x− X)
〉〉
=

∣∣∣∣F
[
1
4
λ2

]
(X − x)

〉〉
, (79)

in terms of the Fourier transform F [ f ](x) =
∫∞
−∞

dλ
2π eiλx f (λ).

Therefore, we have

g
(∣∣a† − b

∣∣)|x⟩0|x⟩0 =
∣∣∣∣F

[
g
(
1
2
λ

)]
(X − x)

〉〉
, (80)

corresponding to the frame

Ξ(x,φ) =√πF
[
g
(
1
2
•
)]

(Xφ − x). (81)

For example, if we choose g(x) =
√
σ 2

2π exp(− σ 2

2 x2), we have

Ξ(x,φ) =
√
2π exp

[
− 1
σ 2 (Xφ − x)2

]
. (82)

Notice that a function Ξ(x,φ) = h(Xφ − x) corresponds to a frame
if the function h has Fourier transform which is invertible and
bounded. Moreover two functions h and h′ will correspond to
the same frame operator if their Fourier transform have the same
module. More precisely, the frame operator will be given by

F = f
(∣∣a− b†

∣∣), f (t) = 1
πt

∣∣F−1[h](2t)
∣∣2. (83)

The canonical dual can be obtained by inverting the frame operator

F−1∣∣(|x⟩φ φ⟨x|
)〉〉

=
∫

d2z
π

1
f (|z|)

∣∣D
(
zeiφ

)〉〉
e2ix Im zδ(Re z)

= π
∞∫

−∞

dk
2π

1
f (|k|/2)

∣∣e−ikXφ
〉〉
eikx

=
∣∣h∨(x− Xφ)

〉〉
, (84)

where h∨(x) = πF [ 1
f (|k|/2) ](x).

6. Expansion of unbounded operators over the quadratures

As already noticed, the swap operator in Eq. (49) provides the
estimation rule just for trace-class operators. However, it is known
since Richter [13] the following formula

a†nam =
(
n +m

n

)−1 π∫

0

dφ
π

1√
2n+m

Hn+m(
√
2Xφ)eiφ(m−n). (85)

Eq. (85) was originally derived by using nontrivial identities involv-
ing trilinear products of Hermite polynomials.

Here, we provide a much simpler derivation as follows. Using
the definition of Hermite polynomials in Eq. (37), one has
(
n +m

n

)
a†nam

=
n+m∑

k=0

(
n +m

k

)
a†kan+m−kδk,n

=
π∫

0

dφ
π

n+m∑

k=0

(
n +m

k

)
a†kan+m−k eiφ(2k−n−m)eiφ(m−n)

=
π∫

0

dφ
π

:Xn+m
φ : eiφ(m−n)

=
π∫

0

dφ
π

1√
2n+m

Hn+m(
√
2Xφ) eiφ(m−n). (86)

Similarly, for the symmetrical ordering, one derives the identity

(
n +m
m

)
S
{
a†nam

}
=

n+m∑

l=0

(
n +m

l

)
S
{
a†n+m−lal

}
δlm

=
π∫

0

dφ
π

eiφ(m−n)2n+mXn+m
φ . (87)

For arbitrary ordering, using Eq. (33), one obtains

:a†kal:s =
(k,l)∑

j=0

k!l!
j!(k− j)!(l− j)!

(
s
2

) j

S
{
a†k− jal− j}

=
(
k + l
k

)−1 π∫

0

dφ
π

eiφ(l−k)
(√

s
2

)k+l

H (k,l)
k+l

(√
2
s
Xφ

)
.

(88)

Using Lemma 3, one has the equivalent identity
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:a†kal:s =
(
k + l
k

)−1 π∫

0

dφ
π

eiφ(l−k)
(√

s
2

)k+l

Hk+l

(√
2
s
Xφ

)
.

(89)

In a similar way, one can derive the useful relation

(
µa + νa†

)n =
π∫

0

dφ
π

(2Xφ)n
(νe−iφ)n+1 − (µeiφ)n+1

νe−iφ −µeiφ
, (90)

whence

Xn
ϕ =

π∫

0

dφ
π

Xn
φ

sin[(φ − ϕ)(n + 1)]
sin(φ − ϕ)

. (91)

Using Eq. (87), for the displacement operator one obtains

D(α) =
n∑

k=0

(
n
k

)
αn−k(−α∗

)k
S
{
a†n−kak

}

=
π∫

0

dφ
π

∞∑

k=0

∞∑

n=0

(2αe−iφ Xφ)n(−2α∗eiφ Xφ)k

(n + k)! . (92)

The last equation can be summed using the identity

∞∑

n,m=0

zn(−z∗)m

(n +m)! = zez + z∗e−z∗

z + z∗
(93)

which gives the estimation rule

fφ
(
Xφ

∣∣D(α)
)
= e−iφαe2Xφe

−iφα + eiφα∗e−2Xφeiφα∗

e−iφα + eiφα∗
. (94)

Identity (94) should be compared with the equivalent estimator
given in Ref. [7]. The identity in Eq. (94) can be also derived by ex-
plicitly using the properties of null estimator functions, as shown
in Appendix A.

All estimation rules fφ(Xφ |X) given in the present section do
not correspond to an expectation of X as in Eq. (57). However, we
can suitably recover an expectation rule — which is generally not
unique — for any observable. Consider, for example, Eq. (94). Using
the following identity [16]

1∫

0

dθ θn(1− θ)m = B(n + 1,m + 1) = n!m!
(n +m + 1)! , (95)

one obtains the integral form for the inverse binomial coefficient

(
m + n
m

)−1

= d
dt

∣∣∣∣
t=1

t

1∫

0

dθ (tθ)n
(
t(1− θ)

)m
. (96)

Then, the estimator (94) becomes

fφ
(
Xφ

∣∣D(α)
)
= d

dt

∣∣∣∣
t=1

t

1∫

0

dθ exp
(
−2Xφeiφα∗tθ

)

× exp
(
2Xφe−iφαt(1− θ)

)
, (97)

and for its spectral kernel one has

fφ
(
x
∣∣D(α)

)
= d

dx
x

1∫

0

dθ exp
(
−2xeiφα∗θ

)

× exp
(
2xe−iφα(1− θ)

)
. (98)

We can rewrite the estimator in form of expectation

fφ
(
x
∣∣D(α)

)
= d

dx
x

1∫

0

dθ
〈
2xeiφ(1− θ)

∣∣eαa
†
e−α

∗a∣∣2xeiφθ
〉
, (99)

where the vectors are coherent states. Eq. (99) corresponds to the
functional form fφ(x|D(α)) = Tr[Wφ,x:D(α):], with

Wφ,x = d
dx

x

1∫

0

dθ
∣∣2xeiφθ

〉〈
2xeiφ(1− θ)

∣∣. (100)

In order to give an expectation rule corresponding to Eq. (86), we
can proceed as follows. From the integral representation [16]

Hn(x) = (−2i)n
∞∫

−∞

dt√
π
e−(t−ix)2tn, (101)

and using identity (96), Eq. (86) for normal ordering can be written
as follows

a†man =
π∫

0

dφ
π

∞∫

−∞

dt√
2π

e−
1
2 (t−i2Xφ)2

× d
dt

t

1∫

0

dθ
(
−iθteiφ

)n[−i(1− θ)te−iφ]m

=
π∫

0

dφ
π

∞∫

−∞

dt√
2π

e−
1
2 (t−i2Xφ)2

× d
dt

t

1∫

0

dθ Tr
[
a†man

∣∣−iθteiφ
〉〈
i(1− θ)teiφ

∣∣]e
t2
2 , (102)

where we have used matrix elements on coherent states

⟨β|a†man|α⟩= αnβ∗me−
1
2 (|α|2+|β|2−2αβ∗). (103)

Notice that Eq. (102) is equivalent to the expansion for operators
X admitting normal-ordered form given in Eqs. (26) and (27).

6.1. Frames of normal-ordered moments

In the following, by simply applying the frame theory, we re-
cover some results of Refs. [19,20], where the set of normally
ordered moments {a†kal} is shown to be complete, and related to
a biorthogonal set given on the basis of Fock states. From the set
{a†kal} we immediately write the frame operator

F̃ =
∞∑

k,l=0

∣∣a†kal
〉〉〈〈
a†kal

∣∣. (104)

On the Fock basis one has

F̃ =
∞∑

k,l,n, j=0

√
(k + n)!(l + n)!(k + j)!(l + j)!

n! j!
× |k + n⟩|l + n⟩⟨k + j|⟨l + j|

=
∞∑

n=0

anbn

n!

( ∞∑

k,l=0

k!l!|k⟩⟨k|⊗ |l⟩⟨l|
) ∞∑

j=0

a† jb† j

j!

= eab
(
a†a!⊗ b†b!

)
ea

†b† . (105)

The inverse of F̃ is given by
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F̃−1 = e−a
†b†

(
1

a†a! ⊗
1

b†b!

)
e−ab. (106)

A lengthy but straightforward calculation gives

|gk,l⟩⟩ ≡ F̃−1∣∣a†kal
〉〉

=
min (k,l)∑

t=0

(−1)t

t!√(k− t)!(l− t)! |k− t⟩|l− t⟩, (107)

and the dual set is then given by Eq. (31). The dual set is unique,
and in fact one has the biorthogonal relation

Tr
[
g†k′,l′a

†kal
]
= δk,k′δl,l′ . (108)

6.2. Frame of moments versus quadrature distribution

The frame of moments allows to recover the estimation rule for
unbounded operators as an expectation rule with a dual operator
of the quadrature projectors |x⟩φ φ⟨x|. In other words, by inspecting
Eq. (86), we would like to write an operator G(x,φ) such that

Tr
[
G†(x,φ)a†nam

]
=

(
n +m

n

)−1 1√
2n+m

Hn+m(
√
2x)eiφ(m−n).

(109)

In this case, the operator G(x,φ) is a dual of the quadrature projec-
tors |x⟩φ φ⟨x|, but is different from the canonical dual (70), which
is divergent for unbounded operators. One has

∣∣G†(x,φ)
〉〉
= F̃−1

∞∑

k,l=0

∣∣a†kal
〉〉〈〈
a†kal

∣∣∣∣G†(x,φ)
〉〉

=
∞∑

k,l=0

|gk,l⟩⟩Tr
[
a†lakG†(x,φ)

]
. (110)

Then we obtain G†(x,φ) = eiφa
†aG†(x,0)e−iφa†a , with

G†(x,0) =
∞∑

k,l=0

gk,l

(
k + l
k

)−1 1√
2k+l

Hk+l(
√
2x)

=
∞∑

k,l=0

min(k,l)∑

t=0

(−1)t

t!√(k− t)!(l− t)! |k− t⟩⟨l− t|

×
(
k + l
k

)−1 1√
2k+l

Hk+l(
√
2x). (111)

The dual G(x,φ) provides also new pattern functions for the ma-
trix elements, as previously noticed in Refs. [13,21]. For example,
for the vacuum component one has

Tr
[
G†(x,φ)|0⟩⟨0|

]
=

∞∑

k=0

(
−1

2

)k k!
(2k)!H2k(

√
2x). (112)

Notice, however, that such pattern functions are generally no
longer bounded for x→±∞, even for η> 0.5.

One can check that the set G(x,φ) is dual to the set of quadra-
ture projectors |x⟩φ φ⟨x| as follows

+∞∫

−∞
dx

π∫

0

dφ
π

∣∣δ(Xφ − x)
〉〉〈〈
G(x,φ)

∣∣

=
π∫

0

dφ
π

∞∑

k,l=0

(
k + l
k

)−1 1√
2k+l

eiφ(k−l)∣∣Hk+l(
√
2Xφ)

〉〉〈〈
g†k,l

∣∣

=
∞∑

k,l=0

∣∣a†lak
〉〉〈〈
g†k,l

∣∣ =
∞∑

k,l=0

∣∣a†lak
〉〉
⟨⟨gl,k| = F̃ F̃−1 = I. (113)

6.3. Other frames

Using frame calculus, it is easy to show that the following sets
of operators are spanning sets

An,φ = e−
1
2 X2

φ Xn
φ,

Bn,φ =
(

2
π

) 1
4 1√

2nn!
e−X2

φ Hn(
√
2Xφ), (114)

with corresponding frame operators

π∫

0

dφ
π

∞∑

n=0

|An,φ⟩⟩⟨⟨An,φ | =
e−|Z |2

|Z | ,

π∫

0

dφ
π

∞∑

n=0

|Bn,φ⟩⟩⟨⟨Bn,φ | =
1
π |Z | , (115)

where Z = a− b†.

7. Conclusion

We introduced a general framework to generate operator ex-
pansions for quantum tomography through the Kolmogorov con-
struction. In fact, the usual theory of frames is suited to derive
complete sets of observables and dual sets for obtain estimators
just for bounded operators, whereas a unifying approach to classify
operator expansions for unbounded operators is up to now un-
available. We showed the role of null estimators in leading to many
alternate expansions of the same operator over a quorum of ob-
servables, even making such expansions convergent for unbounded
operators. As a byproduct, a number of new operator expansions
has been found. Hopefully, our results will contribute to the solu-
tion of the problem of quantum tomography in infinite dimension,
where a complete classification of convergent operator expansions
over the quorum is still missing.
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Appendix A

A.1. Proof of Lemma 4

Consider the Poisson form of the Dirac delta for the 2π -interval

δ2π (φ) = lim
ϵ→1−

1
2π

+∞∑

n=−∞
ϵ|n|einφ . (116)

In the following we will use ϵ to mean ϵ = 1− . Rescaling φ by a
factor 2 we obtain

δπ (φ) = 1
π

+∞∑

n=−∞
ϵ|n|ei2nφ ≡ 1

π

+∞∑

n=−∞
ϵ2|n|ei2nφ .= δ

(+)
π (φ), (117)

which is also equivalent to the even folding relation

δ
(+)
π (φ) = δ2π (φ) + δ2π (φ +π). (118)

On the other hand, we have the odd folding relation
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eiφδ(−)
π (φ)

.= δ2π (φ)− δ2π (φ +π)

= 1
π

+∞∑

n=−∞
ϵ|2n+1|ei(2n+1)φ . (119)

From the equivalence relations (34), we immediately derive the
equivalence

x2kδπ (φ)≃ 1
π

x2k
k∑

n=−k
ϵ|n|e2inφ

= 1
π

x2k
[

(ϵe2iφ)k+1

ϵe2iφ − 1
+ (ϵe−2iφ)k+1

ϵe−2iφ − 1
+ κϵ(φ)

]
, (120)

where the distribution

κϵ(φ)
.= 1− ϵ2
1+ ϵ2 − ϵ(e2iφ + e−2iφ)

(121)

with support in φ = 0 gives

π∫

0

dφ
π
κϵ(φ)ei2nφ =

2π∫

0

dφ
2π

1− ϵ2
1+ ϵ2 − ϵ(eiφ + e−iφ)

einφ

= 1
2π i

∮

|z|=1

dz
ϵ − ϵ−1

(z− ϵ−1)(z− ϵ) z
n =: ϑ(n)

(122)

with ϑ(n) = 1 for n ⇥ 0 and ϑ(n) = 0 for n < 0. Eq. (120), which
contains identity δπ (φ) ≃ 1

π as a special case, generalizes as fol-
lows

f
(
x2

)
δπ (φ)

≃ 1
π

[
f (ϵx2e2iφ)

1− ϵ−1e−2iφ + f (ϵx2e−2iφ)

1− ϵ−1e2iφ
+ κϵ(φ) f

(
x2

)]
, (123)

where f (z) denotes any analytic function in z. In a similar way we
obtain

x2k+1eiφδπ (φ)

≃ 1
π

x2k+1eiφ
[

(ϵe2iφ)k+1

ϵe2iφ − 1
+ (ϵe−2iφ)k+2

ϵe−2iφ − 1
+ κϵ(φ)

]
, (124)

which generalizes as follows

xf
(
x2

)
eiφδπ (φ)

≃ 1
π

x
[
eiφ f (ϵx2e2iφ)

1− ϵ−1e−2iφ + e−iφ f (ϵx2e−2iφ)

1− ϵ−1e2iφ
+ κϵ(φ)eiφ f

(
x2

)]
.

(125)

A.2. Alternative derivation of identity (94)

By posing α = i
2 re

iϕ , we have

D(α) =
π∫

−π

dφ
2π

2πδ2π (φ − ϕ)eir Xφ

=
π∫

0

dφ
π
π

[
cos r Xφδ

(+)
π (φ − ϕ)

+ i sin r Xφδ
(−)
π (φ − ϕ)ϵei(φ−ϕ)

]
. (126)

Now, we evaluate separately the cosine and the sine terms. In the
following, we will denote ψ = φ−ϕ . The cosine term can be trans-
formed as follows

cos r Xφπδ
(+)
π (ψ)≃

∞∑

k=0

(−)k

(2k)! r
2k X2k

φ

k∑

n=−k
ϵ2|n|e2inψ

=
∞∑

n=0

ϵ2n
(
e2inψ + e−2inψ − δn0

)
(−)nr2n X2n

φ

×
∞∑

k=0

(−)kr2k X2k
φ

(2k + 2n)! . (127)

On the other hand, the sine term transforms as follows

sin r Xφπδ
(−)
π (ψ)ϵeiψ ≃

∞∑

n=0

ϵ2n+1(ei(2n+1)ψ + e−i(2n+1)ψ)
r2n X2n

φ

×
∞∑

k=0

(−)kr2k+1X2k+1
φ

(2k + 2n + 1)! . (128)

It is convenient now to make the following substitutions

r = 2|α|, e−iϕ = i
α∗

|α| , eiψ = i
α∗

|α|e
iφ . (129)

By using the sine and cosine terms together, Eq. (126) is rewritten
as

D(α) =
π∫

0

dφ
π

f ϵφ
(
Xφ

∣∣D(α)
)
, (130)

with

f ϵφ
(
Xφ

∣∣D(α)
)
=

∞∑

n=0

∞∑

k=0

[
ϵneinφ

(
−α∗

)n+k
αk

+ ϵne−inφ(−α∗
)k
αn+k − δn0

] (2Xφ)2k+n

(2k + n)! . (131)

In the limit ϵ→ 1− the last expression can be simplified using the
reordering rule

∞∑

n=0

∞∑

k=0

an+2k
(
zn+kwktn + zkwn+kt−n − δn0zkwk)

=
∞∑

h=0

∞∑

k=0

ah+k(tz)
h(t−1w

)k
, (132)

thus giving

fφ
(
Xφ

∣∣D(α)
)
=

∞∑

h=0

∞∑

k=0

(−2Xφeiφα∗)h(2Xφe−iφα)k

(h + k)! , (133)

from which Eq. (94) easily follows.
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